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1 Introduction
Our main aim is to analyse three articles of Germán Ancochea ([5], [6], [7]) and
to describe their impact in algebra and geometry. Even though most basic math-
ematical concepts remained unchanged ever since, terminology, notation, and the
style of exposition has undergone substantial changes. We decided to write our
note in today’s mathematical language and to add remarks on the original wording
in footnotes. Furthermore, we provide short expositions of topics that constitute
the basis of Ancochea’s research. The surveys [41] and [133] contain a wealth of
references to the material presented there.

2 Ancochea’s contributions

2.1 Projective spaces
One major theme of Ancochea’s contributions is the interplay between synthetic
projective geometry and algebra. Recall that a projective space (P,L) consists of
a set P of points and a set L of subsets of P called lines. In such a space it is
common to introduce the following terminology. A collection of points is said to
be collinear, if there exists a line containing all of them. A triangle is a set of
three non-collinear points. A side of a triangle is a line that contains two distinct
points of the given triangle. In terms of these notions the axioms of a projective
space (P,L) read as follows:

1. Any two distinct points lie on a unique line.
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2. If a line meets two distinct sides of a triangle, not at a point of the triangle,
then it meets the third side also.

3. Any line contains at least three distinct points.

The above definition of a projective space contains no restrictions on its dimen-
sion, which may be finite or infinite.

We now assume, until further notice, (P,L) to be a projective space of di-
mension > 2, that is, it contains at least two disjoint lines. Such a space has a
remarkable property. Upon choosing a line L and three distinct points of reference
on L, which are labelled as 0, 1,∞, the set K := L \ {∞} can be made into a field1

by defining the sum x + y and the product x · y of x, y ∈ K in a purely geometric
manner. Starting with x and y one has to draw several auxiliary points and lines
in some (projective) plane2 containing L according to Fig. 1.3 The distinguished

L
0 ∞y x x + y

L
0 1 ∞y x x · y

Figure 1: Addition and multiplication

points 0 and 1 are the neutral elements with respect to addition and multiplication
in the field K, which will be called an underlying field of (P,L). All underlying
fields of a given projective space (P,L) of dimension > 2 are isomorphic.

One crucial point is, of course, that the definition of the sum and the product
of points does not depend on the choice of the auxiliary elements. This is due to
the fact that (P,L) is a desarguesian projective space, that is, in any of its planes
the following Theorem of Desargues (Fig. 2) holds. If two triangles a1, a2, a3

and b1, b2, b3 of a projective plane are in perspective from a point p, then the
intersections of their corresponding sides are collinear.

Now let (P,L) be a projective plane. Then the construction of an underlying
field can be carried out like before provided that (P,L) is desarguesian. Otherwise

1As is customary among geometers, multiplication in a field is not assumed to be commutative.
2A projective plane is a two-dimensional projective space. When speaking of subspaces of a

projective space, we usually drop the adjective “projective”.
3The classical example of a three-dimensional projective space arises from the three-

dimensional Euclidean space by adding “points and lines at infinity” in an appropriate way. If
the dashed line in Fig. 1 coincides with a line at infinity and 0 is not at infinity, then there is an
elementary interpretation. The sum x + y is the image of x under the translation taking 0 to y. The
product x · y is the image of x under the homothety with centre 0 taking 1 to y.
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one arrives at the problem of coordinatisation of a non-desarguesian projective
plane [82], [131], [132], which is beyond our scope.

Given a projective space (P,L) of dimension ≥ 2 a mapping π : L1 → L2 : x 7→
xπ of a line L1 to a line L2 is called a perspectivity, if there exists a point p < L1∪L2

(called the centre of π) such that p, x, xπ are collinear for all x ∈ L (Fig. 3). Any

p

a1

a2

a3

b1
b2

b3

Figure 2: Theorem of Desargues

p

L1

L2

x

xπ

Figure 3: Perspectivity

product of finitely many perspectivities is called a projectivity4. Projectivities are
bijective. If (p1, p2, p3) and (q1, q2, q3) are triples of distinct points on lines L
and M, respectively, then there is at least one projectivity ψ sending p1 7→ q1,
p2 7→ q2, p3 7→ q3. In order to obtain all projectivities with this property it is
therefore enough to look for all projectivities of L onto itself such that p1, p2, p3

remain fixed.
In the classical case, where (P,L) is three-dimensional and any underlying

field is isomorphic to the field of real numbers, the name Fundamental Theorem
of Projective Geometry has been given to following result. The identity is the
only projectivity of a line onto itself with three distinct fixed points. If (P,L) is
a desarguesian projective space of dimension ≥ 2, then this fundamental theorem
remains valid if, and only if, one underlying field of (P,L) is commutative.

2.2 Sobre el teorema fundamental de la geometria proyectiva
In this article ([5]) from 1941, Ancochea considered a projective space (P,L) of
dimension > 2 and referred to the books of A. N. Whitehead [164, p. 15] and
L. Bieberbach [28, p. 5] for the notion of a projective space.5 Also, he quoted [28,
Kap. 1, § 4] for the construction of a field K from a line of (P,L) and recalled the
definition and some properties of a projectivity.

4This definition goes back to J.-V. Poncelet. Ancochea used the name projectivity in the sense
of Poncelet for such a mapping.

5In both books there are also extra axioms that force the dimension of a projective space to be
three. The formalism used in [28] is different from ours.
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After these preliminaries, the main question of the article was posed. What
can be said about a projectivity of a line L onto itself that fixes three distinct
points? Ancochea immediately derived a partial answer from a note by O. Veblen
[157]. If these three points are labelled as 0, 1,∞ and are used to construct a field
K := L \ {∞}, then such a projectivity restricts to an automorphism of K. (Let us
add that the reasoning in [157] relies on two observations. First, any projectivity
can be extended to a collineation of (P,L), i. e. a bijection P → P that takes
any line onto a line. Second, any collineation of (P,L) fixing the points 0, 1, ∞
induces an automorphism of K.) Next, he stated the following complete answer
to his question.

Theorem ([5, Teorema fundamental]). Let ψ be a projectivity of a line L with
three distinct fixed points. If these points are chosen as the points of reference
(0, 1,∞), then the image of any point x ∈ L other than ∞ arises by applying an
inner automorphism of K = L \ {∞}. More precisely, there is an a ∈ K \ {0},
which is fixed under ψ, such that xψ = a−1xa for all x ∈ K. Conversely, any inner
automorphism of K extends to a projectivity of L that fixes the points of reference.

