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Abstract

We establish that, over certain ground fields, the set of osculating taruj€tagley’s ruled
cubic surface gives rise to a (maximal partial) spread which is also a chadithal partial)
spread. Itis precisely the Betten-Walker spreads that allow for thigremtisn. Every infinite
Betten-Walker spread is not an algebraic set of lines, but it turns intoaget by adding just
one pencil of lines.
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1 Introduction

1.1 In this paper we deal with a spread which was discovered enldgntly, and approximately
at the same time, by D. Betten [2] and M. Walker [28].

Betten used the concept ofteansversal homeomorphisim order to describe and classify
topological translation planes in terms of partitions of trector spac&* into 2-dimensional
subspaces. What we call tBetten-Walker spreaBW-spread) is described in [2, Satz 3]. Betten’s
paper contains also a short remark that the constructioni@spread works also for finite fields
of characteristic£ 3 without a primitive third root of unity [2, pp. 338-339]. Wefer to [15] or
[21] for the connection between spreads and translatiareglat is due to J. Anérand was found
independently by R. H. Bruck and R. C. Bose.

Walker adopted the projective point of view, which leads poesds of lines in a projective
3-space. He focussed on the case of a finite ground €éld;), ¢ = —1 (mod 6), and on the
reguli contained in the spread. Thereby he laid the cornerstorng ¢oncept which is now called
the Thas-Walker constructiorit links spreads wittilocksof quadrics via the Klein mapping.

The BW-spread corresponds to a flock of a quadratic cone. Ifirthe case this flock is due
to C. Fisher and J. A. Thas, who weakened Walker’s conditien—1 (mod 6). We refer to [25,
pp. 334-338] for further details. Some authors use the t&TwW-spread” for a finite BW-spread.

The BW-spread and its corresponding translation plane weisited by A. G. Spera [23].
The comprehensive paper by V. Jha and N. L. Johnson [13] (wstiould be read together with
its second part [14]) contains more information about the Wéad and its associated flock. In
both papers the existence of the BW-spread is establisheahfarbitrary ground field< with
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characteristicZ 3 subject to the condition that each elementiohas precisely one third root in
K. We add in passing that the BW-spread is among the “likeahletsires” of W. M. Kantor; see
[7].

Finally, there is a neat connection, found by J. A. Thas, betwflocks of quadratic cones
over finite fields and certaigeneralized quadranglesee [25, p. 334], [26], and the references
given there. The infinite case was treated by F. De Clerck anéhkhl Maldeghem [5]. However,
this connection with generalized quadrangles is beyondstiope of the present paper. Let us
just add the following remark: In the finite case, the BW-sgrearresponds to a generalized
guadrangle discovered by W. M. Kantor; cf. [24, p. 398]. Those authors speak of the “FTWKB
generalized quadrangle” in order to bring together the saohall the involved mathematicians;
see, for example, [18, p. 222].

1.2 One aim of the present note is to present a short, direct, @elird@@ntained approach to the
BW-spread, thereby establishing a connection with an atgelsurface which was discovered
already in the 19th century, nameBayley’s ruled cubic surfaceAccording to [17, p. 181] this
name is not completely appropriate, since M. Chasles puddlistis discovery of that surface in
1861, three years before A. Cayley.

Our starting point is a Cayley surfa¢g say, in the projectiv8-space over an arbitrary field.

At each simple point of’ there is a unique osculating tangent other than a genefidterset of all
those osculating tangents, together with one particut@rdin 7', gives then a set of lines, s&y,
which easily turns out to be a spreadiifsatisfies the conditions mentioned above (characteristic
# 3, each element ok has precisely one third root i). Moreover, when “precisely” is replaced
with “at most” thenO is a maximal partial spread; see Theorem 3.3 and cf. [13,/Ene6.3]. By

our approach the maximality of such a partial spread follbwsn the observation that all points
of a distinguished plane are incident with a line of the phspread.

By a classical result, there exists a duality which maps thde@agurface (as a set of points)
onto the set of its tangent planes. Any mapping of this kineldi?, as a set of lines. Therefore, all
our results hold together with their dual counterparts. dapending on the ground field will
be a (maximal partial) spread and at the same time a (maxianaa}) dual spread.

