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Abstract

Cayley’s (ruled cubic) surface carries a three-parameter family of twisted cubics.
We describe the contact of higher order and the dual contact of higherorder for these
curves and show that there are three exceptional cases.
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1 Introduction

1.1. The geometry on Cayley’s surface and the geometry in the ambient space of Cayley’s
surface has been investigated by many authors from various points of view. See, among
others, [5], [9], [10], [11], and [14]. In these papers the reader will also find a lot of further
references.

As a by-product of a recent publication [8], it turned out that the Cayley surface (in the
real projective3-space) carries a one-parameter family of twisted cubics which have mutu-
ally contact of order four. These curves belong to a well-known three-parameter family of
twisted cubicscα,β,γ on Cayley’s surface; cf. formula (2) below. All of them sharea com-
mon pointU with a common tangentt, and a common osculating planeω, say. However,
according to [2, pp. 96–97] such a one-parameter family of twisted cubics with contact
of order four should not exist: “Zwei Kubiken dieser Art, die einander inU mindestens
fünfpunktig ber̈uhren, sind identisch.”

The aim of the present communication is to give a complete description of the order of
contact (atU ) for the twisted cubics mentioned above. In particular, it will be shown in
Theorem 1 that the twisted cubics with parameterβ = 3

2
play a distinguished role, a

result that seems to be missing in the literature. Furthermore, since the order of contact
is not a self-dual notion, we also investigate the order of dual contact for twisted cubics
cα,β,γ . Somewhat surprisingly, in the dual setting the parametersβ = 5

2
andβ = 7

3
are

exceptional; see Theorem 3.
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In Section 2.5 we show that certain results of Theorem 1 have anatural interpretation in
terms of thetwofold isotropic geometrywhich is based on the absolute flag(U, t, ω), and
in terms of theisotropic geometryin the planeω which is given by the flag(U, t). Section
3.3 is devoted to the interplay between Theorem 1 and Theorem3.

1.2. The calculations which are presented in this paper are long but straightforward. Hence
a computer algebra system (Maple V) was used in order to accomplish this otherwise
tedious job. Nevertheless, we tried to write down all major steps of the calculations in
such a form that the reader may verify them without using a computer.

2 Contact of higher order

2.1. Throughout this paper we consider the three-dimensional real projective spaceP3(R).
Hence a point is of the formRx with x = (x0, x1, x2, x3)

T being a non-zero vector in
R

4×1. We choose the planeω with equationx0 = 0 asplane at infinity, and we regard
P3(R) as a projectively closed affine space. For the basic conceptsof projective differential
geometry we refer to [1] and [7].

2.2. The following is taken from [2], although our notation will be slightly different.Cay-
ley’s (ruled cubic) surfaceis, to within collineations ofP3(R), the surfaceF with equation

3x0x1x2 − x3

1
− 3x3x

2

0
= 0. (1)

The linet : x0 = x1 = 0 is onF . More precisely, it is a torsal generator of second order
and a directrix for all other generators ofF . The pointU = R(0, 0, 0, 1)T is the cuspidal
point ont. In Figure 1 a part of the surfaceF is displayed in an affine neighbourhood of
the pointU . In contrast to our general setting,x3 = 0 plays the role of the plane at infinity
in this illustration.

On the surfaceF there is a three-parameter family of cubic parabolas which can be de-
scribed as follows: Each triple(α, β, γ) ∈ R

3 with β 6= 0 gives rise to a function

Φα,β,γ : R
2×1 → R

4×1 : u = (u0, u1)
T 7→

(

u3

0
, u2

0
(u1 − γu0),

u0(u
2
1

+ αu2
0
)

β
,
(u1 − γu0)

3β

(

3(u2

1
+ αu2

0
) − β(u1 − γu0)

2
)

)T

.