Let us sketch Ancochea’s elegant proof. One may assume without loss of gen-
erality that ψ is given as a product π1π2 · · · πn+1 of perspectivities and, moreover,
that πn+1 takes the form πn+1 : L → L with 0 being the only common point of L
and L. By a theorem of F. Schur [142], the projectivity ψ := π1π2 · · · πn : L → L
can also be written as a product of at most two perspectivities. If ψ is a single
perspectivity, then 0, 1, ∞ being fixed yields that ψ = ψπn+1 is the identity. Oth-
erwise, ψ is a product of three perspectivities. The rest of the proof is contained
in Fig. 4, which is a reproduction6 from [5]. A carefully explained way of how to

To be included in the final version only.

Figure 4: Copy of Ancochea’s drawing

6The author is grateful to the editors of “Revista Matemática Iberoamericana” for granting
permission to include a copy of Ancochea’s drawing.
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read this figure7 in terms of the field K yields that xψ = axa−1 for an appropriate
a ∈ K. By reversing these arguments the converse can be established.

Ancochea closed with the observation that the “classical” Fundamental The-
orem of Projective Geometry (see page 3) appears as an immediate corollary of
his more general version. Indeed, the projectivity ψ reduces to the identity if, and
only if, a belongs to the centre of K.

In a subsequent article [6], Ancochea expressed his thanks to F. Bachmann
for pointing out that his Teorema fundamental has been obtained already in 1930,
using different methods, by K. Reidemeister [136, p. 137, Satz 4] (reprint [137]).

2.3 Harmonic quadruples
Let (P,L) be a projective space of dimension ≥ 2. In (P,L), a quadrangle
means a set of four points of a fixed plane no three of which are collinear. A
quadruple (p1, p2, p3, p4) of points on a line is said to be harmonic, in sym-
bols H(p1, p2, p3, p4), if there exists a quadrangle, say q1, q2, q3, q4 with p1 =

q1q2 ∩ q3q4, p2 = q2q3 ∩ q4q1, p3 ∈ q1q3, and p4 ∈ q2q4. (Here we denote
the unique line joining p and q by pq etc.) The first three points p1, p2, p3 of a
harmonic quadruple are distinct. Likewise, the fourth point p4 cannot coincide
with p1 or p2. In general, nothing can be said about p3 and p4 being different or
not. However, if (P,L) is desarguesian, then harmonic quadruples are well un-
derstood. First of all, the theorem about the uniqueness of the fourth harmonic
point holds. Given three distinct points p1, p2, p3 on a line L there is a unique
point p4 ∈ L such that H(p1, p2, p3, p4). Furthermore, an underlying field K has
characteristic two if, and only if, p3 = p4.

q1

q2

q3
q4

p1 p2p3 p4

Figure 5: Harmonic quadruple

Let us now switch from synthetic to analytic projective geometry. Given any
left vector space V over a field K the projective space on V , which will be written
as P(V), has

{
Kv | v ∈ V \ {0}

}
, i. e. the set of one-dimensional subspaces of V , as

its set of points. A line of P(V) is defined as the set of all points that are contained

7The points of reference are labelled as A0, A1, A∞. In order to illustrate the case of a non-
commutative field K, Ancochea decided to “bend” one line so that the point x and its image under
ψ (written as x′) turn out different.
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in some fixed subspace of V with (vector) dimension two. We shall also use the
name projective space over K for P(V) in order to emphasise the ground field. A
projective space P(V) has dimension dim V − 1, and it is desarguesian.8

If (p1, p2, p3) is a triple of distinct points on a line L of P(V), then there exists
at least one pair of linearly independent vectors (w1,w2) such that p1 = Kw1,
p2 = Kw2, p3 = K(w1 + w2). The mapping

L \ {p1} → K : K(x1w1 + x2w2) 7→ x−1
2 x1 with x1, x2 ∈ K and x2 , 0 (1)

is bijective. If K is non-commutative, then this bijection depends not only on the
given triple of points but also on the choice of (w1,w2). Indeed, all pairs of vectors
with the required property comprise the set

{
(cw1, cw2) | c ∈ K \ {0}

}
. When fixing

any point p4 = K(x1w1 + x2w2) ∈ L \ {p1} and calculating the corresponding
element of K with respect to all these pairs in analogy to (1), one obtains the set

CR(p1, p2, p3, p4) :=
{
c(x−1

2 x1)c−1 | c ∈ K \ {0}
}
, (2)

which is called the cross ratio of the quadruple (p1, p2, p3, p4). This cross ratio is
a conjugacy class in K and it depends only on the given points. Precisely when
x−1

2 x1 is in the centre of K, the above cross ratio may be considered as the single
element x−1

2 x1 ∈ K rather than a subset of K.9

If dim V > 2, then harmonic quadruples can be characterised as follows:

CR(p1, p2, p3, p4) = −1 ⇔ H(p1, p2, p3, p4). (3)

Also, with (0, 1,∞) := (p2, p3, p1) the bijection in (1) turns into an isomorphism
of the underlying field L \ {∞} onto K. So, all underlying fields of P(V) are
isomorphic to K. If dim V = 2 or, in other words, if P(V) is a projective line,
then (3) can be used as definition of harmonic quadruples. An abstract projective
line, however, has in general not enough “intrinsic structure” to define harmonic
quadruples.

The seminal book Geometrie der Lage by K. G. C. von Staudt contains a most
remarkable result, namely a characterisation of projectivities in terms of harmonic
quadruples [151, pp. 49ff.]. In its original version, which is confined to projective
spaces of dimension three over the real numbers R, it reads as follows:

Theorem (von Staudt’s Theorem). Let lines L1 and L2 be given. Then a bijec-
tive mapping λ : L1 → L2 is a projectivity precisely when it takes any harmonic
quadruple on L1 to a harmonic quadruple on L2.

8The projective spaces P(V) with dim V ≥ 3 are, up to isomorphism, precisely the desarguesian
projective spaces of dimension ≥ 2.

9Ancochea never mentions “cross ratios” in [5], [6], and [7]. When he wrote these articles,
the notion of “cross ratio” has been established for commutative fields only. The definition in (2)
was given in 1952 by R. Baer [10, pp. 71–72] and, in a slightly different setting, in 1948–1949 by
E. Sperner [149, p. 149] and [150, p. 425].
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For this result to be true, two properties of the field R are essential. First, the
characteristic CharR is different from two and, second, the field R admits no auto-
morphism other than the identity. This was pointed out in a note by M. G. Darboux
[47] from 1870, where also a small gap in von Staudt’s original proof was closed.

In order to generalise von Staudt’s Theorem we adopt the following terminol-
ogy. Given lines L1 and L2 in a desarguesian projective space (P,L) of dimension
≥ 2 a mapping λ : L1 → L2 is called a harmonicity preserver10 if it takes any
harmonic quadruple on L1 to a harmonic quadruple on L2.

Harmonicity preservers do not deserve interest if an underlying field of (P,L)
is of characteristic two, since then a quadruple (p1, p2, p3, p4) of points is har-
monic if, and only if, p1, p2, p3 are distinct collinear points and p3 = p4. So,
in case of characteristic two, a mapping λ : L1 → L2 is a harmonicity preserver
precisely when it is injective.

