Baer subspaces within Segre manifolds

Hans Havlicek

1. Introduction

Baer subspaces of projective spaces as well as Segre manifolds of pappian projective
spaces are very well known. But seemingly they are unrelated topics, apart from the
(more or less formal) fact that both of them may be described in terms of tensor pro-
ducts of vector spaces.

Baer subspaces of a desarguesian projective space with an underlying (not neces-
sarily commutative) field L arise from subfields K of right and left degree 2 over L.
(Recall that the right and left degree of a field extension may be different; cf.
[4,123ff].) If B is a right vector space over K, then the tensor product Bexl is a
right vector space over L. With 1 € L we have the canonical embedding w +— wel of B in
B eg L. This yields an embedding of the projective space on B in the projective space
on Beg L as a Baer subspace.

When B; and B, are vector spaces over the same commutative field L, then the set
of all non-zero pure bivectors of B;®; B, determines a Segre manifold in the projec-
tive space on B;®;B,. Following geometric ideas in [3] and [10], a definition of
Segre manifolds will be given when the ground field L is arbitrary. However, by fol-
lowing this definition, the connection to tensor products of vector spaces seems to be
lost when L is a skew field, since forming B;®; B, requires a right vector space
B, and a left vector space B, over L. And this is not in accordance with the geo-
metric approach.

The following construction of a Baer subspace within a Segre manifold essentially

depends on the existence of an element a € L which has degree two over the centre of
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L. So it will not work in pappian spaces. Furthermore we are going to use that cross-
ratios in a skew field L are conjugacy classes of L rather than single elements. More-
over we shall show that the generators of the given Segre manifold yield a 1-spread of
the Baer subspace. Any transversal subspace of the Segre manifold may be regarded as

an indicator set of this 1-spread.

2. Segre manifolds

Let P be a projective space. Given complementary subspaces U and U’ of P and a projec-

tive collineation k: U - U’, where U,U’ are regarded as sets of points, the set
S = {(XeYVWW|Yel c P
is called a Segre manifold. Every line belonging to
K
SI = {YVY |YelU}
is called a generator of S. A subspace J < P is named a transversal subspace of SI, if
14 (ESI) = InT

defines a bijection of SI onto 7.

When % is pappian and (2n+1)-dimensional, then every Segre manifold according to
this definition is a Corrado Segre manifold S;;, in the notation of W.Burau [3,133].
Cf. also [6,189 ff]. One could also ask for generalizations of Segre manifolds whose
generators are subspaces of higher dimension. But we shall not be concerned with this
possibility.

If dim? = 3, then SI is a regulus in the sense of Beniamino Segre [10,319], and
conversely every regulus is the set of generators of a Segre manifold. Reguli often
are defined in such a way that their existence forces P to be pappian. But we shall
stick to the more general terminology introduced by B. Segre.

In the sequel let B be a right vector space over a field L. When Ul is a subspace
of B, then P(Ul) stands for the projective space on W. Given M < L, we denote by Z(M)
the centralizer of M in L.

Suppose that S is a Segre manifold in P(B) with spanS = P(B). Then B is the

direct sum of two subspaces U,U’, say, and there is a linear bijection
U S UW, u = uf (1)
such that the defining projective collineation k for S may be written as

K: PU) > PU), 2L > z’L. (2)



We use this to determine all lines of P(B) within the manifold S:

THEOREM 1. Let SI be the family of generators of a Segre manifold S which is spanning
P(B). Then the family of all transversal subspaces of SI is given by

S, = {T0,3)1(0,0) # (x,y) € Z(L)?)
where

T(x,y) := PHux+u’y})|n e U\{o}).

If g ¢S is a line of P(B), then either geSI or @ is contained in a transversal

subspace.

Proof. A straightforward calculation shows that every W(X,y)eSH is a transversal
subspace of SI.

On the other hand, if J is transversal, then pick different lines Eo,ﬂleSI. Put
Q := lovly, whence dimQ = 3. All lines of SI within Q@ form a regulus with JnQ being a
transversal line of this regulus. We infer from [10,319] that £ynT and ¢;nJ have the

form
(ugx+1o’ y)L, (vox+0o’ y)L with (0,0) # (x,y) e Z(L)?,

respectively. Fixing £y and varying £; in SI\{EO} yields J < J(x,y) which forces
T = T(x,y).

