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Abstract

Cayley’s (ruled cubic) surface carries a three-parameter family isted cubics.
We describe the contact of higher order and the dual contact of higtier for these
curves and show that there are three exceptional cases.
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1 Introduction

1.1. The geometry on Cayley’s surface and the geometry in theemhbpace of Cayley’s
surface has been investigated by many authors from variounsspof view. See, among
others, [5], [9], [10], [11], and [14]. In these papers thader will also find a lot of further
references.

As a by-product of a recent publication [8], it turned outtttiee Cayley surface (in the
real projective3-space) carries a one-parameter family of twisted cubidsiwiirave mutu-
ally contact of order four. These curves belong to a wellvkmthree-parameter family of
twisted cubics:, 3, on Cayley’s surface; cf. formula (2) below. All of them shareom-
mon pointU with a common tangertt and a common osculating plane say. However,
according to [2, pp. 96-97] such a one-parameter family @asted cubics with contact
of order four should not exist:Zwei Kubiken dieser Art, die einander i mindestens
funfpunktig beidhren, sind identisch.”

The aim of the present communication is to give a completerg#®n of the order of
contact (atl) for the twisted cubics mentioned above. In particular, iit ae shown in
Theorem 1 that the twisted cubics with parameier % play a distinguished role, a
result that seems to be missing in the literature. Furthezngince the order of contact
is not a self-dual notion, we also investigate the order @& @ontact for twisted cubics
Ca, 8,y SOmewhat surprisingly, in the dual setting the parame’i’eis% andg = g are
exceptional; see Theorem 3.



2 Hans Havlicek

In Section 2.5 we show that certain results of Theorem 1 havataal interpretation in
terms of thetwofold isotropic geometrwhich is based on the absolute flfg, ¢, w), and

in terms of thesotropic geometryn the planev which is given by the flagU, t). Section

3.3 is devoted to the interplay between Theorem 1 and The8rem

1.2. The calculations which are presented in this paper are lahgtkaightforward. Hence
a computer algebra system (Maple V) was used in order to gaishmthis otherwise
tedious job. Nevertheless, we tried to write down all majeps of the calculations in
such a form that the reader may verify them without using apdsr.

2 Contact of higher order

2.1. Throughout this paper we consider the three-dimensioahprejective spacBs; (R).
Hence a point is of the forRx with = = (x¢, 1,22, 23)T being a non-zero vector in
R**1, We choose the plane with equationzy = 0 asplane at infinity and we regard
P;(R) as a projectively closed affine space. For the basic conoéptsjective differential
geometry we refer to [1] and [7].

2.2. The following is taken from [2], although our notation wiklslightly differentCay-
ley’s (ruled cubig surfaceis, to within collineations oP;(RR), the surface” with equation

3xori120 — x‘;’ - 3$3$% =0. (1)

The linet : 29 = 21 = 0is on F. More precisely, it is a torsal generator of second order
and a directrix for all other generators Bf The pointU = R(0,0,0,1)7 is the cuspidal
point ont. In Figure 1 a part of the surfadeé is displayed in an affine neighbourhood of
the pointU. In contrast to our general setting; = 0 plays the role of the plane at infinity
in this illustration.

On the surfacd there is a three-parameter family of cubic parabolas whish e de-
scribed as follows: Each tripley, 3,v) € R? with 3 # 0 gives rise to a function

Dot R - R = (ug,up)T —

ug(u? + aud) (uy — yug)

T
(ug,ug(ul — Yug), 3 , 35 (3(1@ + aug) — Blug — 7u0)2)> .

If moreoverg # 3 then®,, 3 - yields the mapping
P (R) — P3(R) : Ru — R(®q 3,4(w)); (2

its image is acubic parabolac, 3, C F. All these cubic parabolas have the common
point U, the common tangeritand the common osculating plane We add in passing
that for 3 = 3 we have®, s - ((0,u1)T) = o forall u; € R, whereas the points of the
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form R (@43, ((1,u1)")) comprise the affine part ofgarabolg c, 3., say, lying onF.
Each curve, g, (3 # 0) is on theparabolic cylinderwith equation

axd — Brors + (21 +v10)% = 0. 3)

The mappindc, 5,7) — ca 8,4 is injective, since different triple@y, 3, ) yield different
parabolic cylinders (3).
Figure 2 shows some generatorsfafand five cubic parabolas, s o together with their

corresponding parbolic cylinders, whereanges in{—3,—3,0,2, 2} andg = 3.