In case of characteristic three there in@ of nucleifor the Cayley surface. The existence of
that line was noted by M. de Finis and M. J. de Resmini [6] witlgiving a geometric interpreta-
tion. We show in Theorem 4.7 that the line of nuclei is the afia parabolic congruence which
contains all lines 00©.

1.3 The transversal homeomorphism used in [2] to describe thesBi#ad is given in terms of
polynomial functions. This raises the question whetherairthe BW-spread islgebraig i.e.,

its image under the Klein mapping is an algebraic varietythifinite case every set of points
Is an algebraic variety (by [11, Lemma 3.5 (a)], even a hygé#ase), whence we exclude that
case from our investigation. On the other hand, infinite ladgie spreads seem to be rare. The
only examples known to the authors are the regular spreads @her words, the elliptic linear
congruences) and some spreads found by the second authgtOsdable 1]. Unfortunately, our
hope to find another example of an algebraic spread did noé¢arme. However, the BW-spread
is very close to being algebraic. We establish in TheorenthaBthe union of the BW-spread and
one pencil of lines is algebraic. More precisely, the Klemage of that set is the smallest algebraic
variety containing the Klein image of the BW-spread (Theoref). When looking for equations



describing that variety (in terms of iRlker coordinates) the thesis of R. Koch [16] turned out
extremely useful, even though we could not directly implaties results in our work. It is worth
mentioning that the BW-spread (ov&) is ubiquitous in Koch’s thesis under the German name
“Schmiegtangentenkongruenz” (congruence of osculatngents), but the property of being a
spread never seems to be mentioned in the text. Likewisautfers were unable to find a remark
on this property in the older literature on the Cayley surface

2 TheCayley surface

2.1 We consider the three-dimensional projective sgagé{) over a commutative field(. As
we shall use column vectors, a point has the fdtm with (0,0,0,0)T # p = (po, p1, P2, p3)* €
K*1. The set of lines oP3(K) is written as’.

Let X = (Xy, X1, X5, X3) be a family of independent indeterminates o¥er We refer to
[10, pp. 48-51] for those basic notions of algebraic geoynetrich will be used in this paper.
However, in contrast to [10], we write

V(91(X), 92(X), ... g:(X)) = {Kp € P3(K) | 91 (p) = g2(p) = --- = g,(p) = 0}
for the set of K-rational points of the variety given by homogeneous potgiads
gl(X)v 92<X)7 R gT(X) S K[X]

Each matrix)M/ = (m;;)o<ij<3 € GL4(K) acts on the column spad€**! by multiplication
from the left hand side and therefore as a projective cdlioa onP3;(K). Moreover,M acts
as ak -algebra isomorphism oA'[X] via X; — Z?:O m;; X, fori € {0,1,2,3}. Given a form
9(X) € K[X] and its image unde¥/, sayh(X), the collineation induced by/ takesV (h(X))

toV(g(X)).
In what follows the planev := V(Xj) will be considered aglane at infinity thus we turn
P;(K) into a projectively closed affine space.

2.2 We refer to [1], [3], [4], [8], [20], and [22] for the definitroand basic properties @ayley’s
ruled cubic surfaceor, for short, theCayley surface It is, to within projective collineations, the
point setF' := V(f(X)), where

f(X) = Xo X1 Xy — X? — X2 X3 € K[X].
Letd; := ;2-. Hence we obtain

aof(X) - X1X2—2XOX3, alf(X) - XQX2—3X12, (1)
0o f(X) = XoXi, Osf(X) = —X¢.

These partial derivatives vanish simultaneouslypatp;, p2, p3)* € K**! if, and only if, at least
one of the following conditions holds:

po =p1 =0; (2)
po = p2 = 0 and Char K = 3. 3)

The parametrization

K? = P3(K) : (uy,ug) — K(1,uy, up, uyug — u)® =: P(uy, up)

3



is injective, and its image coincides with\ w (the affine part of"). According to (1), all points
of '\ w aresimple Thetangent planeat P(u;, uy) equals

% ((2U? — U1U2)X0 + (—3u% + 'LL2>X1 + U1X2 — Xg) . (4)

The points subject to (2) comprise the liW€X,, X;) = F Nw =: g-. They are easily seen to be
double point®f . Thetangent congor tangent spacflo, p. 49]) ata point/ := K (0,0, s, s3)7,