Suppose now that (P,L) has an underlying field of characteristic , 2. Pro-
jectivities are obvious examples of bijective harmonicity preservers. In order to
determine all bijective harmonicity preservers between lines L1 and L2 of (P,L), it
is therefore enough to consider all mappings λ of this kind that fix three arbitrarily
chosen points on some line L. When labelling the three fixed points as 0, 1, ∞,
the points of K := L \ {∞} provide an underlying field of (P,L), and λ restricts
to a bijection σ of K; see page 2. O. Schreier and E. Sperner [141, pp. 191–194]
used these ideas and extended the findings of von Staudt and Darboux in the year
1935. If the field K is commutative, Char K , 2, then any bijective harmonicity
preserver λ : L → L fixing the points 0, 1, ∞ restricts to an automorphism of K
and, conversely, any automorphism of K extends to a unique bijective harmonicity
preserver of the line L.

2.4 Le théorème de von Staudt en géométrie projective quater-
nionienne

Ancochea started his article [6] by quoting the result of O. Schreier and E. Sperner
that we encountered above. He observed that an extension thereof to the case of
a non-commutative field K seemed to be unknown. In order to state such an
extension he introduced an entirely new algebraic concept.

Definition ([6, p. 193]). A bijective mapping σ of a field K onto itself is called a
semi-automorphism if for all x, y ∈ K the following conditions hold:

(x + y)σ = xσ + yσ, (4)
(xy)σ + (yx)σ = xσyσ + yσxσ. (5)

10Some authors use the name harmonic mapping instead. We refrain from doing so in order to
avoid confusion with the “harmonic mappings” known from differential geometry.

7



This allowed him to state the following theorem.

Theorem ([6, p. 193]). In a projective space over a field of characteristic , 2,
any bijective harmonicity preserver11 of a line L onto itself with three distinct
fixed points 0, 1,∞ restricts to a semi-automorphism of the field L \ {∞}.

In order to establish the theorem, Ancochea considered the projective space
P(V) on some left vector space V over a field K of characteristic , 2. The given
line L therefore corresponds to a two-dimensional subspace W of V . There exists a
basis (w1,w2) of W such that the distinguished points 0, 1,∞ are Kw2, K(w1 +w2),
Kw1, respectively.12 The isomorphism (1) allowed him to identify the points of the
underlying field L \ {∞} with the elements of the field K. Next, he addressed the
problem of calculating the fourth harmonic point, say p of three distinct points
a1, a2, a3 ∈ K. Based on calculations, which in most cases were omitted by An-
cochea, he arrived at the following results: p = ∞ is equivalent to a3 = 1

2 (a1 + a2).
If p , ∞, letting p =: a4 ∈ K gives

a4 =
(
(a1 − a3)−1 + (a2 − a3)−1

)−1 (
(a1 − a3)−1a1 + (a2 − a3)−1a2

)
. (6)

Equation (6) takes the form

a4 = 2a1(a1 + a2)−1a2 (7)

provided that a3 = 0 and a1 + a2 , 0. Likewise, the remaining exposition is ex-
tremely brief. The reader merely is invited to repeat the proof from [141, pp. 192–
194] in order to verify that the given harmonicity preserver of L gives rise to a
bijection σ : K → K satisfying equations (4) and (5).

We present here a more detailed description, because we want to illustrate how
the definition of a semi-automorphism arises by following Ancochea’s advise.
First, a proof of (7) can be done using

a4 =
(
a−1

1 + a−1
2

)−1 (
a−1

1 a1 + a−1
2 a2

)
= 2

(
a−1

2 (a2 + a1)a−1
1

)−1
.

Next, in order to establish (4), it is enough to start on page 192 of [141] before
formula (15) and to repeat the reasoning from there up to equation (20). Thereby,
one has to reinterpret the cross ratios appearing in [141]. Any cross ratio of the
form CR(∞, 0, 1, p) with p in L \ {∞} is to be understood as the corresponding
element x−1

2 x1 ∈ K according to (1); cross ratios equal to −1 ∈ K characterise
harmonic quadruples. The transfer from [141] of the proof for (5) appeared at the

11Ancochea used instead the name projectivity in the sense of von Staudt.
12Ancochea actually used the left vector space K2 and its canonical basis instead of our W and

(w1,w2).
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first sight impossible to the author, since the commutativity of the ground field is
used at the very beginning of the reasoning in the middle of page 193. Fortunately,
it suffices to start reading on that page a few lines further down at equation (21)
taking into account that the fraction

2ab
a + b

appearing there has to be replaced by the right hand side of our equation (7). In
the same way several other fractions, which do not make sense over a skew field,
have to be rewritten appropriately. The next formula that needs to be altered is

ab =
1
2

(
(a + b)2 − a2 − b2

)
,

since this requires commuting elements a, b. In our not necessarily commutative
field K this formula has to be replaced with

a1a2 + a2a1 = (a1 + a2)2 − a2
1 − a2

2 for all a1, a2 ∈ K.

In this way one readily obtains the condition in (5) rather than the multiplicativity
of σ as in [141].

After the proof, Ancochea gave examples of harmonicity preservers. Remark-
ably enough, he did not use formula (6) for this purpose. Instead, a result of
S. Wachs [158, p. 82] was quoted. It states that, for all a1, a2, a3, a4 ∈ K, the
condition H(a1, a2, a3, a4) is equivalent to

(a2 − a4)−1(a2 − a3)(a1 − a3)−1(a1 − a4) = −1. (8)

By virtue of this characterisation it turned out that any automorphism and any
anti-automorphism13 of K extends to a bijective harmonicity preserver of L fixing
the points 0, 1,∞.

In [6, § 2–3], Ancochea dealt with an arbitrary quaternion skew field Q of
characteristic , 2. He showed that any semi-automorphism of Q is either an
automorphism or an anti-automorphism of Q. We do not enter a detailed analysis
here, since in his subsequent article [7] a more general result can be found. The
geometric significance is, of course, that any semi-automorphism of Q gives rise
to a bijective harmonicity preserver.

The article [6] closes with some remarks on the case when the centre of a
quaternion skew field Q, Char Q , 2, admits only the identical automorphism.
Ancochea recalled that, by what nowadays is called the Theorem of Skolem-
Noether, all automorphisms of Q are inner [128] (or see [89, Thm. 4.9]). Making

13Ancochea’s terminology reads direct automorphism and reciprocal automorphism, respec-
tively.
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use of [5, Teorema fundamental] or the analogous result in [136] he derived that
over such a quaternion skew field any bijective harmonicity preserver either is a
projectivity or—loosely speaking—the product of some projectivity and the map-
ping that takes any quaternion in Q to its conjugate. He also referred to the
description of all continuous bijective harmonicity preservers of the projective
line over the real quaternions given by S. Wachs [158, pp. 108–109]; he thereby
stressed that his reasoning was based exclusively on algebraic tools. Finally, he
emphasised the difference with the situation over the field of complex numbers.
Indeed, in order to obtain there a “similar” result, one has to assume continuity
due to the existence of discontinuous automorphisms of the complex number field
[95] (or see [98], [127], [143]).