Now let g ¢ S be a line. It will be sufficient to show that g ¢ SI implies
q c WESH. Hence we have points Xg,X;€q9 which are incident with different lines
Eo,ﬂleSI. Repeating the arguments just used, we deduce that ¢ = InQ for some trans-

versal subspace J € SH.I

On every line EESI the set EnSH is a subline over the centre Z(L) of L, so the
cross-ratio (CR) of any four different points of EnSH lies in Z(L); cf. [10,321],

[8]. Given any transversal subspace J(x,y), the mapping
PU) > J(x,y), ulL = (ux+u’y)L
is a projective collineation, so that
T(x0,v0) > T(x1,¥1), €nT(x0,y0) — nT(x1,y1) with EESI

is again a projective collineation for any two transversal subspaces J(xq,yg) and
J(x1,y1). This mapping in turn may be used to generate the given Segre manifold S.
Every Segre manifold S has at least three different transversal subspaces and it
is easily shown that S equals the union over all lines which intersect three of its
transversal subspaces. It is immediate from theorem 1 that SIUSII is the set of all

maximal subspaces which are contained in S. The réle of SI and SII cannot be inter-



changed unless P(8B) is 3-dimensional and pappian; cf. e.g. [10,319-3211].

3. Baer subspaces

Let K be a subfield of L whose left and right degree over L equals 2. If B is a right
vector space over K, then the projective space P(B) yields a Baer subspace P of
P(Box L), as has been sketched in section 1. Given a subspace M of 7ND, there is a
unique subspace M of P(B) with M = PrM. We shall also say that M is a subspace of P.
Since the left degree1 of L over K is 2, every point X of P(B ey L)\?ND, say
X = (mggm(gmmmw)L (€,m € K, i € L\K),
is incident with a unique line of P which is spanned by
(mgi&mgm@l) L and (mggmnmm) L.

It follows in the same fashion that every hyperplane of P(B ex L), which is not a
hyperplane of 7ND, contains a unique co-line of 7ND, since 2 is also the right degree
of L over K.

So far there was no restriction on the ground field L. From now on, however, we
assume that L is a non-commutative field. The conjugacy class of any aelL will be

written as 4. The main result of this paper is

THEOREM 2. Let S be a Segre manifold spanning P(B) and denote by U,U’,T € SII three
different transversal subspaces of SI. Assume that ae€l is quadratic over the centre

of L. Then the set of all points X €S satisfying
XEEXESI 5 CR(X, x0T 2xnU,LxnU’) = a
is a Baer subspace P of P(B). The centralizer of a in L is an underlying field of P.

Proof. (a) Let S be given by (2) and suppose U = P(U), U’ = PU’'), § = J(1,1). The

element a € L is a zero of its minimal polynomial
X?%-m1X-mg € Z(L)[X]. (3)

Denote by A the commutative subfield of L spanned by Z(L)u{a}. Hence the centralizers

of {a} and A in L are the same. We obtain

"The following calculation runs in a well-known manner. The only reason for writing it
down is to emphasize the significance of left and right degrees in geometric terms.



|L:Z(A)] = |A:Z(L)]| =2 = |A:Z(L)]| . = |L:Z4)|
left left right right

where the first and the last sign of equality follows from the centralizer theorem
[4,49; Corollary 2], while the others are obvious. Every point Xe®P has the form

X = wL with w being an element of
B := {u+u’aluell} < B. (4)

By construction (3,+) is a subgroup of (8,+) which is closed under multiplication with
scalars of Z(A). Therefore B is a right vector space over Z(A). We shall emphasize

this by writing Bz4). If we regard U as a right vector space Uz over Z(A), then
OC:nz(A) - Bz(A), u = utun’a (5)

is a Z(A4)-linear bijection of vector spaces.

(b) In order to show that B gives rise to a Baer subspace of P(B), we establish
that the mapping

f Bezayl > B, ¥ wex - Y wx (xmeL)
wel wel

is an L-linear bijection.

This f is well defined and L-linear. Let B be a basis of Uzy and let d be any
element of L\Z(A). Then every r € B oz, L can be written as

=Y (b+b’a)®(€b+dnb) with Eb,nbeZ(A).

beB
Suppose that

f@) = § (b+b’a)(§ +dn ) = o
b b
beB
whence, by B = Uell’ and the inverse of the mapping (1),
Y b(& +dn,) = o, Y (ba)(& +dn ) = o.
beB b b beB b 7b
Multiplying the second equation by -a~! and adding the first equation yields
Y ban, = ) b(ada‘l)nb. (6)
beB beB

Case 1: a is separable over Z(L). Hence
a := (mi-a) e A\{a}

is a zero of the polynomial (3). There is an automorphism of A which fixes Z(L)
elementwise and takes a to a. By the Skolem Noether theorem (cf. e.g. the corrol-
lary in [4,46]), that automorphism of A can be extended to an inner automorphism
of L. So there is an element ceL\Z(4) such that clac = a. Since deL\Z(4) has

been chosen arbitrarily, we may assume that d = c. Hence



ad = da = d(m;-a). (7)
We deduce from d 'Ad = A that d"'Z(4)d = Z(A4), so that
z (€Z(A)) + dzd!

is an automorphism of Z(A4). Therefore u +— ud is a Z(A4)-semilinear bijection of

U and {bd|beB} is a basis of Uzy. Now, by (7), equation (6) becomes

Y bdnb = ¥ bd(ml—a)a"lnb
beB beB

which forces
Ny = az"l(ml—az)nb for all beB.