If moreoverβ 6= 3 thenΦα,β,γ yields the mapping

P1(R) → P3(R) : Ru 7→ R(Φα,β,γ(u)); (2)

its image is acubic parabolacα,β,γ ⊂ F . All these cubic parabolas have the common
point U , the common tangentt and the common osculating planeω. We add in passing
that forβ = 3 we haveΦα,3,γ

(

(0, u1)
T
)

= o for all u1 ∈ R, whereas the points of the
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form R
(

Φα,3,γ((1, u1)
T)

)

comprise the affine part of aparabola, cα,3,γ say, lying onF .
Each curvecα,β,γ (β 6= 0) is on theparabolic cylinderwith equation

αx2

0
− βx0x2 + (x1 + γx0)

2 = 0. (3)

The mapping(α, β, γ) 7→ cα,β,γ is injective, since different triples(α, β, γ) yield different
parabolic cylinders (3).

Figure 2 shows some generators ofF , and five cubic parabolascα,β,0 together with their
corresponding parbolic cylinders, whereα ranges in{− 3

2
,− 3

4
, 0, 3

4
, 3

2
} andβ = 3

2
.

t

U

F

Figure 1. Figure 2.

2.3. Our first goal is to describe the order of contact atU of cubic parabolas given by
(2). Since twisted cubics with contact of order five are identical [1, pp. 147–148], we may
assume without loss of generality that the curves are distinct, and that the order of contact
is less or equal four.

Theorem 1 Distinct cubic parabolascα,β,γ andcα,β,γ on Cayley’s ruled surface have
(a) second order contact atU if, and only if,β = β or β = 3 − β;

(b) third order contact atU if, and only if,β = β andγ = γ, or β = β = 3

2
;

(c) fourth order contact atU if, and only if,β = β = 3

2
andγ = γ.

Proof. We proceed in two steps:

(i) First, we consider the quadratic forms

Q1 : R
4×1 → R : x 7→ 6x0x3 − 2x1x2, Q2 : R

4×1 → R : x 7→ 4x2

2
− 6x1x3

which determine a hyperbolic paraboloid and a quadratic cone, respectively. Their inter-
section is the cubic parabolac0,2,0, given by

R(u0, u1)
T 7→ R

(

u3

0
, u2

0
u1,

u0u
2
1

2
,
u3

1

6

)T

,
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and the linex2 = x3 = 0. The tangent planes of the two surfaces atU are different.

Next, letG := (gij)0≤i,j≤3 ∈ GL4(R) be a lower triangular matrix, i.e.,gij = 0 for all
j > i. The collineation which is induced by such a matrixG fixes the pointU , the linet,
and the planeω; it takesc0,2,0 to a cubic parabola, sayc′. In order to determine the order of
contact ofc0,2,0 andc′ we follow [1, p. 147]. AsU = R

(

Φ0,2,0((0, 1)T)
)

, so we expand
for n = 1, 2 the functions1

Hn : R → R : u0 7→ (Qn ◦ G ◦ Φ0,2,0)
(

(u0, 1)T
)

=:
6

∑

m=0

hnmum
0

(4)

in terms of powers ofu0 and obtain

h10 = h11 = h12 = 0, h13 = g00g33 − g11g22,

h14 = 3g00g32 − g10g22 − 2g11g21, h20 = h21 = 0,

h22 = g2
22

− g11g33, h23 = −g10g33 − 3g11g32 + 4g21g22,

h24 = −6g11g31 − 3g10g32

+ 4g20g22 + 4g2
21

;

(5)

the remaining coefficientsh15, h16, h25, h26 will not be needed. Note that the matrix entry
g30 does not appear in (5).

(ii) We consider the collineation ofP3(R) which is induced by the regular matrix

Mα,β,γ :=
1

18β(β − 3)











3β 0 0 0

−3βγ 3β 0 0

3α 0 6 0

γ(−3α + βγ2) 3(α − βγ2) 6γ(β − 1) −6(β − 3)











,

where(α, β, γ) ∈ R
3 andβ 6= 0, 3. Obviously, it fixes the pointU and takesc0,2,0 to

cα,β,γ , since
Φα,β,γ = 6(β − 3)Mα,β,γ ◦ Φ0,2,0.