(82, 83) 7é (O, O), is
V(Xo(s2X1 — 53X0)); ©))

this is either a pair of distinct planes (if # Z := K(0,0,0,1)T) or a repeated plane ({f = 7).
We call each of these planegangent planeat U. The pointZ is a so-callecpinch point[17,
p. 76], and its tangent planeds See Figure 1 which displays the Cayley surfac®4(R) in an
affine neighbourhood of . (The plane)(X3) is at infinity in this illustration.)
The tangent plane af at P(0,0) is V(X3); this plane meet$’ along the lineV(X;, X3) and
the parabola
L= V(XX — X2, X3). (6)

For each(sp, s;) € K2\ {(0,0)} the line
g(807 51) = K(Sga S0S1, 8%7 O)T + K<07 OJ S0, 51>T

is ageneratorof F'. There are no other lines dn. The lineg(0,1) = g, is not only a generator
of F', but also airectrix, as it has non-empty intersection with every generatorhfpaint of g,
except the pointZ, is on precisely two generators éf, each affine point of is incident with
precisely one generator (Figure 2).

Figure 1 Figure 2

Next we describe the automorphic projective collineatiohs”: The set of all matrices

1 0 0 0
a c 0 O
Mape = b 3ac 2 0

ab—a® bc ac®
wherea, b € K andc € K \ {0} is a group, sayr, under multiplication. Each matrix i leaves
invariant the cubic formy(X) = XX, X, — X3 — X2 X3 to within the factorc®. Consequently,
the groupG acts onF' as a group of projective collineations. Under the actiorpthe points of
F fall into three orbits:F' \ w, g \ {Z}, and{Z}. Except for the case whei'| < 3, the group
G yields all projective collineations af; see [8, Section 3].

Observe that the following holds irrespective of the chimastic of K.



Lemma 2.3 There exists a duality which maps the set of points of the CayldgiceF’ onto the
set of its tangent planes. Thus the set of all tangent plahésie a Cayley surface in the dual
projective space.

Proof. By (4) and (5), a plan® (37, a;X,), whereq; € K, is a tangent plane df if, and only
if, ajazaz — a3 — apa? = 0. Consequently, the linear bijection

K¥ — K ($0,$1,$27$3)T = ($3,$27$1,$0)
gives a duality of®;( K') with the required properties. O

We note that the duality from the above takes, for(all, u;) € K2, the pointP(u;, us) to the
tangent plane at the poift(—u;, 3u? — uy).

3 Osculating tangents and the Betten-Walker spread

3.1 If aline t meetsF at a simple point? with multiplicity > 3 then it is called arosculating
tangentat P. Such a tangent line is either a generator or it méeét P only. In the latter case it
will be called aproper osculating tangerdf F. Observe that we are not dealing with those lines
which meetF’ with multiplicity > 3 at a double point. In fact., is the set of double points, and
at any pointU € g, the lines meeting” at U with multiplicity > 3 comprise two pencils (one
pencil if U = Z) lying in the two tangent planes &t (only tangent plane df = 7); see formula
(5). The following is part of the folklore:

Lemma 3.2 Ateach pointP(uy, us) € F'\ go there is a unique proper osculating tangent, namely
the line which joinsP (uy, uy) with the pointK (0, 1, 3uy, us)T.

Proof. Let (uy,us) = (0,0). The tangent plane &(0, 0) is V(X3). Any proper osculating tangent
through P(0,0) is necessarily incident with this plane, and it megtat P(0,0) only. By (6),
only the tangent of the parabold at P(0,0) can be a proper osculating tangent, since every
other tangent of”" at P(0,0) meetsl residually at a point P(0,0). The point at infinity oft is
K(0,1,0,0). Itis straightforward to verify that meetsF’ at P(0,0) with multiplicity three. By

the action of the matridz,, ., 1 € G the assertion follows for any poift(u;, u2) € F'\ goo. O

Theorem 3.3 Let
O := {t € L | tis a proper osculating tangent @} U {g-. }.
This set of lines has the following properties.

(@) O is a partial spread ofP;(K) if, and only if, Char K" # 3 and K does not contain a third
root of unity other thar.

(b) If O is a partial spread then it is maximal, i.e., it is not a propgeibset of any partial spread
of P3(K).

(c) O is a covering ofP3(K) if, and only if, Char K # 3 and each element df has a third
root in K.



