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Abstract

All isomorphisms of Plücker spaces on affine spaces with dimensions
≥ 3 arise from collineations of the underlying affine spaces.

1 Introduction

Let L be a set and ∼ a reflexive and symmetric binary relation on L such that
(L,∼) is connected, i.e., for any a, b ∈ L there exists a finite sequence a = a1 ∼
a2 ∼ · · · ∼ an = b. Following W. Benz the pair (L,∼) is called a Plücker space
[1, p. 199]. Elements a, b ∈ L are said to be related if a ∼ b. Adjacent elements
(a ≈ b) are characterized by a ∼ b and a 6= b.

The relation 6≈ is reflexive and symmetric. However, (L, 6≈) is not necessarily a
Plücker space, since it need not be connected. Nevertheless, L splits into a family
of connected components with respect to 6≈, say (Li)i∈I . Each component Lj
(j ∈ I) gives rise to the Plücker space (Lj, 6≈j), where 6≈j denotes the restriction
of 6≈ to Lj ×Lj. On the other hand, Lj is not necessarily connected with respect
to ∼j, i.e., the restriction of ∼ to Lj ×Lj. Hence (Lj,∼j) need not be a Plücker
space.

Given two Plücker spaces (L,∼) and (L′,∼′) a bijection ϕ : L→ L′ is called
an isomorphism if

a ∼ b⇐⇒ aϕ ∼′ bϕ for all a, b ∈ L. (1)

Obviously, (1) and

a 6≈ b⇐⇒ aϕ 6≈′ bϕ for all a, b ∈ L (2)

are equivalent conditions.
All automorphisms of (L,∼) form its so-called Plücker group. Write, as above,

(Li)i∈I for the connected components of L with respect to 6≈. Then each auto-
morphism of (Lj, 6≈j) (j ∈ I) extends to an automorphism of (L,∼) by setting
x 7→ x for all x ∈ L \ Lj.

Let A = (P ,L, ‖) be an affine space, where P , L and ‖ denotes the set of
points, the set of lines and the parallelism, respectively. Lines a, b ∈ L are called
related (a ∼ b), if a∩b 6= ∅. The pair (L,∼) is satisfying the conditions mentioned



before and will be called an affine Plücker space. We remark that for dim A ≥ 3
the set L is the set of ‘points’ of partial linear space, the affine Grassmann space
on L; cf. [4], [5], [6], [16] and [18]. However, the relation ∼ is not the same as
the binary relation of ‘collinearity’ used in those papers, since ‘collinear points’
are represented by lines that are related or parallel.

If dim A 6= 2, then (L, 6≈) is a Plücker space. If A is an affine plane, then
(L, 6≈) is not a Plücker space. The connected components (Li)i∈I with respect
to 6≈ are the pencils of parallel lines, since the relations 6≈ and ‖ are coinciding
now. If Lj (j ∈ I) is a fixed pencil of parallel lines, then the relation 6≈j is the
coarsest relation on Lj. Thus Plücker spaces on affine planes have indeed a very
poor structure. The case dim A ≤ 1 cannot deserve interest at all.

We shall determine all isomorphisms of Plücker spaces on affine spaces A, A′

with dimensions ≥ 3: Any collineation yields an isomorphism of the associated
affine Plücker spaces and vice versa. If we impose additional assumptions on A,
A′ (cf. Theorem 4), then any bijection ϕ : L → L′ is already an isomorphism of
Plücker spaces whenever (1) is satisfied with an implication (=⇒) rather than an
equivalence (⇐⇒).

Similar theorems for Plücker spaces on projective spaces are due to W.L.

Chow [9], H. Brauner [7] and the author [12]. For further results and references
on Plücker spaces see, among others, [1], [2] and [13].

2 Isomorphisms

Let A = (P,L, ‖) and A′ = (P ′,L′, ‖′) be affine spaces. If κ : P → P ′ is a
collineation, i.e., a bijection preserving collinearity and non-collinearity of points,
then κ gives rise to a bijection

ϕ : L → L′, Q ∨R 7→ Qκ ∨Rκ (Q,R ∈ P , Q 6= R) (3)

taking related lines to related lines in both directions.
We shall prove the following converse:

Theorem 1 Let A = (P ,L, ‖) and A′ = (P ′,L′, ‖′) be affine spaces with dim A′ ≥
3. Suppose that ϕ : L → L′ is an isomorphism of the Plücker space (L,∼) onto
the Plücker space (L′,∼′). Then

κ : P → P ′, a ∩ b 7→ aϕ ∩ bϕ (a, b ∈ L, a ≈ b) (4)

is a well-defined collineation.