The (irrelevant) scalar factor in the definition ofMα,β,γ enables us to avoid fractions in
the matrix

M−1

α,β,γ =











6(β − 3) 0 0 0

6γ(β − 3) 6(β − 3) 0 0

−3α(β − 3) 0 3β(β − 3) 0

γ(3α − 3αβ − 2βγ2) 3(α − βγ2) 3βγ(β − 1) −3β











.

The order of contact atU of the cubic parabolascα,β,γ andcα,β,γ coincides with the order
of contact atU of c0,2,0 and that cubic parabola which arises fromc0,2,0 under the action

1Observe that sometimes we do not distinguish between a linear mapping and its canonical matrix.
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of the matrix

2β(β − 3)M−1

α,β,γ · Mα,β,γ =

=











2β(β − 3) 0 0 0

2β(β − 3)(γ − γ) 2β(β − 3) 0 0

(β−3)(αβ−αβ) 0 2β(β − 3) 0

∗ β(α−βγ2)−β(α−β γ
2

) 2β(βγ−β γ−γ +γ) 2β(β−3)











.

This matrix takes over the role of the matrixG from the first part of the proof. (Its entry
in the south-west corner has a rather complicated form and will not be needed). Therefore
cα,β,γ andcα,β,γ have contact of orderk at U if, and only if, in (4) the coefficientshn0,
hn1, . . .hnk vanish forn = 1, 2.

By (5), this leads fork = 2 to the single condition

h22 = 4β(β − 3)(3 − β − β)(β − β) = 0

which proves the assertion in (a). By virtue of (a), fork = 3 there are two cases. Ifβ = β

thenh13 vanishes and we obtain the condition

h23 = 8β2(β − 3)(2β − 3)(γ − γ) = 0,

whereasβ = 3 − β yields

h13 = 4β(β − 3)2(2β − 3) = 0, h23 = 4β(β − 3)2(2β − 3)(γ + 2γ) = 0.

Altogether this proves (b). Finally, fork = 4 there again are two possibilities: Ifβ = β

andγ = γ thenh14 vanishes, whence we get

h24 = 4β2(β − 3)(2β − 3)(α − α) = 0.

Note that hereα 6= α, sincecα,β,γ 6= cα,β,γ . On the other hand, ifβ = β = 3

2
then the

conditions read

h14 =
81

2
(γ − γ) = 0, h24 =

81

2
(2γ + γ)(γ − γ) = 0.

This completes the proof. ¤

Alternatively, the preceding results could be derived from[6, Theorem 1] which describes
contact of higher order between curves ind-dimensional real projective space.

2.4. In the following pictures we adopt once more the same alternative point of view like
in Figure 1, i.e., the plane with equationx3 = 0 is at infinity.

In Figure 3 two curvescα,β,γ and cα,β,γ are displayed. As(α, β, γ) = (0, 1

10
, 0) and

(α, β, γ ) = (1, 3 − 1

10
, 1

10
), they have contact of second order atU .
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A family of curvescα,β,0 with α = −3,−2, . . . , 3 andβ = 3

2
is shown in Figure 4. All

of them have mutually contact of order four atU . These curves are, with respect to the
chosen affine chart (x3 6= 0), cubic hyperbolas forα < 0, a cubic parabola forα = 0,
and cubic ellipses forα > 0; the corresponding values ofα are written next to the images
of the curves. See also Figure 2 for another picture of this family, although with different
values forα andx0 = 0 as plane at infinity.

t

U

F

cα,β,γ

cα,β,γ

Figure 3.

t

F

0

0

1

1

2

2 3

3

−1

−1

−1

−2
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−3

−2

−2

−1

−3

−3

−2 −3

−1

@@R

−2 SSw

−3

Figure 4.

2.5. It follows from Theorem 1 that cubic parabolascα,β,γ with β = 3

2
play a special role.

