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Abstract

In this paper we focus on the description of the automorphism group Γ‖
of a Clifford-like parallelism ‖ on a 3-dimensional projective double space(
P(HF), ‖`, ‖r

)
over a quaternion skew field H (with centre a field F of any

characteristic). We compare Γ‖ with the automorphism group Γ` of the left
parallelism ‖`, which is strictly related to Aut(H). We build up and discuss
several examples showing that over certain quaternion skew fields it is pos-
sible to choose ‖ in such a way that Γ‖ is either properly contained in Γ` or
coincides with Γ` even though ‖ , ‖`.

Mathematics Subject Classification (2010): 51A15, 51J15
Key words: Clifford parallelism, Clifford-like parallelism, projective dou-
ble space, quaternion skew field, automorphism

1 Introduction
As a far-reaching generalisation of the situation in 3-dimensional real elliptic ge-
ometry, H. Karzel, H.-J. Kroll and K. Sörensen coined the notion of a projective
double space, that is, a projective space P together with a left parallelism ‖` and a
right parallelism ‖r on the line set of P such that—loosely speaking—all “mixed
parallelograms” are closed [21], [22]. It is common to address the given paral-
lelisms as the Clifford parallelisms of the projective double space. We shall not
be concerned with the particular case where ‖` = ‖r, which can only happen over
a ground field of characteristic two. All other projective double spaces are three-
dimensional and they can be obtained algebraically in terms of a quaternion skew
field H with centre F by considering the projective space P(HF) on the vector
space H over the field F and defining ‖` and ‖r via left and right multiplication
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in H. (See [6], [10], [11], [20, pp. 75–76] and the references given there.) In
their work [6] about generalisations of Clifford parallelism, A. Blunck, S. Pianta
and S. Pasotti pointed out that a projective double space

(
P(HF), ‖`, ‖r

)
may be

equipped in a natural way with so-called Clifford-like parallelisms, namely paral-
lelisms for which each equivalence class is either a class of left parallel lines or
a class of right parallel lines. The exposition of this topic in [12] serves as major
basis for this article.

Our main objective is to describe the group of all collineations that preserve a
given Clifford-like parallelism ‖ of a projective double space

(
P(HF), ‖`, ‖r

)
. Since

we work most of the time in terms of vector spaces, we shall consider instead the
underlying group Γ‖ of all ‖-preserving semilinear transformations of the vector
space HF , which we call the automorphism group of the given parallelism. In a
first step we focus on the linear automorphisms of ‖. We establish in Theorem 3.5
that the group of all these linear automorphism does not depend on the choice of
‖ among all Clifford-like parallelisms of

(
P(HF), ‖`, ‖r

)
. Since ‖` and ‖r are also

Clifford-like, it is impossible to characterise Clifford parallelism in terms of its
linear automorphism group in our general setting of an arbitrary quaternion skew
field. On the other hand, there are projective double spaces in which there are
no Clifford-like parallelisms other than its Clifford parallelisms. This happens,
for instance, if H is chosen to be the skew field of Hamilton’s quaternions over
the real numbers. (It is worth noting that D. Betten, R. Löwen and R. Riesinger
characterised Clifford parallelism among the topological parallelisms of the 3-
dimensional real projective space by its (linear) automorphism group in [2], [4],
[25], [26], [27].) The next step is to consider the (full) automorphism group Γ‖.
Here the situation is more intricate, since in general the group depends on the
underlying quaternion skew field as well as the choice of ‖. We know from pre-
vious work of S. Pianta and E. Zizioli (see [29] and [30]) that the left and right
Clifford parallelism of

(
P(HF), ‖`, ‖r

)
share the same automorphism group, say Γ`.

According to Corollary 3.7, Γ` cannot be a proper subgroup of Γ‖. In Section 4,
we construct a series of examples showing that over certain quaternion skew fields
it is possible to choose ‖ in such a way that Γ‖ is either properly contained in Γ` or
coincides with Γ` even though ‖ , ‖`, ‖r.

One open problem remains: Is there a projective double space
(
P(HF), ‖`, ‖r

)
that admits a Clifford-like parallelism ‖ for which none of the groups Γ‖ and Γ` is
contained in the other one?

2 Basic notions and results
Let P be a projective space with line set L. We recall that a parallelism on P is an
equivalence relation on L such that each point of P is incident with precisely one
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line from each equivalence class. We usually denote a parallelism by the symbol
‖. For each line M ∈ L we then write S(M) for the equivalence class of M, which
is also addressed as the parallel class of M. Any such parallel class is a spread
(of lines) of P, that is, a partition of the point set of P by lines. When dealing with
several parallelisms at the same time we add some subscript or superscript to the
symbols ‖ and S. The seminal book [18] covers the literature about parallelisms
up to the year 2010. For the state of the art, various applications, connections with
other areas of geometry and historical remarks, we refer also to [1], [3], [7], [13],
[20], [26], [32] and the references therein.

The following simple observation, which seems to be part of the folklore, will
be useful.

Lemma 2.1. Let P and P′ be projective spaces with parallelisms ‖ and ‖′, respec-
tively. Suppose that κ is a collineation of P to P′ such that any two ‖-parallel lines
go over to ‖′-parallel lines. Then κ takes any ‖-class to a ‖′-class.