Proof. (a) Itis immediate from Lemma 3.2 that all proper osculatemgents of” are skew tgj..
So it suffices to discuss whether or not two distinct propeutaging tangents of’ have a point
in common. As the grouf’ acts transitively or¥’ \ ¢, all proper osculating tangents éf are
in one orbit of G. So it is enough consider the osculating tangents at digpioiots P(0,0) and
P(uy,us). By Lemma 3.2, these lines are skew if, and only if,

10 1 0
01 U 1

det 00 u; 30, | = uj — 3utuy + 3ui # 0. @)
0 0 wuy— ui{’ Ug

If u; = 0 thenuy # 0, whence (7) holds irrespective of the ground field. Otheswig substitute
uy = (2 + y)u? with y € K. Hence (7) turns intai(y? + y + 1) # 0. Observing(X? + X +
1)(X—1) = X?—1 € K[X], we see thak*+ X +1 has a zero itk precisely when the following
holds: EitherChar K = 3, since in this cas&* + X + 1 = (X — 1)?, or Char K # 3 and there
exists a third root of unityy # 1 in K, since then? +1 + 1 # 0.

(b) We infer from (a) thaChar K # 3. Thus Lemma 3.2 implies that each point at infinity is
incident with a proper osculating tangent or just with threelj,,. As every line ofP3(K) has a
point in common with the plane at infinity and each point of ptene at infinity is on a line of the
partial spread, the partial spre@dis maximal.

(c) First, letChar K = 3. It suffices to show tha® cannot be a covering d;(K). By
Lemma 3.2, all proper osculating tangents meet the line

n = V(Xo,XQ). (8)

Clearly, there exists a pointin\ (n U g ). This point is not incident with any line a.

Next, assumé&har K # 3. By the proof of (b), we may restrict ourselves to affine paits
point K’ (1, py, p2, p3) is on a line ofO if, and only if, there is a paifu;,us) € K? and ans € K
such that

(1,p1,p2.p3) T = (1, u1, ug, uyuy — ud)™ + 5(0, 1, 3uy, ug) ™.

So we obtain the following system of equations in the unkreownu., s:

Uy =p; — S, Uy =py—3s(p1 —8), $°=ps— (pp2— D).

This system has a solution precisely whghr- (p;p» —p}) has a third root in. Asps— (p1p2—p3)
can assume any value iq, the assertion follows. O

3.4 By the above, an affine point lies on a line@fif, and only if, it can be written in the form
K (1, p1,pa, pipa — pi + 8°) With p1,ps, s € K.

The results of Theorem 3.3 were established in [13, Theordinad [23, Teorema 1] in a
completely different way. In those papers the reader wslbdind conditions for a field{ to meet
one of the algebraic conditions given in (a), (b), or (c).

We noted in Lemma 2.3 thdt admits a duality which is easily seen to @ik as a set of lines.
Hence the dual counterparts of the characterizations giv@imeorem 3.3 hold as well. Thu3
is a (maximal partial) spread if, and only if, it is a (maxinpalrtial) dual spread. Observe that the
point Z = K(0,0,0,1)T takes over the role of the planein the dual setting.
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3.5 Let Char K = 3. Recall from (8) that: = V(X,, X»). By (3), every pointofz \ {Z} is a

nucleusof £, i.e. a point off ', where all partial derivatives (1) vanish; see [10, p. 50¢ iafer

also to [6, Proposition 3.17], where nuclei are defined inghdly different way (including double
points of F'). Even thoughZ is not a nucleus according to our definition, we shall refen tas

being theline of nuclei We established in the proof of Theorem 3.3 (c) that all praeulating

tangents meet the line of nuclei. This result will be imprue Theorem 4.7.

3.6 Let K = R so thatO is a spread. In order to show that this is in fact the BW-spread,
described in [2, Satz 3], we apply the collineation
To T3\ 7T
a:P3(K) — Ps(K) : K(xg, 21,29, 23)" — K (mo,xl, 32, §3>
which fixes the lingy,.. By Lemma 3.2, any line of(O \ {¢}) has the form

3

T

Uy ULU2 U ug\ T

K 17 ) o - 5 K<0717 7_)
( 3Ty 3) i 3

with (u1, up) € R?. By joining this line withZ = K(0,0,0,1)" andK(0,0,1,0)", we obtain two
distinct planes with equations

3
(75 u U9
Ty = <§ — u%) Lo + uyx, andxs = —31 ZTo + gxl,

respectively. The substitutions =: x, x; =: y, 1o =: u, v3 =: v, uz/3 — u? =: ¢, andu; =: s
turn these equations into
83
u=tx + sy andv = —37 + (s* + t)y.