In order to explain this from a geometric point of view we consider thetangent surfaceof a
cubic parabolacα,β,γ and, in particular, its intersection with the plane at infinity. It is well
known that this is a conicpα,β,γ together with the linet. In fact, via the first derivative of
the local parametrizationR → P3(R) : u1 7→ R

(

Φα,β,γ((1, u1)
T)

)

of cα,β,γ we see that
pα,β,γ \ {U} is given by

u1 7→ R

(

0, 1,
2u1

β
,
3 − β

β
u2

1
+

2γ(β − 1)

β
u1 +

α

β
− γ2

)T

. (6)

The plane at infinity carries in a natural way the structure ofan isotropic (or Galileian)
planewith the absolute flag(U, t). Each pointR(0, 1, x1, x2)

T ∈ ω \ t can be identified
with the point(x1, x2)

T ∈ R
2×1. In this way the standard basis ofR

2×1 determines a unit
length and a unit angle in the isotropic plane [12, pp. 11–16].

From this point of view eachpα,β,γ is an isotropic circle. By (6), its isotropic curvature
[12, p. 112] equals1

2
β(3 − β) ≤ 9

8
; this bound is attained forβ = 3

2
.

It is well known that two isotropic circlespα,β,γ andpα,β,γ have second order contact at
the pointU if, and only if, their isotropic curvatures are the same [12,pp. 41–42], i.e. for
β = β or for β = 3 − β. From this observation one could also derive the assertion in
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Theorem 1 (a) as follows: We introduce an auxiliary euclidean metric in a neighbourhood
of U , and we take into account that the ratio of the euclidean curvatures atU of the curves
cα,β,γ andpα,β,γ (the curvescα,β,γ andpα,β,γ ) equals4 : 3; see [13, p. 212] for this
theorem of E. Beltrami.

The flag(U, t, ω) turnsP3(R) into a twofold isotropic(or flag) space. The definition of
metric notions in this space is based upon the identificationof R(1, x1, x2, x3)

T ∈ P3(R)\
ω with (x1, x2, x3)

T ∈ R
3×1, and the canonical basis ofR

3×1; see [3].

By [4, p. 137], each cubic parabolacα,β,γ has thetwofold isotropic conical curvature
1

2
β(3 − β) ≤ 9

8
. Hence the following characterization follows.

Theorem 2 Among all cubic parabolascα,β,γ on the Cayley surfaceF , the cubic parabo-
las withβ = 3

2
are precisely those with maximal twofold isotropic conicalcurvature.

Yet another interpretation is as follows: The regular matrix

Bβ := diag

(

1,
3 − β

β
,
3 − β

β
,
3 − β

β

)

, whereβ ∈ R \ {0, 3},

yields ahomothetic transformationof P3(R) which maps the cubic parabolac0,β,0 to
c0,3−β,0, since

(Bβ ◦ Φ0,β,0)
(

(u0, u1)
T)

)

= Φ0,3−β,0

((

u0,
3 − β

β
u1

)T)

for all (u0, u1)
T ∈ R

2×1.

As all points at infinity are invariant, the corresponding isotropic circlesp0,β,0 andp0,3−β,0

coincide. This homothetic transformation is identical if,and only if,β = 3

2
.

The Cayley surfaceF admits a3-parameter collineation group; see [2, p. 96] formula (9).
The action of this group on the family of all cubic parabolascα,β,γ is described in [2,
p. 97], formula (12). (In the last part of that formula some signs have been misprinted. The
text there should readα = −a2

0

β2

4
− a0a1βγ + a2

1
α + b0β). By virtue of this action, our

previous result on homothetic transformations can be generalized to other cubic parabolas
onF .

3 Dual contact of higher order

3.1. The question remains how to distinguish between cubic parabolascα,β,γ andcα,β,γ

satisfying the first condition (β = β) in Theorem 1 (a), and those which meet the second
condition (β = 3 − β). A similar question arises for the two conditions in Theorem 1 (b).
We shall see that such a distinction is possible if we consider the dual curveswhich are
formed by the osculating planes (i.e. cubic developables).Recall thatcα,β,γ andcα,β,γ

have, by definition,dual contact of orderk at a common osculating planeσ, if their dual
curves have contact of orderk at the “point”σ of the dual projective space.
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We shall identify the dual ofR4×1 with the vector spaceR1×4 in the usual way; so planes
(i.e. points of the dual projective space) are given by non-zero row vectors. Thus, for
example, a planeR(y0, y1, y2, y3) is tangent to the Cayley surface (1) if, and only if,

3y0y
2

3
− 3y1y2y3 + y3

2
= 0. (7)

We note that all these tangent planes comprise a Cayley surface in the dual space.