Summing up, Ancochea generalised the first part of von Staudt’s theorem to
the general case of an arbitrary field K, commutative or not. The second part,
namely the question whether or not all semi-automorphism of K arise in this way,
remained as an open problem in [6].

2.5 On semi-automorphisms of division algebras
The article [7], which is the third and last in this series, commences with a
short summary of the basic notions and results from [6]. In doing so, a semi-
automorphism of a ring R is defined as a bijection σ : R→ R possessing the prop-
erties (4) and (5) up to a change of notation. Further below, semi-isomorphisms
of rings are introduced in the same fashion. Like Ancochea, we tacitly assume
from now on any algebra to be associative and finite-dimensional over its centre
(unless explicitly stated otherwise). So, division algebra means a field with finite
dimension over its centre. The main results read as follows:

Theorem ([7, Principal Theorem]). Let D be a division algebra of characteris-
tic , 2. Then any semi-automorphism σ of D is an automorphism or an anti-
automorphism of D.

Theorem ([7, von Staudt’s Theorem]). In a projective space over a division al-
gebra of characteristic , 2, any bijective harmonicity preserver of a line L onto
itself with three distinct fixed points 0, 1, ∞ restricts to a semi-automorphism of
the division algebra D := L \ {∞}. Conversely, any semi-automorphism of D
extends to a bijective harmonicity preserver of L that fixes the points of reference.

Ancochea based the proof of his Principal Theorem upon several auxiliary
results, which are stated below.

Theorem ([7, Theorem 1]). Under any semi-automorphisms σ of a division alge-
bra D (of arbitrary characteristic) the centre F of D is invariant.
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In order to show his Theorem 1, Ancochea followed the lines of [6] by con-
cluding that for all γ ∈ F the image γσ commutes with all elements of the form

ab − ba with arbitrary a, b ∈ D. (9)

Thus, it was enough to establish:

Lemma ([7, Lemma]). If c ∈ D commutes with all elements ab−ba as in (9), then
c belongs to the centre F of D.

In [7], there are two different proofs of this Lemma. The first one is subject to
the extra assumption Char D , 2, the second one applies for arbitrary characteris-
tic of D. As main tool in both proofs, Ancochea considered for any fixed element
x ∈ D \ F the mapping sending a variable element a ∈ D to ax − xa. This map-
ping is an F-endomorphism of the F-vector space D and its image is therefore an
F-subspace Mx of D. Taking into account the dimension of Mx and using results
about the structure of division algebras from the books of A. A. Albert [3] (reprint
[4]) and B. van der Waerden [156] (various reprints and translations), Ancochea
verified that for any element c ∈ D\F there is at least one non-commuting element
of the form (9).

Returning to the proof of the Principal Theorem (taking into account Char D ,
2), Ancochea first observed that the given semi-automorphism σ restricts to an au-
tomorphism of the commutative field F. Furthermore, he obtained (γa)σ = γσaσ

for all γ ∈ F, a ∈ D, i. e., σ is a semilinear mapping of the F-vector space
D. Next, an auxiliary F-algebra D′ was defined and an F-semilinear isomor-
phism ι : D → D′ was explicitly established. He noted that σ1 := σι is a semi-
isomorphism of D onto D′. Also, due to the particular choice of ι, this σ1 is
F-linear.14 Ancochea’s conclusion says that σ will be an (anti-)automorphism of
D precisely when σ1 is an (anti-)isomorphism D→ D′.

After these technical preliminaries, Ancochea considered a commutative field
K that is a finite algebraic extension of F and a splitting field of D and D′. Then
he extended σ1 to a K-linear semi-isomorphism σ′ : DK → D′K , where DK :=
K ⊗F D and D′K := K ⊗F D′. From DK and D′K being full matrix algebras of the
same K-dimension, followed their being K-isomorphic. Consequently, Ancochea
continued by assuming σ1 to be a K-linear semi-automorphism of the algebra
(Mn)K of all n × n matrices over K (for some positive integer n). Evidently, σ will
be an (anti-)automorphism of D if σ′ is an (anti-)automorphism. In this way the
proof of the Principal Theorem was reduced to showing Theorem 2 below, which
is important for its own sake.

14In [7] such a mapping is called a semi-isomorphism over F.
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Theorem ([7, Theorem 2]). Every K-linear semi-automorphism σ of a full matrix
algebra (Mn)K , where K is a commutative field and n is a positive integer, is an
automorphism or an anti-automorphism.

Ancochea’s proof of Theorem 2 uses that σ preserves orthogonal idempotents
of rank 1. Let us write ei j ∈ (Mn)K for the matrix whose (i, j)-entry equals 1,
whereas all other entries vanish. Then it can be assumed, without loss of general-
ity, that σ fixes the idempotents eii, i = 1, 2, . . . , n. The images of the matrices ei j,
where i , j, turned out to satisfy eσi j = αi jei j + βi je ji with coefficients αi j, βi j ∈ K
subject to αi jβi j = 0. This intermediate result led to two mutually exclusive cases:
either all βi j = 0 vanish or all αi j vanish. In the first case, a short calculation
showed that σ is an automorphism. In the second case, σ turned out to be an
anti-automorphism, as required.

The version of von Staudt’s Theorem in [7] was then an immediate conse-
quence of [7, Principal Theorem] and the results from [6].

Ancochea closed his article with two important observations. On the one hand,
he sketched that the Principal Theorem remains true if D is a simple algebra of
characteristic , 2. He also claimed that the Principal Theorem remained valid for
semisimple algebras of characteristic , 2. However, the last statement needs to
be altered. We shall come across a correct version on page 13. On the other hand,
he pointed out neat links to the work of P. Jordan, J. von Neumann, and E. Wigner
[93], [94]. Given an associative, but not commutative F-algebra D, Char F , 2,
one obtains a commutative, but not associative algebra D+ by maintaining the
addition in D and defining a new product a ◦ b := 1

2 (ab + ba) for all a, b ∈ D.
Obviously, the semi-automorphisms of D are precisely the automorphisms of D+.
(Such an algebra D+ has been given the name special Jordan algebra [33, p. 178].)