1402
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Figure 1. Figure 2.

2.3. Our first goal is to describe the order of contacUabf cubic parabolas given by
(2). Since twisted cubics with contact of order five are id=i{1, pp. 147-148], we may
assume without loss of generality that the curves are distamd that the order of contact
is less or equal four.

Theorem 1 Distinct cubic parabolas,, s, andcy 3 = on Cayley's ruled surface have
(a) second order contact df if, and only if, 3 = Bor 3 =3 — 3;

(b) third order contact af/ if, and only if, 3 = 3 andy = v, 0or 8 = 3 = 3;
(c) fourth order contact at/ if, and only if,3 = 3 = 2 and~ = .
Proof. We proceed in two steps:
(i) First, we consider the quadratic forms
Q1 :RY! S R:x— 6rgzs — 22122, Qo :RY™ - R:x— 423 — 61123

which determine a hyperbolic paraboloid and a quadratie coespectively. Their inter-
section is the cubic parabalg s o, given by

T 3 .2 UOU% Ui’ *
R(ug, u1) *-’R<U0,U0U17 ) ;

2 76
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and the linexy = z3 = 0. The tangent planes of the two surface&/are different.

Next, letG := (gi;)o<i,j<3 € GL4(R) be a lower triangular matrix, i.eg;; = 0 for all

j > i. The collineation which is induced by such a matgXixes the point/, the linet,
and the plane; it takescg 2o to a cubic parabola, say. In order to determine the order of
contact ofcg 2,0 andc’ we follow [1, p. 147]. AsU = R (®o,2,0((0,1)T)), so we expand
for n = 1,2 the function$

Hy, :R—R:up— (QnoGodgag) ((ug,1 Z Pmug® 4)

m=0

in terms of powers ofiy and obtain

hio = h11 = h12 = 0, his = goog33 — 911922,
hia = 3900932 — 910922 — 2911921, hoo = ha1 =0,
haz = 935 — 911933, has = —g10933 — 3911932 + 4921922, %)

hay = —69g11931 — 3910932
+ 4920922 + 4931;

the remaining coefficients; s, h1g, has, hog Will Not be needed. Note that the matrix entry
gs0 does not appear in (5).

(il) We consider the collineation df;(IR) which is induced by the regular matrix

33 0 0 0
M — ; —308y 308 0 0
BT 18B(6 — 3) 3o 0 6 0 ’

Y(=3a+ 7)) 3la—pBy%) 6y(B—-1) —6(3—3)

where(a, 3,v) € R* and3 # 0, 3. Obviously, it fixes the point/ and takes: o to
Ca,B,~» SINCE
Do,y =6(8—3)Ma,p,y © Po,2,0-

The (irrelevant) scalar factor in the definition &f,, 5 , enables us to avoid fractions in
the matrix

6(3 —3) 0 0 0
vl 6v(3 - 3) 6(8 - 3) 0 0
a8y = —3a(8 — 3) 0 3(B-3) 0

YBa—3af —28v%) 3(a—[y?) 36y(B—-1) -33

The order of contact df of the cubic parabolas, g, andc aB7 coincides with the order
of contact at/ of ¢g 2,0 and that cubic parabola which arises frogn, ¢ under the action

1Observe that sometimes we do not distinguish between a linggpingaand its canonical matrix.
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of the matrix

2006 -3)M_L M

2B(ﬁaf 3) o 0 0 0
| 286-96-7) 28(5 - 3) 0 0
(B=3)(ap—apB) 0 208(8 —3) 0

. Bla—B72) - Bla—B7") 26(8v—Br—v+7) 28(3-3)

This matrix takes over the role of the matiikfrom the first part of the proof. (Its entry
in the south-west corner has a rather complicated form ahdetibe needed). Therefore
Ca,B,y andcaﬁﬁ have contact of orde at U if, and only if, in (4) the coefficients,,q,
hni, .. .hnk vanish forn = 1, 2.