For each twisted cubic there exists a unique null polarity (symplectic polarity) which takes
each point of the twisted cubic to its osculating plane. In particular, the null polarity of the
cubic parabolac0,2,0 is induced by the linear bijection

R
4×1 → R

1×4 : x 7→ (N0,2,0 · x)T with N0,2,0 :=











0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0











. (8)

We are now in a position to prove the following result.

Theorem 3 Distinct cubic parabolascα,β,γ andcα,β,γ on Cayley’s ruled surface have

(a) second order dual contact atω if, and only if,β = β;

(b) third order dual contact atω if, and only if,β = β andγ = γ, or β = β = 5

2
;

(c) fourth order dual contact atω if, and only if,β = β = 7

3
andγ = γ.

Proof. The matrix(MT

α,β,γ)−1 · N0,2,0 determines a duality ofP3(R) which maps the set
of points ofc0,2,0 onto the set of osculating planes ofcα,β,γ . Since the product of a duality
and the inverse of a duality is a collineation, we obtain the following:

The order of dual contact atω of the given curvescα,β,γ andcα,β,γ coincides with the
order of contact atU of the cubic parabolac0,2,0 and that cubic parabola which arises from
c0,2,0 under the collineation given by the matrix

2β(β − 3)N−1

0,2,0 · M
T

α,β,γ · (MT

α,β,γ
)−1 · N0,2,0 =

=











2(β − 3)β 0 0 0

2β(βγ − β γ − γ + γ) 2β(β − 3) 0 0

αβ − αβ + ββ(γ2 − γ
2

) 0 2β(β − 3) 0

∗ (β − 3)(αβ − αβ) 2β(β − 3)(γ − γ) 2β(β − 3)











.

Here∗ denotes an entry that will not be needed.

We now proceed as in the proof of Theorem 1. By substituting the entries of the matrix
above into (5), we read off necessary and sufficient conditions for dual contact of orderk
at the planeω of cα,β,γ andcα,β,γ .
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Fork = 2 we get the single condition

h22 = 4β(β − 3)2(β − β) = 0

which proves the assertion in (a). By (a), we letβ = β for the discussion ofk = 3. Then
h13 vanishes and we arrive at the condition

h23 = 8β2(β − 3)(2β − 5)(γ − γ) = 0,

from which (b) is immediate. Finally, fork = 4 we distinguish two cases: Ifβ = β and
γ = γ thenh14 vanishes and we are lead to the condition

h24 = 4β2(β − 3)(3β − 7)(α − α) = 0.

Note that hereα 6= α, sincecα,β,γ 6= cα,β,γ . The proof of (c) will be finished by showing

that the caseβ = β = 5

2
does not occur. From the assumptionβ = β = 5

2
follows the first

condition

h14 =
75

2
(γ − γ) = 0.

Now, lettingγ = γ, the second condition

h24 =
25

4
(α − α) = 0

is obtained. However, both conditions cannot be satisfied simultaneously, since the first
condition andcα,β,γ 6= cα,β,γ together imply thatα 6= α. ¤

3.2. By combining the results of Theorem 1 and Theorem 3, it is an immediate task to
decide whether or not two (not necessarily distinct) cubic parabolascα,β,γ and cα,β,γ

have contact atU and at the same time dual contact atω of prescribed orders. In particular,
we infer that two cubic parabolas of this kind, with fourth order contact atU and fourth
order dual contact atω, are identical.

