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Abstract

All isomorphisms of Pliicker spaces on affine spaces with dimensions
> 3 arise from collineations of the underlying affine spaces.

1 Introduction

Let L be a set and ~ a reflexive and symmetric binary relation on L such that
(L, ~) is connected, i.e., for any a,b € L there exists a finite sequence a = a; ~
as ~ -+~ a, = b. Following W. BENZ the pair (L, ~) is called a Plicker space
[1, p. 199]. Elements a,b € L are said to be related if a ~ b. Adjacent elements
(a =~ b) are characterized by a ~ b and a # b.

The relation # is reflexive and symmetric. However, (L, %) is not necessarily a
Pliicker space, since it need not be connected. Nevertheless, L splits into a family
of connected components with respect to %, say (L;);c;. Each component L;
(j € I) gives rise to the Pliicker space (L;,%;), where %, denotes the restriction
of % to L; x L;. On the other hand, L; is not necessarily connected with respect
to ~j, i.e., the restriction of ~ to L; x L;. Hence (L;, ~;) need not be a Pliicker
space.

Given two Pliicker spaces (L, ~) and (L', ~') a bijection ¢ : L — L’ is called
an isomorphism if

an~b<=a®~"b¥ forall abe L. (1)

Obviously, (1) and
a®th<a?# b foralabel (2)

are equivalent conditions.

All automorphisms of (L, ~) form its so-called Plicker group. Write, as above,
(L;)ier for the connected components of L with respect to . Then each auto-
morphism of (L;,%,) (j € I) extends to an automorphism of (L, ~) by setting
z—xforallz e L\ L,

Let A = (P,L,||) be an affine space, where P, £ and || denotes the set of
points, the set of lines and the parallelism, respectively. Lines a,b € L are called
related (a ~ b), if anb # (. The pair (£, ~) is satisfying the conditions mentioned



before and will be called an affine Pliicker space. We remark that for dimA > 3
the set L is the set of ‘points’ of partial linear space, the affine Grassmann space
on L; cf. [4], [5], [6], [16] and [18]. However, the relation ~ is not the same as
the binary relation of ‘collinearity’ used in those papers, since ‘collinear points’
are represented by lines that are related or parallel.

If dimA # 2, then (£,%) is a Pliicker space. If A is an affine plane, then
(L, %) is not a Pliicker space. The connected components (L£;);c; with respect
to % are the pencils of parallel lines, since the relations % and || are coinciding
now. If £; (j € I) is a fixed pencil of parallel lines, then the relation %, is the
coarsest relation on £;. Thus Pliicker spaces on affine planes have indeed a very
poor structure. The case dim A < 1 cannot deserve interest at all.

We shall determine all isomorphisms of Pliicker spaces on affine spaces A, A’
with dimensions > 3: Any collineation yields an isomorphism of the associated
affine Pliicker spaces and vice versa. If we impose additional assumptions on A,
A’ (cf. Theorem 4), then any bijection ¢ : £ — L' is already an isomorphism of
Pliicker spaces whenever (1) is satisfied with an implication (=) rather than an
equivalence (<=).

Similar theorems for Pliicker spaces on projective spaces are due to W.L.
CuHow [9], H. BRAUNER [7] and the author [12]. For further results and references
on Pliicker spaces see, among others, [1], [2] and [13].

2 Isomorphisms

Let A = (P,L,]|) and A’ = (P, L,|’) be affine spaces. If K : P — P is a
collineation, i.e., a bijection preserving collinearity and non-collinearity of points,
then x gives rise to a bijection

p: L=L QVR—Q"VR (Q,ReP, Q+#R) (3)

taking related lines to related lines in both directions.
We shall prove the following converse:

Theorem 1 Let A= (P, L,||) and A" = (P, L',]||") be affine spaces with dim A" >
3. Suppose that ¢ : L — L' is an isomorphism of the Pliicker space (L,~) onto
the Pliicker space (L',~"). Then

kK:P—=P,anb—a?Nb¥ (a,b€ L, a~xDb) (4)
1s a well-defined collineation.

Proof. (a) We infer from dim A’ > 3 and the bijectivity of ¢ that #L£ > 1.
Therefore dim A > 2. With @) € P write £(Q) for the star of lines with centre @),
i.e., the set of all lines in £ running through ). Any star of lines is a maximal
set of mutually related lines.



Suppose that (£(Q))? contains a trilateral spanning a plane & C P’, say. All
lines of (£(Q))¥ are mutually related. Therefore they are all contained in &'. By
dim A’ > 3, there exists a line a € £ with a®» N & = . Thus

a? " ¥ for all x € L(Q) (5)

and therefore
a ot x for all z € L(Q). (6)

On the other hand, there exists a line joining ) with an arbitrarily chosen point
of the line a. This contradicts (6).