Proof. (a) We infer from dim A′ ≥ 3 and the bijectivity of ϕ that #L > 1.
Therefore dim A ≥ 2. With Q ∈ P write L(Q) for the star of lines with centre Q,
i.e., the set of all lines in L running through Q. Any star of lines is a maximal
set of mutually related lines.



Suppose that (L(Q))ϕ contains a trilateral spanning a plane E ′ ⊂ P ′, say. All
lines of (L(Q))ϕ are mutually related. Therefore they are all contained in E ′. By
dim A′ ≥ 3, there exists a line a ∈ L with aϕ ∩ E ′ = ∅. Thus

aϕ 6∼′ xϕ for all x ∈ L(Q) (5)

and therefore
a 6∼ x for all x ∈ L(Q). (6)

On the other hand, there exists a line joining Q with an arbitrarily chosen point
of the line a. This contradicts (6).

Thus we have established that (L(Q))ϕ is a subset of a star of lines for any
Q ∈ P . It is obvious now that (4) is a well-defined mapping.

(b) Given a point Q′ ∈ P ′ one may show as above that (L′(Q′))ϕ−1 is a subset
of a star of lines. Therefore κ is a surjection and under ϕ stars of lines go over
to stars of lines in both directions.

If points Q,R ∈ P are distinct, then

#(L(Q) ∩ L(R)) = #((L(Q))ϕ ∩ (L(R))ϕ) = 1 (7)

and Qκ 6= Rκ, whence κ is injective.
Three mutually distinct points Q,R, S ∈ P are collinear if, and only if,

#(L(Q) ∩ L(R) ∩ L(S)) = 1. (8)

This in turn is equivalent to the collinearity of Qκ, Rκ, Sκ ∈ P ′. Hence κ is a
collineation. 2

Remark 1 If the order of A′ is greater than two or if dim A′ ≤ 2, then any
collineation P → P ′ is even an affinity, i.e. a collineation preserving parallelism
in both directions. Otherwise, the existence of a collineation P → P ′ implies the
existence of an affinity P → P ′; see [17, 32.5 and 40.4]. Hence for dim A′ ≥ 3 we
obtain all isomorphisms of (L,∼) onto (L′,∼′) via the Plücker group of (L,∼)
and a single affinity P → P ′.

Remark 2 If A = A′, then Theorem 1 describes the Plücker group for affine
spaces with dimension ≥ 3. This generalizes a result in [1, p. 205] for real affine
spaces1.

Remark 3 Suppose that dim A ≥ 2. The following construction yields all max-
imal sets of mutually related lines that are different from stars: Choose a point
Q, an incident line a and a plane E containing a. Write L(Q, E) for the pencil
of lines in E running through Q. Next define a family (τx)x∈L(Q,E) of translations
τx : E → E such that

⋂
x∈L(Q,E) x

τx = ∅. Then {xτx | x ∈ L(Q, E)} is a maximal
set of mutually related lines other than a star.

1The proof given there fails to work in case of characteristic two.



Remark 4 If ϕ : L → L′ is an isomorphism and if dim A′ = 2, then dim A = 2
according to Theorem 1. By virtue of (2) it is easy to establish the following
result: Plücker spaces on affine planes A and A′ are isomorphic if, and only if, A
and A′ have equipotent pencils of parallel lines or, in other words, if the order of
A equals the order of A′.

The transposition of two distinct parallel lines of an affine plane is an example
of a Plücker transformation that does not stem from a collineation.

We are now going to weaken the assumptions on ϕ in Theorem 1.