3 Rounding off Ancochea’s results (1947–1953)
In 1947, I. Kaplansky [96] mentioned that Ancochea’s theorem on the semi-
automorphisms of a simple algebra [7] fails for characteristic two, because con-
dition (5) looses most of its strength.15 In order to overcome this phenomenon,
Kaplansky modified the definition of a semi-isomorphism. We stick here to the
slightly different version that was given three years later by N. I. Jacobson and
C. E. Rickart [90]. Given (associative) rings R and R′ a mapping σ : R → R′ is

15For example, if K is a commutative field of characteristic two and σ : K → K is an additive
automorphism of K, then (5) is trivially satisfied for all x, y ∈ K due to (xy)σ + (yx)σ = 0 =

xσyσ + yσxσ. If, furthermore, K has more than two elements, then there is a choice of σ that does
not fix 1 ∈ K and therefore cannot be a multiplicative automorphism.
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called a Jordan homomorphism or, in other words, a semi-homomorphism16 if it
satisfies for all x, y ∈ R the following three conditions:

(x + y)σ = xσ + yσ, (10)

(x2)σ = (xσ)2, (11)
(xyx)σ = xσyσxσ. (12)

Conditions (4) and (10) are identical. Any semi-homomorphism σ : R → R′ (in
the above sense) satisfies Ancochea’s condition (5) for all x, y ∈ R. This is im-
mediately seen, using (11), from xy + yx = (x + y)2 − x2 − y2. Conversely, any
mapping σ : R → R′ satisfying Ancochea’s conditions (4) and (5) for all x, y ∈ R
is a semi-homomorphism provided that R′ is a 2-torsion free ring, i. e., R′ has no
elements of additive order two; see [96, Lemma 1], where Kaplansky used the
identity

2xyx = 4(x + y)3 − (x + 2y)3 − 3x3 + 4y3 − 2(x2y + yx2).

When dealing with unital rings R and R′ it is common to replace (11) with

1σ = 1′ (13)

in the definition of a semi-homomorphism. As a consequence, with y := 1 in (12),
one obtains (11) for all x ∈ R.

Based on these observations and some lemmas, [96] comprises three main
results. In Theorem 1, any semi-isomorphism σ : R → R′ is considered, where R
and R′ are semisimple rings with unity. It is shown that the restriction of σ to the
centre of R yields an isomorphism onto the centre of R′. Theorem 2 describes the
semi-isomorphisms between simple algebras. Any mapping of this form turns out
to be either an isomorphism or an anti-isomorphism. In Theorem 3, the erroneous
statement from [7] about semi-automorphisms of semisimple algebras is corrected
and extended to a wider class of rings. Let any semi-isomorphism σ : R → R′

be given, where R and R′ are direct sums of simple algebras. Then the simple
components of R and R′ may be paired off in such a way that the given mapping
is an isomorphism or an anti-isomorphism of each pair.17 The proofs of these
theorems follow in part Ancochea’s approach from [7].

Next, the article of L.-K. Hua [77] closed gaps that were left open by An-
cochea. Hua adopted the above definition of a Jordan homomorphism for unital

16Both names are currently used in the literature. We decided to switch freely between these
names at our own discretion.

17Theorem 3 provides an easy way of constructing semi-homomorphisms that are neither ho-
momorphisms nor anti-homomorphisms. Take, for example, the ring Mn(F) of n × n matrices,
n ≥ 2, over any commutative field F and consider the mapping of the ring Mn(F) ⊕Mn(F) onto
itself that sends any matrix pair (A1, A2) to (A1, A>2 ), where A>2 denotes the transpose of A2.
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rings. His Theorem 1 states that any Jordan homomorphism of a field K onto it-
self is either an automorphism or an anti-automorphism of K. The way of proof
differs considerably from Ancochea’s, as it depends on a series of subtle algebraic
manipulations involving inverses rather than any structure theory. Theorem 2 in
[77] provides an improvement and the missing converse of Ancochea’s theorem
from [6]. Over a field K of characteristic , 2, any bijective harmonicity pre-
server of a projective line L onto itself with three distinct fixed points determines
an automorphism or an anti-automorphism of K. Conversely, any surjective Jor-
dan endomorphism of K gives rise to a bijective harmonicity preserver of the line
L. A detailed exposition of the conclusions from [77] was published by Hua in
[78]. Furthermore, he sketched there ties to the so-called geometry of matrices,
where it is also possible to characterise harmonicity preserves by entirely different
methods.18

Let us return to N. I. Jacobson and C. E. Rickart, whose article [90] contains
the following theorem. Any Jordan homomorphism of an arbitrary ring into an in-
tegral domain is either a homomorphism or an anti-homomorphism. Other results
in [90] provide necessary conditions for a Jordan homomorphism σ : R → R′ to
be the sum of a homomorphism and an anti-homomorphism. This is to mean that
there are ideals R′1 and R′2 of R′ with R′ = R′1 ⊕ R′2, a homomorphism σ1 : R→ R′1
and an anti-homomorphism σ2 : R→ R′2 such that σ = σ1 + σ2. (The example in
footnote 17 is of this kind.) This entails the existence of Jordan homomorphisms
that are neither a homomorphism nor an anti-homomorphism.

The short communications [64] and [65] authored by I. N. Herstein contain
an alternative proof of Ancochea’s Lemma from [7] on the elements of a division
algebra D commuting with all elements as in (9).

4 The impact of Ancochea’s work

4.1 Applications in algebra and geometry
There is a wealth of articles deploying results of Ancochea (primarily those from
[7]) in order to solve a variety of problems in algebra. The following list, which
is in chronological order, comprises publications from 1959 up to 2005: M. Ger-
stenhaber [56], N. Jacobson [86], H.-J. Hoehnke [75], M. Raı̈s [134], C. V. Devap-
akkiam [49], M.-A. Knus [100], H. F. de Groote [48], M. Raı̈s [135], M. O’Ryan
and D. B. Shapiro [129], R. Parimala, R. Sridharan, and M. L. Thakur [130],
L. Grunenfelder, T. Košir, M. Omladič and H. Radjavi [58], M. A. Chebotar, W.-
F. Ke and P.-H. Lee [42], M. A. Chebotar, W.-F. Ke, P.-H. Lee and L.-S. Shiao
[43].

18We refer to [159] and [80] for the further development in this area.
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Ancochea’s article [6] is one of the main sources in J. Bilo’s monograph [29]
about projective geometry over the real quaternions. Also, when dealing there
with projectivities, a short comment about the findings and methods used in [5]
is made on page 60. The characterisation of harmonicity preservers (in Hua’s
version [77]), was used by W. Benz [25], [26, p. 175], [26, p. 346] in order to
determine all isomorphisms of certain Möbius geometries. K. List [114] made use
of the same result when characterising orthogonality preserving transformations
on the line set of a three-dimensional hyperbolic space.