3.3. In this section we aim at explaining how the results of Theorems 1 and 3 are related
to each other.

Let us choose afixedreal numberβ 6= 0, 3. We consider the local parametrization

Ψβ : R
2 → P3(R) : (α, u) 7→ R

(

Φα,β,0((1, u)T)
)

of F ; its image isF \ t, i.e. the affine part ofF . For our fixedβ andγ = 0 the affine
parts of the parabolic cylinders (3) form a partition ofP3(R) \ ω; see Figure 2. Hence
Ψβ is injective so that through each pointP ∈ F \ t there passes a unique curvecα,β,0.
Consequently, we can define a mappingΣ of F \ t into the dual projective space by

P ∈ cα,β,0 \ {U}
Σ

7−→ osculating plane ofcα,β,0 atP. (9)
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Theorem 4 The image of the affine part of the Cayley surfaceF under the mappingΣ
described in(9) consists of tangent planes of a Cayley surface forβ 6= 0, 3, 8

3
, and of

tangent planes of a hyperbolic paraboloid forβ = 8

3
.

Proof. As the null polarity ofcα,β,0 arises from the matrix

Nα,β,0 := (M−1

α,β,0)
T · N0,2,0 · M

−1

α,β,0

= 18(β − 3)











0 −α(β − 4) 0 −β

α(β − 4) 0 −β(β − 3) 0

0 β(β − 3) 0 0

β 0 0 0











, (10)

so theΣ-image of a pointP = R
(

Φα,β,0((1, u)T)
)

is the plane which is described by the
non-zero row vector

6(β − 3)
(

(β − 3)(u2 − 3α)u,−3(β − 3)u2 − 3α, 3β(β − 3)u, 3β
)

. (11)

In discussingΣ(F \ t) there are two cases:

(i) Suppose thatβ 6= 8

3
. Then a duality ofP3(R) is determined by the regular matrix

Dβ :=
18

β − 3











0 0 0 −(3β − 8)

0 0 −(3β − 8) 0

0 β(β − 3)2 0 0

β(β − 3)2 0 0 0











.

Letting

α′ := α(β − 3) andβ′ :=
3β − 8

β − 3
, (12)

the transpose of(Dβ ◦Φα′,β′,0)
(

(1, (β − 3)u)T
)

is easily seen to equal the row vector in
(11). HenceΣ(F \ t) is part of a Cayley surface in the dual space which in turn, by (7), is
the set of tangent planes of a Cayley surface inP3(R).

(ii) If β = 8

3
then the row vector (11) simplifies to

−2

(

−(u2 − 3α)u

3
, u2 − 3α,−

8u

3
, 8

)

Thus the setΣ(F \ t) is part of the non-degenerate ruled quadric in the dual spacewith
equationy0y3−y1y2 = 0 (in terms of dual coordinates). In other words,Σ(F \ t) consists
of tangent planes of a hyperbolic paraboloid inP3(R). ¤

Let us add the following remark. The linear fractional transformation

Λ : R ∪ {∞} → R ∪ {∞} : ξ 7→
3ξ − 8

ξ − 3
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is an involution such that our fixedβ 6= 0, 3, 8

3
goes over toβ′, as defined in (12), whereas

Λ( 8

3
) = 0. In particular, ifβ = 7

3
thenβ′ = Λ(β) = 3

2
. This explains the relation between

Theorem 1 (c) and Theorem 3 (c). Also the fixed values ofΛ are noteworthy:

For β = Λ(β) = 2 the curvescα,2,0 areasymptotic curvesof F , i.e., the osculating plane
of cα,2,0 at each pointP 6= U is the tangent plane ofF at P . This means that the planes
of the setΣ(F \ t) are tangent planes ofF rather than tangent planes of another Cayley
surface.

Forβ = Λ(β) = 4 it is immediate form (10) that the matrixNα,4,0 does not depend on the
parameterα ∈ R, whence in this particular case the mappingΣ is merely the restriction
of a null polarity ofP3(R) to the affine part of the Cayley surfaceF .

3.4. There remains the problem to find a geometric interpretationof the valueβ = 5

2

which appears in Theorem 3 (b).

Acknowledgement. The author is grateful to Friedrich Manhart for many inspiring dis-
cussions.
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