Proof. In P′, the κ-image of any ‖-class is a spread that is contained in a spread,
namely some ‖′-class. Any proper subset of a spread fails to be a spread, whence
the assertion follows. �

Let H be a quaternion skew field with centre F; see, for example, [8, pp. 103–
105] or [31, pp. 46–48]. If E is a subfield of H then H is a left vector space and
a right vector space over E. These spaces are written as EH and HE, respectively.
We do not distinguish between EH and HE whenever E ⊆ F. Given any x ∈ H
we denote by x the conjugate quaternion of x. Then x = x holds precisely when
x ∈ F. We write tr(x) = x + x ∈ F for the trace of x and N(x) = xx = xx ∈ F for
the norm of x. We have the identity

x2 − tr(x)x + N(x) = 0. (1)

In HF , the symmetric bilinear form associated to the quadratic form N : H → F is

〈 · , · 〉 : H × H → F : (x, y) 7→ 〈x, y〉 = tr(xy) = xy + yx. (2)

Let α be an automorphism of the quaternion skew field H. Then α(F) = F
and so α is a semilinear transformation of the vector space HF with α|F : F → F
being its accompanying automorphism. Furthermore,

∀ x ∈ H : tr
(
α(x)

)
= α

(
tr(x)

)
, N

(
α(x)

)
= α

(
N(x)

)
, α(x) = α(x). (3)

This is immediate for all x ∈ F, since here tr(x) = 2x, N(x) = x2, and x = x.
For all x ∈ H \ F the equations in (3) follow by applying α to (1) and by taking
into account that α(x2) = α(x)2 can be written in a unique way as an F-linear
combination of α(x) and 1.
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The projective space P(HF) is understood to be the set of all subspaces of
HF with incidence being symmetrised inclusion. We adopt the usual geometric
terms: points, lines and planes are the subspaces of HF with vector dimension
one, two, and three, respectively. We write L(HF) for the line set of P(HF). The
left parallelism ‖` on L(HF) is defined by letting M1 ‖` M2 precisely when there
is a g ∈ H∗ := H \ {0} with gM1 = M2. The right parallelism ‖r is defined in the
same fashion via M1g = M2. Then

(
P(HF), ‖`, ‖r

)
is a projective double space with

‖` and ‖r being its Clifford parallelisms (see [21], [22], [20, pp. 75–76]).
A parallelism ‖ of

(
P(HF), ‖`, ‖r

)
is Clifford-like, if each ‖-class is a left or

a right parallel class (see Def. 3.2. of [12] where the construction of Clifford-
like parallelisms appears frequently in the more general framework of “blending”;
this point of view will be disregarded here). Any Clifford-like parallelism ‖ of(
P(HF), ‖`, ‖r

)
admits the following explicit description:

Theorem 2.2 (see [12, Thm. 4.10]). In
(
P(HF), ‖`, ‖r

)
, let A(HF) ⊂ L(HF) denote

the star of lines with centre F1, let F be any subset of A(HF), and define a rela-
tion ‖ on L(HF) by taking the left parallel classes of all lines in F and the right
parallel classes of all lines in A(HF) \ F. This will be an equivalence relation
(and hence, a parallelism) if, and only if, the defining set F is invariant under the
inner automorphisms of H.

We note that —from an algebraic point of view— the lines from A(HF) are
precisely the maximal subfields of the quaternion skew field H.

Let ‖ be any parallelism on P(HF). We denote by Γ‖ the set of all mappings
from ΓL(HF) that act on P(HF) as ‖-preserving collineations. By Lemma 2.1, Γ‖
is a subgroup of ΓL(HF) and we shall call it the automorphism group of the paral-
lelism ‖. Even though we are primarily interested in the group of all ‖-preserving
collineations of P(HF), which is a subgroup of PΓL(HF), we investigate instead
the corresponding group Γ‖. The straightforward task of rephrasing our findings
about Γ‖ in projective terms is usually left to the reader.

The Clifford parallelisms of the projective double space
(
P(HF), ‖`, ‖r

)
give

rise to automorphism groups Γ‖` =: Γ` and Γ‖r =: Γr. We recall from [29, p. 166]
that

Γ` = Γr. (4)

Equation (4) is based on the following noteworthy geometric result. In(
P(HF), ‖`, ‖r

)
, the right (left) parallelism can be defined in terms of incidence,

non-incidence and left (right) parallelism. See, for example, [20, pp. 75–76]
or make use of the (much more general) findings in [15, §6], which are partly
summarised in [14] and [16]. In order to describe the group Γ` more explic-
itly, we consider several other groups. First, the group of all left translations
λg : H → H : x 7→ gx, g ∈ H∗, is precisely the group GL(HH). The group GL(HH)
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is contained in GL(HF) and it acts regularly on H∗. Next, the automorphism group
Aut(H) of the skew field H is a subgroup of ΓL(HF). Finally, we write H̃∗ for the
group of all inner automorphisms h̃ : H → H : x 7→ h−1xh, h ∈ H∗, and so H̃∗ is a
subgroup of GL(HF). According to [29, Thm. 1] and [30, Prop. 4.1 and 4.2]1,

Γ` = GL(HH) o Aut(H) = ΓL(HH). (5)

By symmetry of ‘left’ and ‘right’, (5) implies Γr = GL(HH) o Aut(H) = ΓL(HH),
where GL(HH) is the group of right translations. Note that ΓL(HH) = ΓL(HH).
From this fact (4) follows once more and in an algebraic way. By virtue of the
Skolem-Noether theorem [17, Thm. 4.9], the F-linear skew field automorphisms
of H are precisely the inner automorphisms. We therefore obtain from (5) that

Γ` ∩ GL(HF) = GL(HH) o H̃∗. (6)

The subgroups of Γ` and Γ` ∩ GL(HF) that stabilise 1 ∈ H are the groups Aut(H)
and H̃∗, respectively.
Remark 2.3. The natural homomorphism GL(HF) → PGL(HF) sends the group
from (6) to the group of all ‖`-preserving projective collineations of P(HF). This
collineation group can be written as the direct product of two (isomorphic) sub-
groups, namely the image of the group of left translations GL(HH) and the image
of the group of right translations GL(HH) under the natural homomorphism.