4.2 Semi-homomorphisms and their generalisations
The outcomes of Ancochea together with the contributions by others (from 1947–
1953) are at the beginning of a long series of articles. The results proved there
frequently read that—under certain extra conditions on the rings R and R′—
any Jordan homomorphism σ : R → R′ is either a homomorphism or an anti-
homomorphism. By relaxing these extra conditions, the conclusion often says that
σ is the sum of a homomorphism and an anti-homomorphism. We present a short
overview and sketch various generalisations.

The result from [90], saying that any Jordan homomorphism into an integral
domain is either a homomorphism or an anti-homomorphism, was shown inde-
pendently by L.-K. Hua (under slightly stronger assumptions) in [78] and [79].
In 1956, I. N. Herstein [66] extended these results to surjective Jordan homomor-
phisms onto prime rings19 with characteristic greater than three. K. Yamaguti
[166] established essentially the same theorem one year later. M. F. Smiley [145]
gave a new proof covering also the case of characteristic three and, by adopting
Kaplansky’s definition of a Jordan homomorphism [96], extended Herstein’s the-
orem to the missing case of characteristic two. The next steps were taken between
1979 and 1989 by W. E. Baxter and W. S. Martindale [15], M. Brešar [35], [36],
who went over from prime to semiprime rings [105, p. 158].

Let us go back to the year 1948, when N. Jacobson [85] took up a remark
of Ancochea by saying that the statements from [7] can be seen as results about
the isomorphisms of the non-associative special Jordan rings determined by the
given rings. Based on this observation, Jacobson initiated the study of isomor-
phisms between various Jordan subsystems of (associative) rings. In this way he
gave also new proofs for some results from [7]. He also noted that, by replacing
the plus sign with a minus in Ancochea’s condition (5), one arrives at another
kind of “semi-isomorphism” of associative rings, which is related to the theory
of Lie rings.20 His work led to a series of results stating that any Jordan homo-

19A prime ring R is one in which aRb = 0 implies that a = 0 or b = 0.
20Several of our bibliographical items deal also with this topic. Further information may be
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morphism between certain Jordan subsystems can be lifted to a homomorphism
or an anti-homomorphism of the ambient rings. In 1949, F. D. Jacobson and
N. Jacobson [84] determined all embeddings of a special Jordan algebra in asso-
ciative algebras over a commutative field of characteristic , 2, thereby regaining
a theorem from [7]. N. Jacobson and C. E. Rickart [91] considered the Jordan
subsystem of symmetric elements of a ring with involution. Their work was later
extended by W. S. Martindale [118], L. A. Lagutina [103], K. McCrimmon [123],
W. S. Martindale [120], K. I. Beidar and M. A. Chebotar [19]. For summaries and
extensive bibliographies we refer to the work of I. N. Herstein [67], N. Jacobson
[87], I. N. Herstein [70], N. Jacobson [88], W. S. Martindale [119], R. P. Sullivan
[152], K. McCrimmon [123].

A detailed analysis of the Jordan homomorphisms of the ring Tr(R) of upper
triangular r × r-matrices with entries in a ring R commenced in 1998 with the
article [126] of L. Molnár and P. Šemrl on linear preserver problems. They de-
scribed all linear Jordan automorphism of Tr(C), where C denotes the field of
complex numbers. Shortly afterwards, K. I. Beidar, M. Brešar, M. A. Chebotar
[16] switched to triangular matrices over a unital commutative ring R. One of
their results is in the spirit of Ancochea and illustrates the extra features arising
from idempotent ring elements. Let R be a 2-torsion-free commutative ring with
identity. Then R contains no idempotents except 0 and 1 if, and only if, every
Jordan isomorphism of Tr(R), r ≥ 2, onto an arbitrary algebra over R is either
an isomorphism or an anti-isomorphism. Further contributions (with varying as-
sumptions on the ring R) have been given between 2001 and 2014: X. M. Tang,
C. G. Cao and X. Zhang [154], X. T. Wang and H. You [162], D. Benkovič [24],
T. L. Wong [165], C.-K. Liu and W.-Y. Tsai [115], X. T. Wang [160], H. M. Yao,
C. G. Cao and X. Zhang [169], L.-P. Huang [81], X. T. Wang and Y. M. Li [161],
Y. Wang and Y. Wang [163] (erratum by Y. Du, Y. Wang and Y. Wang [52]), Y. Du
and Y. Wang [51].

Jordan homomorphisms between other kinds of rings have been thoroughly in-
vestigated. We refer to J. H. Zhang [170], K. I. Beidar, M. Brešar and M. A. Cheb-
otar [17], F. Lu [116], F. Lu and T.-L. Wong [165], A. L. Yang and J. H. Zhang
[168], F. Kuzucuoğlu and V. M. Levchuk [102], J. Alaminos, J. Extremera and
A. R. Villena [2], E. Akkurt, M. Akkurt and G. P. Barker [1], A. L. Yang [167],
R. Brusamarello, E. Z. Fornaroli and M. Khrypchenko [39].

There are many articles dealing with mappings between rings that satisfy a
relaxed version of the properties defining a Jordan homomorphism σ : R → R′

or some “similar” functional equations. Two types have found particular interest.
First, n-Jordan mappings are additive and satisfy (xn)σ = (xσ)n for all x ∈ R and
some fixed integer n ≥ 2. These mappings have been investigated by I. N. Herstein

retrieved from [20] and [23].
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[66], [67], [70], M. Brešar, W. S. Martindale and C. R. Miers [38]. Second, we
mention Jordan triple homomorphisms, which are characterised by the conditions
in (10) and (12) and are the topic of articles by K. Yamaguti [166], I. N. Herstein
[68], M. Brešar [35], [36], L. A. Lagutina [104], F. Lu [117]. Other contributions
in this spirit came between 1953 and 1999 from J. K. Goldhaber [57], E. Artin [8,
pp. 37–40], I. N. Herstein and E. Kleinfeld [71], M. F. Smiley [146], D. W. Barnes
[11], K. McCrimmon [122], S. A. Huq [83], R. Awtar [9], K. I. Beidar and Y. Fong
[21], and after the year 2000 from K. I. Beidar, S.-C. Chang, M. A. Chebotar
and Y. Fong [18], M. Brešar [37], M. A. Chebotar, F.-W. Ke, P.-H. Lee and L.-
S. Shiao [43], M. Brešar, M. A. Chebotar and W. S. Martindale [34], A. K. Faraj,
A. H. Majeed, C. Haetinger and N. u. Rehman [53].

Yet another way of generalising the notion of semi-homomorphism consists
in considering algebraic structures other than rings. Already in 1951, F. Dinkines
[50] introduced semi-homomorphisms of groups by following condition (12). Her
results were extended by I. N. Herstein and M. F. Ruchte [72], I. N. Herstein [69],
K. I. Beidar, Y. Fong, W.-F. Ke, W.-R. Wu [22]. In the 1980s, R. P. Sullivan
[152], [153] considered also semigroups and introduced even more general half-
automorphisms. Other generalisations deal with mappings between alternative
division rings, near rings and semirings; see M. F. Smiley [147], K. C. Smith and
L. van Wyk [148], K. I. Beidar, Y. Fong, W.-F. Ke and W.-R. Wu [22], S. Shafiq
and M. Aslam [144], B. L. M. Ferreira and R. N. Ferreira [55].