Theorem 2 Let A = (P ,L, ‖) and A′ = (P ′,L′, ‖′) be affine spaces with dim A′ ≥
3. Suppose that ϕ : L → L′ is a bijection satisfying

a ∼ b =⇒ aϕ ∼′ bϕ for all a, b ∈ L. (9)

Then
λ : P → P ′, a ∩ b 7→ aϕ ∩ bϕ (a, b ∈ L, a ≈ b) (10)

is a well-defined injection that preserves collinearity and non-collinearity of points.
Moreover,

L(Q)ϕ = L′(Qλ) for all Q ∈ P . (11)

Proof. (a) By the proof of Theorem 1, part (a), the following assertions have
been already verified: The dimension of A is ≥ 2. For all Q ∈ P the set (L(Q))ϕ

is a subset of a star of lines, whence (10) is a well-defined mapping.
(b) Let Q,R ∈ P be distinct and assume that Qλ = Rλ. Choose a line

c ∈ L \ (L(Q) ∪ L(R)) and a point S ∈ c such that Q,R, S are not collinear.
Therefore Q∨S, R∨S and c are three distinct concurrent lines. We deduce from
(10) that

Sλ = (Q ∨ S)ϕ ∩ (R ∨ S)ϕ = Qλ = Rλ. (12)

Consequently, Qλ ∈ xϕ for all x ∈ L . This is impossible due to the surjectivity
of ϕ. Hence λ is injective.

If {Q,R, S} ⊂ P is a triangle, then Q∨R, R∨S and S ∨Q are three distinct
lines. The injectivity of ϕ and the injectivity of λ force that {Qλ, Rλ, Sλ} ⊂ P ′
is a triangle. By definition, λ is a collinearity-preserving mapping.

(c) Finally, we establish (11). Assume to the contrary that there exists a
point Q ∈ P and a line b ∈ L \ L(Q) with Qλ ∈ bϕ. Choose two distinct points
R1, R2 ∈ b. Then {Q,R1, R2} is a triangle, but {Qλ, Rλ

1 , R
λ
2} ⊂ bϕ is a collinear

set, an absurdity. 2

The aim of the following discussion is to give sufficient conditions for λ to be
a collineation or, equivalently, a surjection. We could apply results on injective
mappings of affine spaces preserving collinearity of points; see [1, 3.1–3.3], [19]
and the references in [11]. However, we proceed instead in close analogy with



[12]. Any star of lines in an affine space, for example, a star L(Q) in A, carries
in a natural way the structure of a projective space, viz.

A/Q := (L(Q), {L(Q, E) | Q ∈ E , E a plane}). (13)

Recall the following concept due to P.V. Ceccherini [8]: A semicollineation
of projective spaces is a bijection taking any three collinear points to collinear
points. The existence of proper semicollineations (different from collineations) of
Desarguesian projective spaces seems to be an open problem; see also [3], [14]
and [15]. Semicollineations fall within the wider class of weak linear mappings
that have been characterized independently in [10] and [11].

Now (11) can be improved as follows:

Theorem 3 Let A, A′ and ϕ be given as in Theorem 2. Then dim A ≥ 3. If
moreover the order of A is not two and if Q ∈ P, then the restricted mapping

ϕ|L(Q) : L(Q)→ L′(Qλ) (14)

is a semicollineation of A/Q onto A′/Qλ.

Proof. A cannot be the affine plane of order two, since 6 < #L′.
Suppose that the order of A is not two. By (11), the mapping (14) is bijective.

Let a, b, c ∈ L(Q) be ‘collinear points’ of A/Q. There exists a line d ∈ L \ L(Q)
that is adjacent to a, b and c. Hence aϕ, bϕ, cϕ ∈ L(Qλ, Qλ∨dϕ) represent ‘collinear
points’ in A′/Qλ so that (14) is a semicollineation. There are non-coplanar lines
through Qλ representing ‘non-collinear’ points of A′/Qλ. Their pre-images under
(14) are distinct and non-coplanar, so that dim A ≥ 3. 2

If A is of order two, then (14) is in general merely a bijection.

Theorem 4 With the settings of Theorem 2, each of the following conditions is
sufficient for λ to be a collineation:

1. A or A′ is a finite affine space.

2. dim A ≤ dim A′ <∞.

3. The order of A is different from two and every monomorphism of an un-
derlying field F of A in an underlying field F ′ of A′ is surjective.

4. A and A′ are affine spaces of order two.

Proof. Ad 1. Since ϕ is bijective, both A and A′ are finite affine spaces.
Let A ∼= AG(n, 2) and A′ ∼= AG(m, ph), where n ≥ 3, m ≥ 3, h ≥ 1 are

integers and p is a prime. Choose Q ∈ P . We deduce from (11) that

2n−1#L(Q) = #L = #L′ = ph(m−1)#L(Qλ) = ph(m−1)#L(Q). (15)



Consequently, p = 2, n− 1 = h(m− 1) and, by #L(Q) = #L(Qλ),

n−1∑
i=0

2i =
m−1∑
i=0

2hi. (16)

We infer that each summand on the right hand side of (16) appears exactly once
on the left hand side, whence h = 1 and n = m. This implies that λ is surjective.