If α : H → H is an antiautomorphism of the quaternion skew field H, then
α ∈ ΓL(HF) and α takes left (right) parallel lines to right (left) parallel lines. In
particular, the conjugation (·) : H → H is an F-linear antiautomorphism of H.
Therefore, the set (

GL(HH) o Aut(H)
)
◦ (·) (7)

comprises precisely those mappings in ΓL(HF) that interchange the left with the
right Clifford parallelism. The analogous subset of GL(HF) is given by(

GL(HH) o H̃∗
)
◦ (·).

Alternative proofs of the previous results can be found in [5, Sect. 4].

3 Automorphisms
Throughout this section, we always assume ‖ to be a Clifford-like parallelism of(
P(HF), ‖`, ‖r

)
as described in Section 2. Our aim is to determine the group Γ‖ of

automorphisms of ‖. In a first step we focus on the transformations appearing in
(5) and (7).

1We wish to note here that Prop. 4.3 of [30] is not correct, since the group

[

K from there in
general is not a subgroup of Aut(H).
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Proposition 3.1. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
. Then the

following assertions hold.

(a) An automorphism α ∈ Aut(H) preserves ‖ if, and only if, α(F) = F.

(b) An antiautomorphism α of the quaternion skew field H preserves ‖ if, and
only if, α(F) = A(HF) \ F.

(c) For all h ∈ H∗, the inner automorphism h̃ preserves ‖.

(d) For all g ∈ H∗, the left translation λg preserves ‖.

(e) If β ∈ GL(HF) preserves ‖`, then β preserves also ‖.

Proof. (a) We read off from α(1) = 1 that α
(
A(HF)

)
= A(HF) and from (5) that

α ∈ Aut(H) ⊂ Γ`. The assertion now is an immediate consequence of Theorem
2.2.

(b) The proof follows the lines of (a) taking into account that α interchanges
the left with the right parallelism.

(c) [12, Thm. 4.10] establishes h̃(F) = F. Applying (a) we get h̃ ∈ Γ‖.
(d) Choose any ‖-class, say S(L) with L ∈ A(HF). In order to verify that

λg
(
S(L)

)
is also a ‖-class, we first observe that (5) gives λg ∈ GL(HH) ⊂ Γ`. Next,

we distinguish two cases. If L ∈ F, then, by Theorem 2.2, S(L) = S`(L) and so
λg

(
S(L)

)
= λg

(
S`(L)

)
= S`(gL) = S`(L) = S(L). If L ∈ A(HF) \ F, then, by

Theorem 2.2, S(L) = Sr(L). Furthermore, (c) gives gLg−1 ∈ A(HF) \ F. By virtue
of these results and (4), we obtain λg

(
S(L)

)
= λg

(
Sr(L)

)
= Sr(gL) = Sr(gLg−1) =

S(gLg−1).
(e) By (6), there exist g, h ∈ H∗ such that β = λg ◦ h̃. We established already

in (d) and (c) that λg, h̃ ∈ Γ‖, which entails β ∈ Γ‖. �

We proceed with a lemma that, apart from the quaternion formalism, follows
easily from [28, Thm. 1.10, Thm 1.11]; those theorems are about spreads, their
kernels and their corresponding translation planes. We follow instead the idea of
proof used in [5, Thm. 4.3].

Lemma 3.2. Let L ∈ A(HF) and α ∈ ΓL(HF) be given such that α(1) = 1 and
such that α takes one of the two parallel classes S`(L), Sr(L) to one of the two
parallel classes S`

(
α(L)

)
, Sr

(
α(L)

)
. Then

∀ x ∈ H, z ∈ L :


α(xz) =

{
α(x)α(z) if α

(
S`(L)

)
= S`

(
α(L)

)
;

α(z)α(x) if α
(
S`(L)

)
= Sr

(
α(L)

)
;

α(zx) =

{
α(x)α(z) if α

(
Sr(L)

)
= S`

(
α(L)

)
;

α(z)α(x) if α
(
Sr(L)

)
= Sr

(
α(L)

)
.

(8)
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Proof. First, let us suppose that α takes the left parallel class S`(L) to the left
parallel class S`

(
α(L)

)
. We consider H, on the one hand, as a 2-dimensional right

vector space HL and, on the other hand, as a 2-dimensional right vector space
Hα(L). By our assumption, α takes S`(L) = {gL | g ∈ H∗} to S`

(
α(L)

)
= {g′α(L) |

g′ ∈ H∗}, i.e., the set of one-dimensional subspaces of HL goes over to the set
of one-dimensional subspaces of Hα(L). Since α is additive, it is a collineation
of the affine plane on HL to the affine plane on Hα(L). From α(0) = 0 and the
Fundamental Theorem of Affine Geometry, α is a semilinear transformation of
HL to Hα(L). Let ϕL : L→ α(L) be its accompanying isomorphism of fields. From
α(1) = 1, we obtain α(z) = α(1z) = α(1)ϕL(z) = ϕL(z) for all z ∈ L, whence the
ϕL-semilinearity of α can be rewritten as