4.3 Harmonicity preservers
The complete description of all bijective harmonicity preservers of the projec-
tive line L over a field K with characteristic , 2 has become a standard topic in
textbooks on projective geometry. We confine ourselves to quoting several books
from the 1950s.21 The first exposition appears to be the one of R. Baer [10, p. 78].
He considered a more general setting, namely bijections of L that preserve an ar-
bitrary cross ratio d , 0, 1 lying in the centre of K without any restriction on the
characteristic of K. Again, it was enough to treat the case of such a bijection with
three distinct fixed points 0, 1, ∞. Baer showed that such a bijection gives rise
to an automorphism or an anti-automorphism of K = L \ {∞} fixing the element
d ∈ K and vice versa. He thereby generalised also an outcome of A. J. Hoffman
[76], who had obtained the same kind of result for a commutative field K. An
alternative proof of Baer’s theorem can be found in the book of G. Pickert [131,
p. 121] from 1955 (second edition [132]). E. Artin [8, pp. 84–85] reproved the
original result about harmonicity preservers in an elegant way using an alternative
characterisation of semi-automorphisms [8, pp. 37–40].

21Further references and historical remarks are contained in [97, pp. 57–58].
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The uniqueness of the fourth harmonic point (see page 5) holds more gen-
erally in projective Moufang planes, which satisfy a weaker form of Desargues’
Theorem [125], [131], [132]. These projective planes admit coordinates from an
alternative division ring and the bijective harmonicity preservers between their
lines admit an algebraic description in terms of Jordan isomorphisms. This inves-
tigation was initiated in the 1950s by V. Havel [59], [60], [61] and continued by
M. F. Smiley [147], J. van Buggenhout [155], J. C. Ferrar [54]. Generalisations (in
terms of other cross ratios) were given by A. Schleiermacher [140], H. Schaeffer
[139], A. Blunck [30].

In [62], V. Havel considered harmonicity preservers in certain translation
planes. The work of W. Bertram [27] on harmonicity preserving mappings of
some other geometric structures also deserves mention.

An area of ongoing research is the study of harmonicity preservers between
projective lines over unital rings (with 1 , 0). Given such a ring R one considers
any free left R-module M that has at least one basis with two elements. The point
set of the projective line P(M) is the set of all cyclic submodules Ru of M for
which there is a v ∈ M such that (u, v) is a basis of M [32], [74]. Points p1, p2 of
P(M) are called distant (or non-neighbouring) if there exists a basis (u1, u2) of M
with p1 = Ru1 and p2 = Ru2. This distant relation is symmetric and anti-reflexive,
and it turns the point set of P(M) into the so-called distant graph of P(M).22

Notions like harmonic quadruple and cross ratio are defined on P(M) in al-
most same way as on P(V) when V is a left K-vector space. But, instead of “dis-
tinct points” of P(V) one has to consider “distant points” of P(M). Furthermore,
upon choosing a basis (w1,w2) of M, one obtains 0 := Rw2, 1 := R(w1 + w2) and
∞ := Rw1 as three points of reference on P(M). It is straightforward then to iden-
tify the points of P(M) that are distant to ∞ with the elements of R as Ancochea
did in [6]. For doing so, it is enough to replace in (1) the field K by the ring R and
to assume that x2 ∈ R is invertible. However, unless R is a field, the “rest” of the
projective line contains apart from∞ many other “points at infinity”.

There is a widespread literature on harmonicity preservers, which are defined
in the same manner as on page 7, under varying assumptions on the underlying
unital rings R and R′. Below we collect the relevant contributions. A common
feature in all of them is that 2 = 1 + 1 has to be invertible in R.

Let a harmonicity preserver λ : P(M)→ P(M′) be given. Then, after the iden-
tification of a subset of P(M) with R and an analogous identification in P(M′), λ
restricts to a Jordan homomorphism R→ R′ provided that R contains “sufficiently
many” invertible elements. A proof of this result can be derived from B. V. Li-
maye and N. B. Limaye [110], despite the fact that their work from 1977 is mainly
about commutative rings. A formal proof under slightly weaker assumptions was

22Precisely when R is a field, “being distant” means the same as “being distinct”.
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given by the author [63]. Already in 1971, N. B. Limaye [112], [113] proved a
version for commutative local rings [105, pp. 280f.] and then for commutative
semilocal rings [105, p. 296]; H. Schaeffer [138], B. V. Limaye and N. B. Limaye
[110], B. R. McDonald [124] treated also the case of commutative rings.

The converse problem, like before, is to decide whether or not any Jordan
homomorphism σ : R → R′ gives rise to a harmonicity preserver. After choosing
bases w1,w2 of M and w′1,w

′
2 of M′ it is tempting to define a mapping

M → M′ : x1w1 + x2w2 7→ xσ1 w′1 + xσ2 w′2 with x1, x2 ∈ R. (14)

However, this mapping will in general not give rise to a mapping P(M)→ P(M′),
let alone its being a harmonicity preserver. Nevertheless, for commutative rings
the approach in (14) does work, since a Jordan homomorphism of R in R′ is noth-
ing but a homomorphism. For not necessarily commutative rings the situation
is much more involved, due to the possibly large number of “points at infinity”.
B. V. Limaye and N. B. Limaye [111] (erratum [109]) gave an affirmative answer
to the problem for local rings. They actually determined all bijections of the pro-
jective line P(M) onto itself such that all quadruples with a given cross ratio d
go over to quadruples with a given cross ratio d′, where d, d′ are elements in the
centre of R other that 0, 1. A. Herzer [73] showed how to obtain well-defined
point-to-point mappings from certain Jordan homomorphisms. A breakthrough is
due to C. Bartolone [12], who defined the desired mapping P(M) → P(M′) under
the extra condition that R is a ring of stable rank two [32, p. 24]. In terms of the
bases used in (14), his solution23 reads

R
(
xw1 + (1 + xy)w2

)
7→ R′

(
xσw′1 + (1′ + xσyσ)w′2

)
with x, y ∈ R. (15)

A. Blunck and the author treated in [31] the general case taking into account that
the distant graph on P(M) need not be connected. It turned out that a Jordan ho-
momorphism σ determines a harmonicity preserving mapping only on that con-
nected component of the distant graph on P(M) which contains the chosen points
of reference. (The formulas used for this purpose arise from (15) in a recursive
way.) As a consequence, one may select arbitrarily one Jordan homomorphism
R→ R′ per component in order to create a harmonicity preserver P(M)→ P(M′).