These are the formulas from [2, Satz 3]. In particular, weelte transversal homeomorphism of
R2 with (¢, 5) — (—53/3,5% + ).

Figure 3
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It is also easy to see that our results coincide with [28], neli®mogeneous coordinates with
indices running froml to 4, sayz', x5, %, 2, were used. The appropriate transformation from
our coordinates:, x1, x2, x3 is given byz| = x3/3, 2}, = x9/3, % = x;, anda), = zo. The
groupS; used in [28] is a subgroup of our grodf whereas the reguiR; from [28] arise in our
setting as follows: Take the set of all proper osculatingéants at the points of a generatdt, s),

s € K, together withy.. This is easily seen to be a regulus, $ay(s), which clearly is contained

in O. In affine terms each such regulus is one family of generatora hyperbolic paraboloid.
These hyperbolic paraboloids hayg as a common generator and they share a common tangent
plane at each point af,.. Thus, for example, each such paraboloid meets the plaig) O g
residually in a line; all these lines are parallel, as thessghroughk'(0, 0, 1,0)™. This is depicted

in Figure 3.

3.7 AssumeChar K # 3. Then the lines oO other thary,, define (by intersection) an injective
mappingw \ g.. — V(X1) \ 9; compare with the construction of a spread via a transversal
mapping due to N. Knarr [15, pp. 26—29]. An illustration isey in Figure 4, where temporarily
V(X, + X;) takes over the role of the plane at infinity. (The curve®’iiX;) are semicubical
parabolas.)

Figure 4

4 TheKlein image of the Betten-Walker spread

4.1 Interms of coordinates, the exterior squafé<! A K**! coincides with/i%*! by setting

PAQ= (p07p1,p2,p3)T A (C_IO,C_I17(]2>Q3)T = (y01,yoz,yo3,912,yl3,y23)T

wherey;; = p;q; — p,;q;- Given thatp, g are linearly independent the entries of the column vector
(Yo1, Yoz, - - -, Y23) T are the well known Ricker coordinates of the lin&p + Kq. The Klein
mappingx : L — @ : Kp + Kq — K(p A q) is a bijection from the line sef of P3(K’) onto
Klein quadric@ := V(k(Y)) C P5(K), whereY = (Y, Yoo, . .., Ya3) denotes a family of six
independent indeterminates ov€rand

E(Y) := Y Yas — Yoo Y13 + Yo3Yio.



The polarity of the Klein quadric will be denoted by Observe that_ is symplectic if, and only
if, Char K = 2. Table 15.10 in [9, pp. 29-31] contains all the informationtie Klein mapping
which we shall use in this section without further reference

A set of lines inP5(K) is said to bealgebraicif its Klein image is the set ofC-rational points
of an algebraic variety ii*; ().

4.2 Let us first calculate the Klein image of the set of generatb#s: We obtain, for all(sg, s1) €
K2\ {(0,0)}, that

k(g(s0,51)) = K(0, 55, 5551, 5551, 50571, 57) T € P5(K). 9)
So we get a twisted cubic [9, Chapter 21] lying in the threeefisonal subspace
C =V (X1, Xoz — X12) C P5(K).
The intersectior’ N @ is a quadratic cone with verté¥,, := k(g.) = Kw,, Where
ws = (0,0,0,0,0,1)T. (10)

This cone is the Klein image of a parabolic linear congruenitk axis g.,, which contains all
generators of". The subspac€' is the line spanned by, andV := Kw, where

w = (07 07 17 _17 07 O)T

This line meets the Klein quadric &it,, only. We haveC+ N C = {W,} for Char K # 2, but
C* c C otherwise.

In the subsequent theorem we exhibit algebraic equationshvdre satisfied by the Klein
image ofQ; we shall explain in 4.4 how these equations were found.