∀ x ∈ H, z ∈ L : α(xz) = α(x)α(z). (9)

Next, suppose that α takes the left parallel class S`(L) to the right parallel
class Sr

(
α(L)

)
. We proceed as above except for Hα(L), which is replaced by the

2-dimensional left vector space α(L)H. In this way all products of α-images have
to be rewritten in reverse order so that the equation in (9) changes to α(xz) =

α(z)α(x).
There remain the cases when α takes Sr(L) to S`

(
α(L)

)
or Sr

(
α(L)

)
. Accord-

ingly, the equation in (9) takes the form α(zx) = α(x)α(z) or α(zx) = α(z)α(x). �

We now establish that any α ∈ Γ‖ fixing 1 satisfies precisely one of the two
properties concerning α(F), as appearing in Proposition 3.1 (a) and (b). After-
wards, we will be able to show that any such α is actually an automorphism or
antiautomorphism of the skew field H.

Proposition 3.3. Let α ∈ Γ‖ be such that α(1) = 1. If there exists a line L ∈ A(HF)
such that S(L) and α

(
S(L)

)
are of the same kind, that is, both are left or both are

right parallel classes, then α(F) = F. Similarly, if there exists a line L ∈ A(HF)
such that S(L) and α

(
S(L)

)
are of different kind, then α(F) = A(HF) \ F.

Proof. First, let us suppose that S(L) = S`(L) and α
(
S(L)

)
= S`

(
α(L)

)
. This

means that L and α(L) are in F. We proceed by showing α(F) ⊆ F. If this were
not the case, then a line L′ ∈ F would exist such that α(L′) ∈ A(HF) \ F, that
is, S

(
α(L′)

)
= Sr

(
α(L′)

)
. Furthermore, there would exist quaternions e ∈ L \ F,

e′ ∈ L′ \ F and we would have e′e , ee′. By Lemma 3.2, applied to L and also to
L′, we would finally obtain α(e′e) = α(e′)α(e) = α(ee′), which is absurd due to α
being injective. The same kind of reasoning can be applied to α−1 ∈ Γ‖, whence
α−1(F) ⊆ F. Summing up, we have shown α(F) = F in our first case.

The case when S(L) = Sr(L) and α
(
S(L)

)
= Sr

(
α(L)

)
can be treated in an anal-

ogous way and leads us to α
(
A(HF) \ F

)
= A(HF) \ F. Clearly, this is equivalent

to α(F) = F.
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Let us now suppose that S(L) and α
(
S(L)

)
are of different kind, that is, one

of them is a left and the other one is a right parallel class. Then, by making the
appropriate changes in the reasoning above, we obtain α(F) = A(HF) \ F. �

On the basis of our previous results, we now establish our two main theorems.

Theorem 3.4. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
. Then a semi-

linear transformation β ∈ ΓL(HF) preserves ‖ if, and only if, it can be written in
the form

β = λβ(1) ◦ α, (10)

where λβ(1) denotes the left translation of H by β(1) and α either is an automor-
phism of the quaternion skew field H satisfying α(F) = F or an antiautomorphism
of H satisfying α(F) = A(HF) \ F.

Proof. If β can be factorised as in (10), then β ∈ Γ‖ follows from Proposi-
tion 3.1 (a), (b), and (d).

In order to verify the converse, we define α := λ−1
β(1) ◦ β. Then α(1) = 1 and

α ∈ Γ‖ by Proposition 3.1 (d). We now distinguish two cases.
Case (i). There exists a line L ∈ A(HF) such that S(L) and α

(
S(L)

)
are of the

same kind. We claim that under these circumstances α ∈ Aut(H).
First, we confine ourselves to the subcase S(L) = S`(L). By the theorem of

Cartan-Brauer-Hua [24, (13.17)], there is an h ∈ H∗ such that L′ := h−1Lh , L.
From Proposition 3.1 (c), S(L′) = h̃

(
S(L)

)
is a left parallel class and, from Propo-

sition 3.3, the same holds for α
(
S(L′)

)
. There exists an e′ ∈ L′ \ L and, conse-

quently, the elements 1, e′ constitute a basis of HL. Given arbitrary quaternions
x, y we may write y = z0 + e′z1 with z0, z1 ∈ L. By virtue of Lemma 3.2, we obtain
the intermediate result

∀ x ∈ H, z ∈ L : α(xz) = α(x)α(z), α(xe′) = α(x)α(e′). (11)

Using repeatedly the additivity of α and (11) gives

α(xy) = α(xz0) + α
(
(xe′)z1

)
= α(x)α(z0) + α(xe′)α(z1)

= α(x)
(
α(z0) + α(e′)α(z1)

)
= α(x)

(
α(z0) + α(e′z1)

)
= α(x)α(y).

(12)

Thus α is an automorphism of H.
The subcase S(L) = Sr(L) can be treated in an analogous way. It suffices to

replace HL with LH and to revert the order of the factors in all products appearing
in (11) and (12).

Case (ii). There exists a line L ∈ A(HF) such that S(L) and α
(
S(L)

)
are of

different kind. Then, by reordering certain factors appearing in Case (i) in the
appropriate way, the mapping α turns out to be an antiautomorphism of H.
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Altogether, since there exists a line in A(HF), α is an automorphism or an
antiautomorphism of H. Accordingly, from Proposition 3.1 (a) or (b), α(F) = F

or α(F) = A(HF) \ F. �

Theorem 3.5. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
. Then the

group Γ‖∩GL(HF) of linear transformations preserving ‖ coincides with the group
Γ` ∩ GL(HF) of linear transformations preserving the left Clifford parallelism ‖`.