Thus we have established that (£(Q))¥ is a subset of a star of lines for any
@ € P. It is obvious now that (4) is a well-defined mapping.

(b) Given a point Q' € P’ one may show as above that (£/'(Q’))# " is a subset
of a star of lines. Therefore k is a surjection and under ¢ stars of lines go over
to stars of lines in both directions.

If points ), R € P are distinct, then

#(L(Q) N L(R)) = #((L(Q))7 N (L(R))?) =1 (7)

and Q" # R", whence & is injective.
Three mutually distinct points @), R, S € P are collinear if, and only if,

#(L(Q) N LIR) N L(S)) = 1. (8)

This in turn is equivalent to the collinearity of Q*, R®,S* € P’. Hence k is a
collineation. O

Remark 1 If the order of A’ is greater than two or if dimA’ < 2, then any
collineation P — P’ is even an affinity, i.e. a collineation preserving parallelism
in both directions. Otherwise, the existence of a collineation P — P’ implies the
existence of an affinity P — P’; see [17, 32.5 and 40.4]. Hence for dim A’ > 3 we
obtain all isomorphisms of (£, ~) onto (L', ~') via the Pliicker group of (L, ~)
and a single affinity P — P’.

Remark 2 If A = A’, then Theorem 1 describes the Pliicker group for affine

spaces with dimension > 3. This generalizes a result in [1, p. 205] for real affine
1

spaces.

Remark 3 Suppose that dim A > 2. The following construction yields all max-
imal sets of mutually related lines that are different from stars: Choose a point
@, an incident line a and a plane £ containing a. Write £(Q, &) for the pencil
of lines in £ running through Q. Next define a family (7,).cz(q,¢) of translations
7.+ € — & such that Nepe) 2™ = 0. Then {2™ |z € L(Q,€)} is a maximal
set of mutually related lines other than a star.

IThe proof given there fails to work in case of characteristic two.



Remark 4 If ¢ : £ — £’ is an isomorphism and if dim A’ = 2, then dimA = 2
according to Theorem 1. By virtue of (2) it is easy to establish the following
result: Pliicker spaces on affine planes A and A’ are isomorphic if, and only if, A
and A’ have equipotent pencils of parallel lines or, in other words, if the order of
A equals the order of A,

The transposition of two distinct parallel lines of an affine plane is an example
of a Pliicker transformation that does not stem from a collineation.

We are now going to weaken the assumptions on ¢ in Theorem 1.

Theorem 2 Let A= (P, L,||) and A" = (P', L', ]|") be affine spaces with dim A" >
3. Suppose that p : L — L' is a bijection satisfying

an~b=a?~"b? for all a,b € L. (9)

Then
A:P =P, anb—a?Nb? (a,b€ L, a~Db) (10)

15 a well-defined injection that preserves collinearity and non-collinearity of points.
Moreover,

L(Q)? = L(Q) for all Q € P. (11)

Proof. (a) By the proof of Theorem 1, part (a), the following assertions have
been already verified: The dimension of A is > 2. For all Q) € P the set (L(Q))¥
is a subset of a star of lines, whence (10) is a well-defined mapping.

(b) Let Q,R € P be distinct and assume that Q* = R*. Choose a line
ce€ L\ (L(Q)UL(R)) and a point S € ¢ such that Q, R, S are not collinear.
Therefore Q V.S, RV .S and c are three distinct concurrent lines. We deduce from
(10) that

SA=(QVS)¥N(RVS)?=0Q"=R (12)

Consequently, Q* € x¥ for all x € £ . This is impossible due to the surjectivity
of p. Hence A is injective.

If {Q, R, S} C P is a triangle, then @V R, RV S and SV @ are three distinct
lines. The injectivity of ¢ and the injectivity of A force that {Q*, R*, S*} C P’
is a triangle. By definition, A is a collinearity-preserving mapping.

(c) Finally, we establish (11). Assume to the contrary that there exists a
point Q € P and a line b € £\ £(Q) with Q* € b¥. Choose two distinct points
Ry, Ry € b. Then {Q, Ry, Ry} is a triangle, but {Q*, R}, Ry} C b¥ is a collinear
set, an absurdity. O

The aim of the following discussion is to give sufficient conditions for A to be
a collineation or, equivalently, a surjection. We could apply results on injective
mappings of affine spaces preserving collinearity of points; see [1, 3.1-3.3], [19]
and the references in [11]. However, we proceed instead in close analogy with



[12]. Any star of lines in an affine space, for example, a star £(Q) in A, carries
in a natural way the structure of a projective space, viz.