Theorem 4.3 SupposeChar K # 3. LetO be given as in Theore®.3 and letL[Z, w| be the
pencil of lines in the plane = V(X,) with centreZ = K(0,0,0,1)T. Consider the polynomials

h(Y) = 3Yu(Yia+ Yos) — Yop, (11)
ho(Y) = 3YpYis — (Yo + Yo3)?, (12)
hs(Y) = 9Y51Yis — Yoo (Y12 + Yo3). (13)

Thenk(O U L[Z,w]) equals the intersection of the variety
J:=V(hi(Y), ho(Y), h3(Y)) C P5(K)
with the Klein quadria) = V(k(Y)).

Proof. (a) For all(u;, us) € K?, the Klein image of the only proper osculating tangenét; , u.)
is the point with coordinates

(1, 3ur, ug, 3u3 — uy, ut, 3uj — 3uduy +ud)’. (14)

The Klein image of the pencil[Z, w] is the line spanned b (0,0, 0,0, 1,0) and K we = K(goo);
see (10). Now a direct verification show8O U L[Z,w]) C (J N Q).
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(b) In order to showJ N Q) C k(O U L][Z,w]) we determine all vectors

Y= (Z/01>yo2’yo37y127?¥137y23)T € K%!

subject toh, (y) = ha(y) = ha(y) = k(y) = 0.

In a first step we determine all such vectors wjth # 0. Without loss of generality we may
assumeyy; = 1; also we letyg, =: u; andyos =: us. Fromhy(y) = 3y1o + 3uy — 9u? follows
Y12 = 3u? — uy Which can be substituted iy (y) = 9413 — 9u3. This givesy;3 = u3. We calculate
k(y) = yo3 — 3uf + us(ui — ug) which yieldsys; = 3uf — 3ufu, + u3. Altogether, we obtain
precisely the vectors given in (14), whenggy) = 0 holds too.

The second step is to look for all solutions with = 0. We infer from#h, (y) = —y2, that
Yoz = 0, from which we obtairhy(y) = —(y12 + Yo3)?. SOy12 = —yo3. Now k(y) = —y2, gives
Yoz = —Yy12 = 0. Summing up we obtain

Y= (07 O) 07 07 Y13, y23)T € KﬁXI

which is either the zero vector or a representative of a paint(£[Z,w]). Consequently, also
hs(y) = 0 is satisfied. O

4.4 Let us shortly describe how the polynomialgY ") were found: We noted already in 3.7 that
all proper osculating tangents at the points of a generdiior), s € K, together withy,, form a
regulusR~(s) C O. The opposite reguluR " (s), say, contains the generaigfl, s). Both reguli

lie on a hyperbolic paraboloid which is known in differehfiae geometry under the namnige
quadric of I along the generatay(1, s); cf., among others, [12, pp. 33-37] or [22, pp. 67—-68].
In Figure 5 some regulR ~(s) are visualized in an affine neighbourhood of the pdintin this
picture the plan@’(X;) appears at infinity. See also Figures 3 and 4 for a differeew df these
reguli.

Figure 5

Given a pointz(g(1, s)) of the twisted cubic (9) let us denote bys) the osculating plane at this
point. The planer(s) meets the con€’ N @ in a conic which is the Klein image of the regulus
R*(s). The Klein image of its opposite regul@®(s) is a conic lying in the plane(s)* > C*.
We choose the three-dimensional subspace

B = V(Y()?,,YB)
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which is skew ta”+. Thusr(s)+ meetsB at a unique point. We obtain this point by letting= s
in (14) and by projecting through'* to B. This gives (for every, € K)

K(1,3s,0,35% 5% 0)". (15)

Now we considek € K to be variable. Up to the exceptional case whénr K = 3, the planes
7(s) belong to a cubic developable, so that the points of intéisea (s)- N B will belong to

a twisted cubic. This is also immediate from (15). It is weallokvn, that a twisted cubic can be
obtained as the intersection thiree quadrics inB. (We used two quadratic cones projecting the
cubic from two different points, and a hyperbolic quadri€gch of these three quadricsihgives
rise to a quadratic cone iR;(K) by joining it with the lineC*. The quadratic polynomials in
Theorem 4.3 describe these three quadratic conBgiff) so that/ actually is a cone with vertex
C* having a twisted cubic i3 as its base.

We wish to emphasize that our approach is motivated by the-Weker construction linking
flocks of cones with spreads: The osculating plangs yield a flock of the quadratic coré N @
if, and only if, the setD is a spread oP;(K'). See [25, pp. 334-338] and [13, Theorem 6.2].