Proof. In view of Proposition 3.1 (e) it remains to show that any β ∈ Γ‖∩GL(HF)
is contained in Γ` ∩ GL(HF). From (10), we deduce β = λβ(1) ◦ α, where α ∈
GL(HF) is an automorphism of H such that α(F) = F or an antiautomorphism of
H such that α(F) = A(HF) \ F. There are two possibilities.

Case (i). α is an automorphism. By the Skolem-Noether theorem, α is inner.
Consequently, (4) and (6) give β ∈ Γ` ∩ GL(HF).

Case (ii). α is an antiautomorphism. Again by Skolem-Noether, the product
α′ := α ◦ (·) of the given α and the conjugation is in H̃∗. The conjugation fixes 1
and sends any x ∈ H to x = tr(x) − x ∈ F1 + Fx. Therefore, all lines of the star
A(HF) remain fixed under conjugation. The inner automorphism α′ fixes F as a
set [12, Thm. 4.10]. This gives α(F) = F and contradicts α(F) = A(HF) \ F. So,
the second case does not occur. �

Theorem 3.5 may be rephrased in the language of projective geometry as fol-
lows: if a projective collineation of P(HF) preserves a single Clifford-like paral-
lelism ‖ of

(
P(HF), ‖`, ‖r

)
, then all Clifford-like parallelisms of

(
P(HF), ‖`, ‖r

)
(in-

cluding ‖` and ‖r) are preserved. This means that a characterisation of the Clifford-
parallelisms of

(
P(HF), ‖`, ‖r

)
by their common group of linear automorphisms

(
or

by the corresponding subgroup of the projective group PGL(HF)
)

is out of reach
whenever there exist Clifford-like parallelisms of

(
P(HF), ‖`, ‖r

)
other than ‖` and

‖r. (Cf. the beginning of Section 4.) Indeed, by [12, Thm. 4.15], any Clifford-like
parallelism of this kind is not Clifford with respect to any projective double space
structure on P(HF).

Corollary 3.6. Let α1 ∈ Γ‖ be a fixed automorphism of H. Then the following
assertions hold.

(a) All automorphisms α of the skew field H satisfying (α1)|F = α|F are in the
group Γ‖.

(b) All antiautomorphisms α of the skew field H satisfying (α1)|F = α|F are not
in the group Γ‖.

The whole statement remains true if the words “automorphism” and “antiauto-
morphism” are switched.
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Proof. (a) By the Skolem-Noether theorem, α−1 ◦ α1 is an inner automorphism of
H. Thus, from Proposition 3.1 (c), α−1 ◦ α1 ∈ Γ‖, which implies α ∈ Γ‖.

(b) The conjugation (·) is F-linear. We therefore can apply (a) to α ◦ (·) and in
this way we obtain α◦ (·) ∈ Γ‖. The proof of Theorem 3.5, Case (ii), gives (·) < Γ‖.
Hence α < Γ‖ as well. �

Theorem 3.4 and Corollary 3.6 (with α1 := id) together entail that{
α ∈ Γ‖ | α(1) = 1

}
⊂ Aut(H) ◦

{
idH, (·)

}
.

In particular, for all h ∈ H∗, the inner automorphism h̃ is in Γ‖, whereas the
antiautomorphism h̃ ◦ (·) of the skew field H does not belong to Γ‖.

Theorem 3.5 motivates to compare the automorphism groups Γ‖ and Γ` with
respect to inclusion. This leads to four (mutually exclusive) possibilities as fol-
lows:

Γ‖ = Γ`, (13)
Γ‖ ⊂ Γ`, (14)
Γ‖ ⊃ Γ`, (15)

Γ‖ * Γ` and Γ‖ + Γ`. (16)

In Section 4, it will be shown, by giving illustrative examples, that each of (13)
and (14) is satisfied by some Clifford-like parallelisms. The situation in (15) does
not occur due to Corollary 3.7 below. Whether or not there exists a Clifford-like
parallelism subject to (16) remains as an open problem.

Corollary 3.7. In
(
P(HF), ‖`, ‖r

)
, there exists no Clifford-like parallelism ‖ satis-

fying (15).

Proof. If (15) holds for some Clifford-like parallelism ‖, then, by Theorem 3.4,
there exists an antiautomorphism α1 of H such that α1 ∈ Γ‖. Corollary 3.6 (b)
shows α1 ◦ (·) ∈ Aut(H) \ Γ‖. But (5) and (15) force α1 ◦ (·) ∈ Aut(H) ⊂ Γ` ⊂ Γ‖,
an absurdity. �

Remark 3.8. For any Clifford-like parallelism ‖ of
(
P(HF), ‖`, ‖r

)
there are also

correlations that preserve ‖. We just give one example. The orthogonality relation
⊥ that stems from the non-degenerate symmetric bilinear form (2) determines a
projective polarity of P(HF) by sending any subspace S of HF to its orthogonal
space S ⊥. Using [12, Cor. 4.4] or [19, (2.6)] one obtains that S`(M) ∩ Sr(M) =