A/Q = (L(Q),{L(Q,€) | Q € £,& a plane}). (13)

Recall the following concept due to P.V. CECCHERINI [8]: A semicollineation
of projective spaces is a bijection taking any three collinear points to collinear
points. The existence of proper semicollineations (different from collineations) of
Desarguesian projective spaces seems to be an open problem; see also [3], [14]
and [15]. Semicollineations fall within the wider class of weak linear mappings
that have been characterized independently in [10] and [11].

Now (11) can be improved as follows:

Theorem 3 Let A, A’ and ¢ be given as in Theorem 2. Then dimA > 3. If
moreover the order of A is not two and if Q) € P, then the restricted mapping

elL(Q) + L(Q) — L1(QY) (14)
is a semicollineation of A/Q onto A'/Q*.

Proof. A cannot be the affine plane of order two, since 6 < #L'.

Suppose that the order of A is not two. By (11), the mapping (14) is bijective.
Let a,b,c € L(Q) be ‘collinear points’ of A/Q). There exists a line d € L\ L(Q)
that is adjacent to a, b and c. Hence a®, b%,¢? € L(Q*, Q*Vd?) represent ‘collinear
points’ in A’/Q* so that (14) is a semicollineation. There are non-coplanar lines
through Q* representing ‘non-collinear’ points of A’/Q*. Their pre-images under
(14) are distinct and non-coplanar, so that dimA > 3. O

If A is of order two, then (14) is in general merely a bijection.

Theorem 4 With the settings of Theorem 2, each of the following conditions is
sufficient for A to be a collineation:

1. A or A’ is a finite affine space.
2. dim A < dimA’ < 0.

3. The order of A is different from two and every monomorphism of an un-
derlying field F' of A in an underlying field F' of A’ is surjective.

4. A and A" are affine spaces of order two.

Proof. Ad 1. Since ¢ is bijective, both A and A’ are finite affine spaces.
Let A = AG(n,2) and A’ = AG(m,p"), where n > 3, m > 3, h > 1 are
integers and p is a prime. Choose @) € P. We deduce from (11) that

TIHL(Q) = #L = #L = p"IHLQY = p"IHLQ).  (15)



Consequently, p =2, n — 1 = h(m — 1) and, by #L(Q) = #L(Q"),

n—1 m—1
do2i=%" oM (16)
1=0 1=0

We infer that each summand on the right hand side of (16) appears exactly once
on the left hand side, whence h = 1 and n = m. This implies that A is surjective.

If the order of A is greater than two, then (14) is a semicollineation and, by
8, 14.2], even a collineation. Therefore A and A’ are of equal order. Now A turns
out to be surjective, because of

dim A = dim(A/Q) + 1 = dim(A'/Q*) + 1 = dim A’ < oo. (17)

Ad 2. By virtue of the previous result, we may exclude affine spaces A, A’ of
order two from the following discussion.

Choose any point R’ € P’. As ¢ is surjective, there exists a line d € £ with
R € d?. Let QQ € P be off the line d and put £ := Q V d. We observe that

dim(A/Q) = dimA — 1 < dimA’ — 1 = dim(A’/Q*) < 0. (18)

By [8, 8.4] or [14, Theorem 2.2] the semicollineation (14) turns out to be a
collineation. Consequently, £(Q,€)¢ is a pencil of lines £'(Q*, &), say. The line
d? ¥ Q" is related to all lines of this pencil with at most one exception. This
implies that the point-set d* is equal to the affine line d®. Thus

R € d?=d" Cim\. (19)

Ad 3. Choose any point Q € P. By Theorem 3, the mapping (14) is a
semicollineation. This implies the existence of a monomorphism F' — F’; cf. [8,
5.1], [10, Theorem 5.4.1] or [11, Theorem 2|. By [8, 5.3|, the mapping (14) is a
collineation. From this the surjectivity of A is established as above.

Ad J. Choose any point R’ € P’. Since ¢ is surjective, there exists a line
{Rl, RQ} S L with R, € {Rl, RQ}cp = {Ri\, R%} a

Remark 5 Let A be an affine space over GF(2) with a countable basis and let
A’ be an m-dimensional affine space (3 < m < Xg) over a countable field F” of
arbitrary characteristic. Hence there is either no monomorphism or no surjective
monomorphism of GF(2) in F'. As #P = #L' = Ny, we can index all points of
P as Q1,Q2, ... and all lines of L as a),al, ... such that there are no repeated
elements.