By (5), this leads fok = 2 to the single condition
hay =43(6—3)3—6—-53)(B—5) =0

which proves the assertion in (a). By virtue of (a), koe 3 there are two cases. f= 3
thenh;s vanishes and we obtain the condition

hos = 83%(3 —3)(28 —3)(v — ) =0,
whereas3 = 3 — 3 yields
hiz = 48(8 —3)%(28 —3) =0, haz = 48(8 — 3)*(28 — 3)(v + 27) = 0.

Altogether this proves (b). Finally, for = 4 there again are two possibilities: #f = [E]
and~y = ~ thenhy4 vanishes, whence we get

hay = 43°(8 = 3)(26 = 3)(a — o) = 0.

Note that herex # a, sincecq, s, # ¢ 55 - On the other hand, if = 3 = 3 then the
conditions read

81 — 81 — _
h14=7(7—7):07 h24=7(27+7)(7—7):0-
This completes the proof. O

Alternatively, the preceding results could be derived f{énTheorem 1] which describes
contact of higher order between curvesiidimensional real projective space.

2.4. In the following pictures we adopt once more the same alteaoint of view like
in Figure 1, i.e., the plane with equatieg = 0 is at infinity.

In Figure 3 two curves, g, and cop5 are displayed. As«, 3,v) = (0, %,0) and

(a,B8,7) = (1,3 - 1, 15), they have contact of second ordetat
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A family of curvesc, g o With « = —3,-2,...,3 andj = % is shown in Figure 4. All
of them have mutually contact of order four @t These curves are, with respect to the
chosen affine chartzg # 0), cubic hyperbolas forv < 0, a cubic parabola forv = 0,
and cubic ellipses fatt > 0; the corresponding values afare written next to the images
of the curves. See also Figure 2 for another picture of tiglyaalthough with different
values fora andzy = 0 as plane at infinity.

Figure 3. Figure 4.

2.5. It follows from Theorem 1 that cubic parabolasg , with 5 = % play a special role.
In order to explain this from a geometric point of view we ddees thetangent surfacef a
cubic parabola, s, and, in particular, its intersection with the plane at iriinit is well
known that this is a conip, g , together with the ling. In fact, via the first derivative of
the local parametrizatioR — P3(R) : uy — R(®q,5,4((1,u1)T)) of cq 5, We see that

Pa.p~ \ {U} is given by

T
u1>—>R<0,1,221,3;/8u%+27(%_1)1114—;—72) . (6)

The plane at infinity carries in a natural way the structuramfsotropic (or Galileian)
planewith the absolute flagU, ¢). Each pointR(0, 1, z1,22)" € w \ ¢ can be identified
with the point(z, zo)T € R?*L. In this way the standard basis&#*! determines a unit
length and a unit angle in the isotropic plane [12, pp. 11-16]

From this point of view each,, g, is anisotropic circle By (6), itsisotropic curvature
[12, p. 112] equalg 3(3 — 3) < 2; this bound is attained foB = 3.

Itis well known that two isotropic circles, g, andp 5~ have second order contact at

the pointU if, and only if, their isotropic curvatures are the same [}j2,41-42], i.e. for
68 = porfor 3 = 3 — 3. From this observation one could also derive the assention i
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Theorem 1 (a) as follows: We introduce an auxiliary euclideeetric in a neighbourhood
of U, and we take into account that the ratio of the euclideanatures at of the curves
Ca,B,y ANdpa 3.~ (the curvescy 5= andp—=-) equals4 : 3; see [13, p. 212] for this
theorem of E. Beltrami.

The flag(U, t,w) turnsP5(R) into atwofold isotropic(or flag) space The definition of
metric notions in this space is based upon the identificatf@®( 1, z1, zo, 23)™ € P3(R)\
w with (21, 29, 23)T € R3*!, and the canonical basis Bf *!; see [3].

By [4, p. 137], each cubic parabolg s, has thetwofold isotropic conical curvature
3 B(3 = B) < 2. Hence the following characterization follows.

o,B,y

Theorem 2 Among all cubic parabolas, g -, on the Cayley surfacg, the cubic parabo-
las with 3 = % are precisely those with maximal twofold isotropic conicatvature.