{M,M⊥} for all lines M ∈ L(HF). So, for all M ∈ L(HF), we have M ‖` M⊥ and
M ‖r M⊥, which implies M ‖ M⊥. In other words, the polarity ⊥ fixes all parallel
classes of the parallelisms ‖`, ‖r and ‖. Consequently, each of the parallelisms ‖`,
‖r and ‖ is preserved under the action of ⊥ on the line set L(HF).
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4 Examples
We first turn to equation (13), that is, Γ‖ = Γ`. In any projective double space(
P(HF), ‖`, ‖r

)
, this equation has two trivial solutions, namely ‖ = ‖` and, by (4),

‖ = ‖r. According to [12, Thm. 4.12], which relies on [9], a projective double
space

(
P(HF), ‖`, ‖r

)
admits no Clifford-like parallelisms other than ‖` and ‖r pre-

cisely when F is a formally real Pythagorean field and H is the ordinary quaternion
skew field over F. (See also [5, Thm. 9.1].) Thus, when looking for non-trivial
solutions of (13), we have to avoid this particular class of quaternion skew fields.
Example 4.1. Let H be any quaternion skew field of characteristic two. From
[12, Ex. 4.13], there exists a Clifford-like parallelism ‖ of

(
P(HF), ‖`, ‖r

)
such that

F comprises all lines L ∈ A(HF) that are—in an algebraic language—separable
extensions of F. The set F is fixed under all automorphisms of H, since any
L′ ∈ A(HF) \ F is an inseparable extension of F. Equation (5) and Theorem 3.4
together give Γ` ⊆ Γ‖. As (15) cannot apply, we get Γ` = Γ‖. Each of the sets F and
A(HF) \ F is non-empty; see, for example, [8, pp. 103–104] or [31, pp. 46–48].
Hence ‖ does not coincide with ‖` or ‖r.
Example 4.2. Let H be a quaternion skew field that admits only inner automor-
phisms. Then all automorphisms and all antiautomorphisms of H are in GL(HF).
By Theorem 3.5, Γ` is the common automorphism group of all Clifford-like par-
allelisms of

(
P(HF), ‖`, ‖r

)
.

In particular, any quaternion skew field H with centre Q admits only inner
automorphisms by the Skolem-Noether theorem. Since Q is not Pythagorean,
we may infer from [12, Thm. 4.12] that any

(
P(HQ), ‖`, ‖r

)
possesses Clifford-like

parallelisms other than ‖` and ‖r. (See [12, Ex. 4.14] for detailed examples.)
In order to establish the existence of Clifford-like parallelisms ‖ that satisfy

(14), we shall consider certain quaternion skew fields admitting an outer automor-
phism of order two. The idea to use this kind of automorphism stems from the
theory of involutions of the second kind [23, §2, 2.B.]. Indeed, for each of the
automorphisms α from Examples 4.4, 4.5, 4.6, 4.7 and 4.8 the product α ◦ (·) is
such an involution. Also, we shall use the following auxiliary result.

Lemma 4.3. Let L be a maximal commutative subfield of H, let α ∈ Aut(H), and
let h ∈ H∗. Furthermore, assume that α(L) = h−1Lh.

(a) If Char H , 2, then for each q ∈ L\{0} with tr(q) = 0 there exists an element
c ∈ F∗ such that

c2 = N
(
α(q)

)
N(q)−1. (17)

(b) If Char H = 2 and L is separable over F, then for each q ∈ L with tr(q) = 1
there exists an element d ∈ F such that

d2 + d = N
(
α(q)

)
+ N(q). (18)

11



(c) If Char H = 2 and L is inseparable over F, then for each q ∈ L \ F there
exist elements c ∈ F∗, d ∈ F such that

d2 = N
(
α(q)

)
+ c2N(q). (19)

Proof. (a) From (3), applied first to α and then to the inner automorphism h̃, we
obtain tr

(
α(q)

)
= 0 = tr(h−1qh). The elements of α(L) with trace zero constitute a

one-dimensional F-subspace of α(L). Hence there exists an element c ∈ F∗ with
α(q) = c(h−1qh). Application of the norm function N establishes (17).

(b) Like before, (3) implies tr
(
α(q)

)
= 1 = tr(h−1qh). The elements of α(L)

with trace 1 constitute the set α(q)+F ⊂ α(L). Hence there exists an element d ∈ F
with α(q) + d = h−1qh. Taking the norm on both sides gives N

(
d + α(q)

)
= N(q).

This equation can be rewritten as in (18), which follows from N
(
α(q) + d

)
=(

α(q) + d
)(
α(q) + d

)
=

(
α(q) + d

)(
α(q) + d + 1

)
.

(c) Since both L and α(L) are inseparable over F, for any x ∈ L∪α(L) it follows
tr(x) = 0 and, by (1), N(x) = x2. Thus, in particular, tr

(
α(q)

)
= 0 = tr(h−1qh).

Since α(q) belongs to α(L), which is a 2-dimensional F-vector space spanned
by h−1qh and 1, there exist c, d ∈ F such that α(q) = c(h−1qh) + d. Note that
c , 0 since α(q) < F. Taking the norm on both sides of the previous equation
gives N

(
α(q)

)
= N

(
c(h−1qh) + d

)
=

(
c(h−1qh) + d

)2
= c2N(q) + d2, which entails

(19). �

Example 4.4. Let F = Q
(√

3
)

and denote by H the ordinary quaternions over F
with the usual F-basis {1, i, j, k}. The mapping v + w

√
3 7→ v − w

√
3, v,w ∈ Q,

is an automorphism of F. It can be extended to a unique F-semilinear transfor-
mation, say α : H → H, such that {1, i, j, k} is fixed elementwise. This α is an
automorphism of the skew field H, since all structure constants of H with respect
to the given basis are in Q, and so all of them are fixed under α.