Let us define, by recursion, an injective sequence {1,2,...} — P’ s — R,
such that each line of £’ contains exactly two points: We start with a point
R, € d} and put B; := {R}}. Next assume that we are already given a set
B = {R},..., R} formed by ¢ > 1 mutually distinct points no three of which
are collinear. Write N/ for the set of all lines that arise by joining distinct points



of Bi. Then let j € {1,2,...} be the least element such that the line a is not
in V. Since aj carries an infinite number of points, we can choose such a point
R, € da}\ B; that no three elements of the set B}, := BjU{R;,,} are collinear.
Put B := U2, B.. By construction, no three distinct points of B are collinear.
Furthermore, given a line aj, € L' we obtain that a), € Nj,, as required.
The mapping

o L—=L {Qs,Qi}— R VR, (s,te{l,2,...}, s#t) (20)

is a bijection satisfying (9). The associated injection A (see (10)) takes Qs to R,
(s €{1,2,...}). Only two points of a} belong to im A, whence X is not surjective.

Remark 6 Let A, A’ be affine spaces with equal infinite order and 2 = dim A’ <
dim A < Nj. There exists a bijection ¢ : £ — L’ such that any class of parallel
lines in A is mapped onto a pencil of parallel lines in A’. Such a ¢ is satisfying
(9) without being an isomorphism of Pliicker spaces.

Remark 7 Let A = A’ be an affine plane of infinite order. Choose two non-
parallel lines a,b € L. There exists a bijection ¢ : £ — L such that the parallel
class of a is mapped onto the union of the parallel classes of a and b, whereas any
other pencil of parallel lines is mapped onto a pencil of parallel lines. Then ¢ is
satisfying (9) without being a Pliicker transformation.

References

[1] BENz, W.: Geometrische Transformationen. B.I. Wissenschaftsverlag,
Mannheim Leipzig Wien Ziirich, 1992.

[2] BENz, W.: Real Geometries. BI-Wissenschaftsverlag, Mannheim Leipzig
Wien Ziirich, 1994.

[3] BERNARDI, M.P., TORRE, A.: Alcune questioni di esistenza e continuita
per (m,n)-fibrazioni e semicollineazioni. Boll. U.M.I. (6) 3-B (1984), 611
622.

[4] BiICHARA, A., MAzzoccCA, F.: On a characterization of Grassmann space
representing the lines in an affine space. Simon Stevin 56 (1982), 129-141.

[5] BICHARA, A., MAzzOCCA, F.: On the independence of the axioms defining
the affine and projective Grassmann spaces. Ann. Discr. Math. 14 (1982),
123-128.

[6] BiICHARA, A., MAzzoccA, F.: On a characterization of the Grassmann

spaces associated with an affine space. Ann. Discr. Math. 18 (1983), 95—
112.



[7] BRAUNER, H.: Uber die von Kollineationen projektiver Riume induzierten
Geradenabbildungen. Sitz. Ber. 6sterr. Akad. Wiss., math.-naturw. KI. Abt.
I1, 197 (1988), 327-332.

[8] CECCHERINI, P.V.: Collineazioni e semicollineazioni tra spazi affini o proi-
ettivi. Rend. Mat. (5) 26 (1967), 309-348.

[9] CHOwW, W.L.: On the geometry of algebraic homogeneous spaces. Ann. of
Math. 50 (1949), 32-67.

[10] FAURE C.-A., FROLICHER, A.: Morphisms of Projective Geometries and
Semilinear Maps. Geom. Dedicata 53 (1994), 237-262.

[11] HAVLICEK, H.: A Generalization of Brauner’s Theorem on Linear Map-
pings. Mitt. Math. Sem. Univ. Gieflen 215 (1994), 27-41.

[12] HAVLICEK, H.: On Isomorphisms of Grassmann Spaces. Mitt. Math. Ges.
Hamburg 14 (1995), 117-120.

[13] HAVLICEK, H.: Symplectic Pliicker Transformations. Math. Pannonica 6
(1995), 145-153.

[14] KREUZER, A.: On the Definition of Isomorphisms of linear spaces. Geom.
Dedicata (to appear).

[15] MAROSCIA, P.: Semicollineazioni e semicorrelazioni tra spazi lineari. Rend.
Mat. (6) 3 (1970), 507-521.

[16] TALLINI, G.: Partial Line Spaces and Algebraic Varieties. Symp. Math. 28
(1986), 203-217.

[17) TAMASCHKE, O.: Projektive Geometrie II. Bibliographisches Institut,
Mannheim Wien Ziirich, 1969.

[18] ZANELLA, C.: Spazi di Grassmann affini topologici. Rend. Mat. Appl. (7)
8 (1988), 315 328.

[19] Zick, W.: Der Satz von Martin in Desargues’schen affinen Raumen. Inst.
f. Mathematik, Universitat Hannover, Preprint No. 134 (1981), 1-20.

Hans Havlicek

Abteilung fiir Lineare Algebra und Geometrie
Technische Universitat

Wiedner Hauptstrale 8-10

A-1040 Wien, Austria

EMAIL: havlicek@geometrie.tuwien.ac.at