Yet another interpretation is as follows: The regular nxatri
3-8 3-8 3-8
g BB
yields ahomothetic transformationf P;(R) which maps the cubic parabotg s to

€0,3—3,0, Since

Bg := diag (1, ) , where € R\ {0, 3},

3 T
Tﬁ ul) ) for all (ug,u1)T € R#XL,

As all points at infinity are invariant, the correspondingtiepic circlesg, 50 andpo 3—3,0
coincide. This homothetic transformation is identicabifid only if, 5 =

The Cayley surfacé” admits a3-parameter collineation group; see [2, p. 96] formula (9).
The action of this group on the family of all cubic parabolgss , is described in [2,

p. 97], formula (12). (In the last part of that formula somgnsi have been misprinted. The
text there should read = —ao% — apa1 By + ala + by 3). By virtue of this action, our
previous result on homothetic transformations can be gdimed to other cubic parabolas
onkF.

(Bg o ®o,5,0) ((uo,u1)")) = (I)O,S—ﬁ,o((um

3 Dual contact of higher order

3.1. The question remains how to distinguish between cubic jpdaab, 5, andc; 5 5

satisfying the first conditionq{ = ) in Theorem 1 (a), and those which meet the second
condition (3 = 3 — (3). A similar question arises for the two conditions in Theorg (b).

We shall see that such a distinction is possible if we comditedual curveswhich are
formed by the osculating planes (i.e. cubic developabRsgall thatc,, g, andc 35
have, by definitiondual contact of ordek at a common osculating plame if thelr dual
curves have contact of ordérat the “point”o of the dual projective space.
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We shall identify the dual dR**! with the vector spacR!** in the usual way; so planes
(i.e. points of the dual projective space) are given by nemozow vectors Thus, for
example, a plan&(yo, y1, y2, y3) iS tangent to the Cayley surface (1) if, and only if,

3Y0y3 — 3y1y2ys + ys = 0. (7)

We note that all these tangent planes comprise a Cayleycsurfahe dual space.

For each twisted cubic there exists a unique null polariynfgectic polarity) which takes
each point of the twisted cubic to its osculating plane. Iriipalar, the null polarity of the
cubic parabolay 2 o is induced by the linear bijection

0 0 0 1

R4X1 — R1X4 A (NO_2 0" .’E)T with Noog = 00 =10 (8)
- - 0 1 0 0
-1 0 0 0

We are now in a position to prove the following result.

Theorem 3 Distinct cubic parabolag, s, andc on Cayley’s ruled surface have

a.By
(a) second order dual contact atif, and only if, 3 = 3;

(b) third order dual contact at if, and only if,3 = 3 andy = v, or 8 = 8 = 2;
(c) fourth order dual contact at if, and only if, 3 = 3 = % and~y = .

Proof. The matrix(M,} ; )~" - No 2,0 determines a duality df3(R) which maps the set
of points ofcg 2,0 onto the set of osculating planes«f 3 . Since the product of a duality

and the inverse of a duality is a collineation, we obtain tik¥ing:
The order of dual contact at of the given curves,, g, andc 37 coincides with the

order of contact al/ of the cubic parabola, 2 o and that cubic parabola which arises from
¢o,2,0 under the collineation given by the matrix

20(8 = 3) Noao - Ma g, (MI5-)7" Nooo =

208 — 3)8 0 0 0

28(6y—By—~+7) 26(8 - 3) 0 0

| as-aB+aB2-7) 0 28(- y 0
* (B=3)(aB —ab) 28(8—-3)(y—~) 28(3—3)

Herex denotes an entry that will not be needed.

We now proceed as in the proof of Theorem 1. By substitutimgethitries of the matrix
above into (5), we read off necessary and sufficient conditfor dual contact of ordet

at the planev of c,,5, andeg 5.
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For k = 2 we get the single condition
haa =43(3 = 3)*(B—B) =0

which proves the assertion in (a). By (a), weflet= 3 for the discussion ok = 3. Then
hi13 vanishes and we arrive at the condition

has = 86%(8 — 3)(28 = 5)(y —7) =0,

from which (b) is immediate. Finally, fot = 4 we distinguish two cases: if = 3 and
~ = ~ thenhy4 vanishes and we are lead to the condition

has = 45%(6 — 3)(36 — 7)(a — a) = 0.