Assume that nb # O for some beB. Hence 2a = m;, a contradiction. So nb = 0 for

all beB.
Case 2: a is inseparable over Z(L). Consequently CharlL = 2 and m; = 0. We read off
from a® = mge Z(L) that the inner automorphism

x = alxa

of L has order 2. Since x + alxa € Z(4) for all x e L, the element d can be

chosen such that a’'da = d+1. We obtain
ad = da+a. (8)
By (8) equation (6) can be written as
Y bdnb = Y b(daz+az)az"11r)b = Y bdnb+ Y bnb
beB beB beB beB
which implies ny = O for all beB.

In either case Eb = 0 for all beB and, finally, » = 0. So f is injective. Further-

more f is surjective, since B spans all of B.m

We remark that this proof can be reduced drastically if dimU < o, since then f being
sur jective already implies that f is a bijection.

Now we are in a position to show how the generators of the given Segre manifold
are "seen" from within the Baer subspace. Recall that a set ¥ of mutually skew lines
of a projective space P is called a l-spread, if ¥ is covering . When dim®P = 3, we
shall use the term spread rather than 1-spread and a dual spread is to mean a set of

mutually skew lines such that every plane of # contains one line of ¥.

THEOREM 3. Under the assumptions of theorem 2, the set of lines

9 .= {En?NDIEESI}



is a l-spread of P. If g ¢ P is a line of P which carries one point of U, then ée?’
If furthermore dimP(B) = 3, then the spread ¥ is desarguesian and its kernel is iso-

~

morphic to L. Moreover ¥ is a dual spread.

Proof. If EESI, then InP is a line of P. Any two different lines Eo,ﬂleSI are
skew. By theorem 2 every point of P is incident with an element of #. Thus ¥ is a
1-spread.

Suppose that g carries different points
(u+u’a)L, (v+o’a)LeP, tLeU.

So t is a linear combination (over L) of u+u’a, v+v’a. We deduce from B = Uell’ that
v’'L = u’L and therefore uL = vL = tL which implies ée?’, as required.
Letting dim®P(B) = 3, we see that Bz, is an underlying vector space of P. Define

a multiplication
BxL > B, (u+u’a,x) — ux+u’ xa.

Then B becomes a right vector space B; over L. The 1-dimensional subspaces of B, are
exactly the elements of the partition of B induced by $. Now the mapping «, as is
given by (5), is an L-linear bijection of U; onto B;. Hence dimB; = 2 which in turn
shows that the kernel of ¢ is isomorphic to L.

In order to show that ¥ is also a dual spread, take any plane & of P. The line U
cannot be contained in &, since then & being a Baer subplane of & would imply
UnE = UnP to be non-empty. Hence &nU is a point off P and the only line of P passing
through it has to be in &.m

We close with some remarks:

A well known example, where this theorem can be applied, is the skew field H of
real quaternions. Here the centralizer of any a € H\Z(H) is - up to isomorphism - a
field of complex numbers.

Results similar to theorem 3 on spreads of Baer subspaces of pappian projective
spaces can be found in [1], [9]: A.Beutelspacher and J.Ueberberg [1] show that
every t-dimensional subspace which is skew to a Baer subspace P of P = PG(2t+1,L)
yields a 1-spread of P. Theorem 3 states that some subspaces of P(B) share this
property. But on the other hand there is no restriction on the dimension of B.

Now let dimP(B) = 3. In [7] (Definition 2.4) N.Knarr generalizes the concept of
"indicator set" (due to A.Bruen [2]) to the infinite case. Moreover it is shown how
to obtain a dual spread from such an indicator set. Our construction of % and the

proof that ¥ is a dual spread fit into Knarr’'’s general concept: Denote by F e SII any



transversal line and fix any line ¢ € SI. Then J\£ is an indicator set within the
affine plane (FVENL.

Still assuming dimP(B) = 3, take two different generators Eo,ﬂleSI and a plane
& > ¢y which does not contain any transversal line. By [10,325-329], (EnS)\{; is the
proper part of a degenerate conic or, in Segre’s terminology, a C-configuration.

Suppose that
CR(EnL1, TNy, UnLy, U ney) = b

for some b € L, whence b ¢ Z(L). When & is a plane of P, then a = b and (8nSN\Ly is an
affine part of the Baer subplane enP c €. However, when & does not belong to 7ND, then
a# b and (EnS)\{y is an indicator set of % within the plane &. This indicator set
again may be again be an affine Baer subplane: By [5] the set (EnS)\{y is an affine
Baer subplane of the affine plane &\{y if, and only if, the parameter b is quadratic

over the centre of L.
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