It should be noted here that we did not use results from theghod R. Koch [16, pp. 18-19].
He described, over the real numbers, the congruence ofatsatangents in terms of a cubic and
a quadratic form (equations (2.27) and (2.28) loc. cit.)fdet, his equation (2.28) corresponds,
up to a change of coordinates, to our polynomial (11). Howebe two equations of Koch are
also satisfied by the Btker coordinates ddill lines through the poinZ, whereas our system of
equations yields less lines through that point.

The next result says that, from an algebraic point of view,aystem of equations (11) — (13)
is the best possible:

Theorem 4.5 Suppose thak is an infinite field withChar K # 3. LetO and L[Z, w] be given as
in Theorems.3and 4.3 respectively. I(Y) € K[Y ] is a form such that(O) C V(h(Y')) then
k(L]Z,w]) CV(h(Y)).

Proof. Given such a formk(Y') € K[X| we obtain from (14) the identity
h((1, 3uy, ug, 3u] — ug, ul, 3uj — 3ujug +u3)") = 0 forall (uy,us) € K. (16)

Due toChar K # 3 there exists a field extensidi/ K of degred K : K] < 2 containing a third
root of unityw # 1. We infer from a standard result on zeros of polynomials @reinfinite
domain (see, for example, [27 28]) that (16) holds also for alku,, u;) € K. We allowu; € K
and replaceu, with (1 —w)u? + mu, in (14), wheren € K is fixed, but arbitrary. Thus (14) turns
into

(1, 3uy, (1 — w)ui + muy, (2 + w)ui — muy,us, — (2w + Dmu? +m?u?)’.

This is foru; € K a rational parametrization of all but one points of a twistedic which is
contained in the variety df;(/K) determined by:(Y) considered as an element&fY|. As K
is infinite, also the remaining point of the twisted cubiciedy

K(0,0,0,0,1, —(2w + 1)m)7,

is a point of that variety. We claim th&tw + 1 # 0: This is trivial whenChar K = 2. For
Char K # 2 the assertion holds, because our assumgdfien K +# 3 guarantees thdt-1/2)% #
1, whencew # —1/2.
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Thus, for appropriate values af € K, we see that all points of the ling(£[Z,w]) except
k(g ) belong to the variety (h(Y)). Finally, sinceK is infinite, we obtain:(g.,) € V(h(Y")).00

Corollary 4.6 Infinite Betten-Walker spreads are not algebraic sets @&din
We now turn to the remaining case of characteristielere the situation is completely different:

Theorem 4.7 LetChar K = 3. ThenO U L[Z,w] is a subset of a parabolic linear congruenté
whose Klein image equals the quadratic ca@pe) D, where

D = V(Xg2, Xo3 + X12)

is a three-dimensional subspacelf K'). The axis of the congruenc¥ is the linen of nuclei.
The congruencd/ coincides withO U L[Z, w] if, and only if, each element &€ has a third root
in K.

Proof. The polar subspacB (with respect to the Klein quadri@) is the line joining
k(n) = K(0,0,0,0,1,0)" € Q andK(0,0,1,1,0,0)" ¢ Q.

SoD+ ¢ Q is atangent of the Klein quadric ard@lN Q is a quadratic cone with vertexn). For
all (uy,us) € K2, the Klein image of the only proper osculating tangenPét , u») is the point
with coordinates

(1,0, ug, —ug, u? uz)™. a7)

The Klein image of the pencif[Z, w] is the line spanned by(n) and Kw., = k(g ); see (10).
Now a direct verification show&) U L[Z,w]) C N.

We read off from the penultimate coordinate in (17) that= O U £L[Z,w] holds precisely
when every element ok has a third root ink. O

Of course, wher is finite with characteristié then each of its elements has a third roofdin
The line D+ has yet another natural interpretation: Formula (9) carebeitten in the form

k(g(s0,51)) = K(SSUO + 5(2)51111 + 806’%’02 + 3:1%”3) (18)

with linearly independend; € K%<!. By the above, we obtain a twisted cubic(ag, s;) # (0,0)
varies inK2. Due toChar K = 3 all osculating planes of this cubic belong to the pencil aingls
(see [9, Theorem 21.1.2]) with axi$v, + Kv, = D= .
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