If the order of A is greater than two, then (14) is a semicollineation and, by
[8, 14.2], even a collineation. Therefore A and A′ are of equal order. Now λ turns
out to be surjective, because of

dim A = dim(A/Q) + 1 = dim(A′/Qλ) + 1 = dim A′ <∞. (17)

Ad 2. By virtue of the previous result, we may exclude affine spaces A, A′ of
order two from the following discussion.

Choose any point R′ ∈ P ′. As ϕ is surjective, there exists a line d ∈ L with
R′ ∈ dϕ. Let Q ∈ P be off the line d and put E := Q ∨ d. We observe that

dim(A/Q) = dim A− 1 ≤ dim A′ − 1 = dim(A′/Qλ) <∞. (18)

By [8, 8.4] or [14, Theorem 2.2] the semicollineation (14) turns out to be a
collineation. Consequently, L(Q, E)ϕ is a pencil of lines L′(Qλ, E ′), say. The line
dϕ 63 Qλ is related to all lines of this pencil with at most one exception. This
implies that the point-set dλ is equal to the affine line dϕ. Thus

R′ ∈ dϕ = dλ ⊂ imλ. (19)

Ad 3. Choose any point Q ∈ P . By Theorem 3, the mapping (14) is a
semicollineation. This implies the existence of a monomorphism F → F ′; cf. [8,
5.1], [10, Theorem 5.4.1] or [11, Theorem 2]. By [8, 5.3], the mapping (14) is a
collineation. From this the surjectivity of λ is established as above.

Ad 4. Choose any point R′ ∈ P ′. Since ϕ is surjective, there exists a line
{R1, R2} ∈ L with R′ ∈ {R1, R2}ϕ = {Rλ

1 , R
λ
2}. 2

Remark 5 Let A be an affine space over GF(2) with a countable basis and let
A′ be an m-dimensional affine space (3 ≤ m ≤ ℵ0) over a countable field F ′ of
arbitrary characteristic. Hence there is either no monomorphism or no surjective
monomorphism of GF(2) in F ′. As #P = #L′ = ℵ0, we can index all points of
P as Q1, Q2, . . . and all lines of L′ as a′1, a

′
2, . . . such that there are no repeated

elements.
Let us define, by recursion, an injective sequence {1, 2, . . .} → P ′, s 7→ R′s

such that each line of L′ contains exactly two points: We start with a point
R′1 ∈ a′1 and put B′1 := {R′1}. Next assume that we are already given a set
B′i = {R′1, . . . , R′i} formed by i ≥ 1 mutually distinct points no three of which
are collinear. Write N ′i for the set of all lines that arise by joining distinct points



of B′i. Then let j ∈ {1, 2, . . .} be the least element such that the line a′j is not
in N ′i . Since a′j carries an infinite number of points, we can choose such a point
R′i+1 ∈ a′j \B′i that no three elements of the set B′i+1 := B′i ∪{R′i+1} are collinear.

Put B′ := ⋃∞
s=1 B′s. By construction, no three distinct points of B′ are collinear.

Furthermore, given a line a′k ∈ L′ we obtain that a′k ∈ N ′2k, as required.
The mapping

ϕ : L → L′, {Qs, Qt} 7→ R′s ∨R′t, (s, t ∈ {1, 2, . . .}, s 6= t) (20)

is a bijection satisfying (9). The associated injection λ (see (10)) takes Qs to R′s
(s ∈ {1, 2, . . .}). Only two points of a′1 belong to imλ, whence λ is not surjective.

Remark 6 Let A, A′ be affine spaces with equal infinite order and 2 = dim A′ <
dim A ≤ ℵ0. There exists a bijection ϕ : L → L′ such that any class of parallel
lines in A is mapped onto a pencil of parallel lines in A′. Such a ϕ is satisfying
(9) without being an isomorphism of Plücker spaces.

Remark 7 Let A = A′ be an affine plane of infinite order. Choose two non-
parallel lines a, b ∈ L. There exists a bijection ϕ : L → L such that the parallel
class of a is mapped onto the union of the parallel classes of a and b, whereas any
other pencil of parallel lines is mapped onto a pencil of parallel lines. Then ϕ is
satisfying (9) without being a Plücker transformation.
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