Note that herev # «, sincec, 5., # c= B . The proof of (c) will be finished by showing

that the cas@® = 5 = " does not occur. From the assumptior- 3 = 5 follows the first
condition

75 —
hiy =5 (v=7) =0
Now, lettingy = ~, the second condition
25

h24:Z(Oz—E):0

is obtained. However, both conditions cannot be satisfigdiléaneously, since the first
condition anct, g, # ¢ 5 35 together imply thaty # «. O
3.2. By combining the results of Theorem 1 and Theorem 3, it is améaliate task to
decide whether or not two (not necessarily distinct) culzicapolasc, s, andc-

have contact &/ and at the same time dual contactatf prescribed orders. In partlcular,
we infer that two cubic parabolas of this kind, with fourttder contact at/ and fourth
order dual contact at, are identical.

3.3. In this section we aim at explaining how the results of Thewd and 3 are related
to each other.

Let us choose fixedreal numbers # 0, 3. We consider the local parametrization
s R? — P3(R) : (a,u) = R (®a5,0((1,0)"))

of F; its image isF' \ t, i.e. the affine part of’. For our fixed and~y = 0 the affine
parts of the parabolic cylinders (3) form a partition®f(R) \ w; see Figure 2. Hence
Uz is injective so that through each poiRt € F'\ ¢ there passes a unique Curgg o.
Consequently, we can define a mappiof F' \ t into the dual projective space by

P ecapo\{U} > osculating plane of, 3,0 atP. 9)
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Theorem 4 The image of the affine part of the Cayley surfdc@nder the mapping:
described in(9) consists of tangent planes of a Cayley surfacefog 0, 3, %, and of
tangent planes of a hyperbolic paraboloid fér= %

Proof. As the null polarity ofc,, g, arises from the matrix

Nopo = (Mggo)" Nozo- Mg,
0 —a(B—4) 0 —B
B - a8 —4) 0 -B(B-3) 0
= 18(8-3) 0 56— 3) 0 o |- 19
3 0 0 0

so theX-image of a point” = R (®,,5,0((1,u)T)) is the plane which is described by the
non-zero row vector

aﬁ—$<w—3xﬁ—3@m—aﬁ—$ﬁ—3aﬁmﬁ—$%3@. (11)

In discussing=(F' \ t) there are two cases:
(i) Suppose that # %. Then a duality of®;(R) is determined by the regular matrix

0 0 0 —(36—98)
Do 18 0 0 —(36-18) 0
F =53 0 B(8 — 3)2 0 0
B(6 —3)? 0 0 0
Letting
o :==a(B—3)ands’ = 3-8 12)
f—3"

the transpose dfDs o @ 5 0) ((1, (B — 3)u)T) is easily seen to equal the row vector in
(11). Hencex(F \ t) is part of a Cayley surface in the dual space which in turn,Ryi$
the set of tangent planes of a Cayley surfacB4(R).

@inif g= % then the row vector (11) simplifies to

—(u? -3 8
9 ((U?)Of)uuz _3057_3“,8)

Thus the sek(F' \ t) is part of the non-degenerate ruled quadric in the dual spitbe
equationyoys — y1y2 = 0 (in terms of dual coordinates). In other wordH,F'\ t) consists
of tangent planes of a hyperbolic paraboloid®i(R). O

Let us add the following remark. The linear fractional tf@ansation
3¢ -8

AZRU{OO}—”RU{OO}:&'—)W
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is an involution such that our fixed # 0, 3, % goes over tg’, as defined in (12), whereas
A(%) = 0. In particular, if3 = I theng’ = A(3) = 3. This explains the relation between
Theorem 1 (c) and Theorem 3 (c). Also the fixed values afe noteworthy:

For g = A(B) = 2 the curves:, 5 o areasymptotic curvesf F, i.e., the osculating plane
of cq,2,0 @t each point? # U is the tangent plane df' at P. This means that the planes
of the setx(F \ t) are tangent planes df rather than tangent planes of another Cayley
surface.

For = A(B) = 4 itis immediate form (10) that the matriX, 4 o does not depend on the
parameterr € R, whence in this particular case the mappkgs merely the restriction
of a null polarity ofP3(R) to the affine part of the Cayley surfage

3.4. There remains the problem to find a geometric interpretatiothe values = %
which appears in Theorem 3 (b).

Acknowledgement. The author is grateful to Friedrich Manhart for many insmiridis-
cussions.
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