Following Lemma 4.3, we define q := i +
(
1 +
√

3
)
j and L := F1 ⊕ Fq. Then

tr(q) = q + q = 0,

N(q) = 1 +
(
1 +
√

3
)2

= 5 + 2
√

3, N
(
α(q)

)
= α

(
N(q)

)
= 5 − 2

√
3

and N
(
α(q)

)
N(q)−1 =

(
5 − 2

√
3
)2
/13 , c2 for all c ∈ F∗, since 13 is not a square

in F. By Lemma 4.3 (a), there is no h ∈ H∗ such that α(L) = h−1Lh.
We now apply the construction from [12, Thm. 4.10 (a)] to the set D := {L}.

This gives a Clifford-like parallelism ‖ with the property F = {h−1Lh | h ∈ H∗}.
Under the action of the group of inner automorphisms, H̃∗, the star A(HF) splits
into orbits of the form {h−1L′h | h ∈ H∗} with L′ ∈ A(HF). One such orbit is F

and, due to α(L) < F, another one is α(F). The automorphism α interchanges
these two distinct orbits, but it fixes the H̃∗-orbit of the line F1 ⊕ Fi. Therefore,
A(HF) \ F contains at least two distinct H̃∗-orbits. Consequently, there is no
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antiautomorphism of H taking F to A(HF) \ F. So, by Theorem 3.4, Γ‖ ⊆ Γ`.
From (5), Theorem 3.4 and α(L) < F, follows α ∈ Γ` \ Γ‖. Summing up, we have
Γ‖ ⊂ Γ`, as required.

Example 4.5. Let F2 be the Galois field with two elements, and let F = F2(t, u),
where t and u denote independent indeterminates over F2.

First, we collect some facts about the polynomial algebra F2[t, u] over F2. Let
N denote the set of non-negative integers. The monomials of the form

tγuδ with (γ, δ) ∈ N × N (20)

constitute a basis of the F2-vector space F2[t, u]. Each non-zero polynomial p ∈
F2[t, u] can be written in a unique way as a non-empty sum of basis elements from
(20). Among the elements in this sum there is a unique one, say tmun, such that
(m, n) is maximal w.r.t. the lexicographical order on N × N. We shall refer to
(m, n) as the t-leading pair of p. (In this definition the indeterminates t and u play
different roles, because of the lexicographical order. Due to this lack of symmetry
the degree of p can be strictly larger than m + n.) If p1, p2 ∈ F2[t, u] are non-zero
polynomials with t-leading pairs (m1, n1) and (m2, n2), then p1 p2 is immediately
seen to have the t-leading pair (m1 + m2, n1 + n2).

Next, we construct a quaternion algebra with centre F. We follow the notation
from [6] and [11, Rem. 3.1]. Let K := F(i) be a separable quadratic extension
of F with defining relation i2 + i + 1 = 0. Furthermore, we define b := t + u.
The quaternion algebra (K/F, b) has a basis {1, i, j, k} such that its multiplication
is given by the following table:

· i j k
i 1 + i k j + k
j j + k t + u (t + u)(1 + i)
k j (t + u)i t + u

The conjugation (·) : H → H sends i 7→ i = i + 1 and fixes both j and k.
In order to show that (K/F, b) is a skew field we have to verify b < N(K).

Assume to the contrary that there are polynomials p1, p2 , 0, p3, and p4 , 0 in
F2[t, u] such that

N
(
p1/p2 + (p3/p4)i

)
=

(
p1/p2 + (p3/p4)i

)(
p1/p2 + (p3/p4)(i + 1)

)
= p2

1/p2
2 + (p1 p3)/(p2 p4) + p2

3/p2
4

= t + u.

Consequently,

(p1 p4)2 + p1 p2 p3 p4 + (p2 p3)2 + (t + u)(p2 p4)2 = 0. (21)
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We cannot have p1 = 0 or p3 = 0, since then the left hand side of (21) would
reduce to a sum of two terms, with one being a square in F2[t, u] and the other
being a non-square. We define (ms, ns) to be the t-leading pair of ps, s ∈ {1, 2, 3, 4}.
So, the t-leading pairs of the first three summands on the left hand side of (21) are(

2(m1 + m4), 2(n1 + n4)
)
, (m1 + m2 + m3 + m4, n1 + n2 + n3 + n4),(

2(m2 + m3), 2(n2 + n3)
)
.

Let us expand each of the four summands on the left hand side of (21) in terms of
the monomial basis (20). All monomials in the fourth expansion have odd degree.
There are three possibilities.

Case (i). m1 + m4 , m2 + m3. Then, for example, m1 + m4 > m2 + m3. From

2(m1 + m4) > m1 + m2 + m3 + m4 > 2(m2 + m3), (22)

the monomial t2(m1+m4)u2(n1+n4) appears in the expansion of (p1 p4)2, but not in the
expansions of p1 p2 p3 p4 and (p2 p3)2. This monomial remains unused in the ex-
pansion of (t + u)(p2 p4)2, since both of its exponents are even numbers. So, the
left hand side of (21) does not vanish, whence this case cannot occur.

Case (ii). m1 + m4 = m2 + m3 and n1 + n4 , n2 + n3. Then, for example,
n1 + n4 > n2 + n3. Formula (22) remains true when replacing ms by ns, s ∈
{1, 2, 3, 4}. We now can deduce, as in Case (i), that the monomial t2(m1+m4)u2(n1+n4)

appears precisely once when expanding each of the four summands the left hand
side of (21) in the monomial basis. So, this case is impossible.