The material from the last two paragraphs forms the foundation for the version
of von Staudt’s Theorem in [63, Thm. 1]. When dropping the assumption on the
existence of “sufficiently many units” in R, this theorem fails. A lucid counterex-
ample in terms of the polynomial ring in one indeterminate over the real numbers
was given by C. Bartolone and F. Di Franco [14] already in 1979. They there-
fore initiated the study of mappings that preserve generalised harmonic quadru-
ples and succeeded in describing all such mappings for commutative rings; see

23The authors of [73] and [12] had different aims and did not exhibit the preservation of har-
monicity in their publications.
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also M. Kulkarni [101], C. Bartolone and F. Bartolozzi [13], L. Cirlincione and
M. Enea [45], A. A. Lashkhi [106], [107], [108], D. Chkhatarashvili [44]. Closely
related is the work of F. Buekenhout [40], St. P. Cojan [46], D. G. James [92],
B. Klotzek [99], who characterised mappings that satisfy a rather weak form of
cross ratio preservation between projective lines over fields. The algebraic back-
ground of their work is a re-coordinatisation of the domain projective line in terms
of a valuation ring [121, p. 1].

All things considered, Ancochea’s semi-homomorphisms keep going strong.
They constitute the indispensable algebraic tool for describing harmonicity pre-
servers between projective lines over unital rings.
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Angew. Math. 184 (1942), 193–198.

[7] G. Ancochea, On semi-automorphisms of division algebras. Ann. of Math. (2) 48 (1947),
147–153.

[8] E. Artin, Geometric Algebra. Interscience Publishers, Inc., New York London Sydney 1957.

[9] R. Awtar, Jordan derivations and Jordan homomorphisms on prime rings of characteristic
2. Acta Math. Hungar. 51 (1988), 61–63.

[10] R. Baer, Linear Algebra and Projective Geometry. Academic Press, New York 1952.

[11] D. W. Barnes, Lattice isomorphisms of associative algebras. J. Austral. Math. Soc. 6 (1966),
106–121.

[12] C. Bartolone, Jordan homomorphisms, chain geometries and the fundamental theorem.
Abh. Math. Sem. Univ. Hamburg 59 (1989), 93–99.

[13] C. Bartolone, F. Bartolozzi, Topics in geometric algebra over rings. In: R. Kaya, P. Plau-
mann, K. Strambach, editors, Rings and Geometry, 353–389, Reidel, Dordrecht 1985.

[14] C. Bartolone, F. Di Franco, A remark on the projectivities of the projective line over a
commutative ring. Math. Z. 169 (1979), 23–29.

[15] W. E. Baxter, W. S. Martindale, III, Jordan homomorphisms of semiprime rings. J. Algebra
56 (1979), 457–471.

20
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120.

[65] I. N. Herstein, Une note sur un article de M. Tumuraru. Portugaliae Math. 12 (1953), 113–
114.

[66] I. N. Herstein, Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331–341.

[67] I. N. Herstein, Lie and Jordan structures in simple, associative rings. Bull. Amer. Math. Soc.
67 (1961), 517–531.

[68] I. N. Herstein, On a type of Jordan mapping. An. Acad. Brasil. Ci. 39 (1967), 357–360.

[69] I. N. Herstein, Semi-homomorphisms of groups. Canadian J. Math. 20 (1968), 384–388.

[70] I. N. Herstein, Topics in Ring Theory. The University of Chicago Press, Chicago London
1969.

[71] I. N. Herstein, E. Kleinfeld, Lie mappings in characteristic 2. Pacific J. Math. 10 (1960),
843–852.

[72] I. N. Herstein, M. F. Ruchte, Semi-automorphisms of groups. Proc. Amer. Math. Soc. 9
(1958), 145–150.

[73] A. Herzer, On isomorphisms of chain geometries. Note Mat. 7 (1987), 251–270.

[74] A. Herzer, Chain geometries. In: F. Buekenhout, editor, Handbook of Incidence Geometry,
781–842, North-Holland, Amsterdam 1995.
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[141] O. Schreier, E. Sperner, Einführung in die analytische Geometrie und Algebra. Bd. II. B. G.
Teubner, Leipzig 1935.

[142] F. Schur, Ueber den Fundamentalsatz der projectiven Geometrie. Math. Ann. 51 (1898),
401–409.

26



[143] B. Segre, Gli automorfismi del corpo complesso, ed un problema di Corrado Segre. Atti
Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 3 (1947), 414–420.

[144] S. Shafiq, M. Aslam, On Jordan mappings of inverse semirings. Open Math. 15 (2017),
1123–1131.

[145] M. F. Smiley, Jordan homomorphisms onto prime rings. Trans. Amer. Math. Soc. 84 (1957),
426–429.

[146] M. F. Smiley, A remark on the definition of Jordan homomorphisms. Portugal. Math. 20
(1961), 147–148.

[147] M. F. Smiley, Von Staudt projectivities of Moufang planes. In: Algebraical and Topolog-
ical Foundations of Geometry (Proc. Colloq., Utrecht, 1959), 165–166, Pergamon Press,
Oxford London New York Paris 1962.

[148] K. C. Smith, L. van Wyk, Semiendomorphisms of simple near-rings. Proc. Amer. Math.
Soc. 115 (1992), 613–627.

[149] E. Sperner, Beziehungen zwischen geometrischer und algebraischer Anordnung. Arch.
Math. 1 (1948), 148–153.

[150] E. Sperner, Beziehungen zwischen geometrischer und algebraischer Anordnung. S.-B. Hei-
delberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 413–448.

[151] K. G. C. v. Staudt, Geometrie der Lage. Bauer und Raspe (Julius Merz), Nürnberg 1847.

[152] R. P. Sullivan, Semi-automorphisms of transformation semigroups. Czechoslovak Math. J.
33 (108) (1983), 548–554.

[153] R. P. Sullivan, Half-automorphisms of transformation semigroups. Czechoslovak Math. J.
35 (110) (1985), 415–418.

[154] X. M. Tang, C. G. Cao, X. Zhang, Modular automorphisms preserving idempotence and
Jordan isomorphisms of triangular matrices over commutative rings. Linear Algebra Appl.
338 (2001), 145–152.

[155] J. van Buggenhaut, Les droites projectives d’un plan de Moufang. Acad. Roy. Belg. Bull.
Cl. Sci. (5) 55 (1969), 687–692.

[156] B. L. van der Waerden, Moderne Algebra. Band II, volume 34 of Grundlehren der Mathe-
matischen Wissenschaften. Springer, Berlin 1940.

[157] O. Veblen, Collineations in a finite projective geometry. Trans. Amer. Math. Soc. 8 (1907),
366–368.
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