Case (iii). m1 + m4 = m2 + m3 and n1 + n4 = n2 + n3. Then t2(m1+m4)u2(n1+n4)

appears precisely three times when expanding the four summands on the left hand
side of (21) and, due to 1 + 1 + 1 , 0, this case cannot happen either.

Since none of the Cases (i)–(iii) applies, we end up with a contradiction.
There is a unique automorphism of F that interchanges the indeterminates t

and u. It can be extended to a unique F-semilinear transformation, say α : H → H,
such that {1, i, j, k} is fixed elementwise. This α is an automorphism of H, because
α(t + u) = u + t = t + u.

Following Lemma 4.3, we define q := i+u j and L := F1⊕Fq. Then tr(q) = 1,
N(q) = 1 + u2(t + u), and N

(
α(q)

)
= 1 + t2(u + t).

We claim that

N
(
α(q)

)
+ N(q) = (u + t)3 , d2 + d for all d ∈ F.

Let us assume, by way of contraction, that there are polynomials d1 and d2 , 0 in
F2[t, u] satisfying (u + t)3 = d2

1/d
2
2 + d1/d2. Hence d1 , 0 and

(u + t)3d2
2 + d2

1 + d1d2 = 0. (23)
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We expand the first summand in (23) in terms of the monomial basis (20). This
gives a sum of monomials all of which have odd degree. Likewise, the expansion
of the second summand in (23) results in a sum of monomials all of which have
even degree. Let us also expand the third summand in (23) to a sum of monomials
and let us then collect all monomials with odd (resp. even) degree. In this way we
get precisely the monomials appearing in the first (resp. second) sum from above.
Thus, with n1 := deg d1, n2 := deg d2 we obtain that the degrees of the summands
in (23) satisfy the inequalities

3 + 2n2 ≤ n1 + n2, 2n1 ≤ n1 + n2.

These inequalities imply 3 + 2n2 ≤ n1 + n2 ≤ n2 + n2, which is absurd.
By Lemma 4.3 (b), there is no h ∈ H∗ such that α(L) = h−1Lh.
We now repeat the reasoning from the end of Example 4.4. This shows that

the Clifford-like parallelism ‖ that arises from D := {L} satisfies Γ‖ ⊂ Γ`.
Example 4.6. Let H = (K/F, b), α ∈ Aut(H) and L be given as in Example 4.5.
We know from Example 4.1 that

Einsep :=
{
L′ ∈ A(HF) | L′/F is inseparable

}
, ∅. (24)

In contrast to Example 4.5, we adopt an alternative definition of D, namely D :=
{L} ∪ Einsep. The construction from [12, Thm. 4.10 (a)] applied to this D gives a
Clifford-like parallelism ‖ with the property F = {h−1Lh | h ∈ H∗} ∪ Einsep. The
set Einsep remains fixed under any antiautomorphism of H. Consequently, there is
no antiautomorphism of H taking F to A(HF) \ F. So, by Theorem 3.4, Γ‖ ⊆ Γ`.
From (5), Theorem 3.4 and α(L) < F, follows α ∈ Γ` \ Γ‖. Summing up, we have
Γ‖ ⊂ Γ`, as required.
Example 4.7. Consider the same quaternion skew field H = (K/F, b) and the same
automorphism α ∈ Aut(H) as in Example 4.5. However, now we define q := j+uk
and L := F1 ⊕ Fq. Then L is inseparable over F, tr(q) = 0, N(q) = ( j + uk)2 =

(u + t)(1 + u + u2) and N
(
α(q)

)
= (u + t)(1 + t + t2). Equation (19) of Lemma 4.3 is

(u + t)(1 + t + t2) + c2(u + t)(1 + u + u2) = d2

which, upon fixing c = c1/c2 and d = d1/d2 with c1, c2, d1, d2 ∈ F2[t, u] and
c1, c2, d2 , 0, is equivalent to

d2
2(u + t)(c2

2 + c2
2t2 + c2

1 + c2
1u2) + d2

2(u + t)(c2
2t + uc2

1) = d2
1c2

2. (25)

All the monomials in the first summand of the left hand side of equation (25) are
of odd degree, while the monomials in the second one are of even degree. Since
d2

1c2
2 is a sum of monomials of even degree this entails d2

2(u + t)(c2
2 + c2

2t2 + c2
1 + c2

1u2) = 0,
d2

2(u + t)(c2
2t + uc2

1) = d2
1c2

2.
(26)
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The second equation in (26) yields ut(1 + c)2 = (d + t + uc)2, and since c = 1 (i.e.,
c1 = c2) is not a solution of the first equation in (26), we can assume 1 + c , 0,
thus ut =

(
(d + t +uc)/(1+c)

)2. This equation, after all, cannot be satisfied for any
choice of c ∈ F∗ since ut is not a square in F. Thus we can conclude by Lemma
4.3 (c) that there exists no h ∈ H∗ such that α(L) = h−1qh.

The final step is to define a Clifford-like parallelism subject to (14). This can
be done as in Example 4.5 using D := {L}.

Example 4.8. Let H = (K/F, b), α ∈ Aut(H) and L be given as in Example 4.7.
Then a Clifford-like parallelism that satisfies (14) can be obtained along the lines
of Example 4.6 by replacing everywhere the set Einsep from (24) with Esep :=

{
L′ ∈

A(HF) | L′/F is separable
}
.
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