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Abstract

We recall the notions of Clifford and Clifford-like parallelisms in a 3-
dimensional projective double space. In a previous paper the authors proved
that the linear part of the full automorphism group of a Clifford parallelism
is the same for all Clifford-like parallelisms which can be associated to it. In
this paper, instead, we study the action of such group on parallel classes thus
achieving our main results on characterisation of the Clifford parallelisms
among Clifford-like ones.
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1 Introduction
It is a widely used strategy in mathematics to define a new structure by modify-
ing a given one. The definition of a Clifford-like parallelism from [7] and [17],
which is recalled in Section 2, follows these lines. The starting point is a pro-
jective double space (P, ‖`, ‖r), that is, a projective space P together with a left
parallelism ‖` and a right parallelism ‖r on its line set such that the so-called dou-
ble space axiom (DS) is satisfied. The given parallelisms ‖` and ‖r are called the
Clifford parallelisms of (P, ‖`, ‖r) in analogy to the classical example arising from
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the three-dimensional elliptic space over the real numbers. The parallel classes of
‖` and ‖r are then used to define parallelisms that are Clifford-like w.r.t. (P, ‖`, ‖r).
Among them are the initially given parallelisms ‖` and ‖r. We restrict ourselves
most of the time to the case when P is three-dimensional, and we make use of
an algebraic description of such a double space in terms of an appropriate four-
dimensional algebra H over a commutative field F. Thereby we adopt the no-
tation

(
P(HF), ‖`, ‖r

)
and we have to distinguish two cases, (A) and (B). In case

(A), H is a quaternion skew field with centre F, the left and right parallelisms do
not coincide and, in general, there are Clifford-like parallelisms of

(
P(HF), ‖`, ‖r

)
different from ‖` and ‖r. In case (B), H is a commutative extension field of F
satisfying some extra property, and ‖` = ‖r is the only Clifford-like parallelism
of

(
P(HF), ‖`, ‖r

)
. We include case (B) for the sake of completeness and in order

to obtain a unified exposition that covers both cases, even though several of our
results are trivial in case (B).

In Section 3 we study automorphisms of a Clifford-like parallelism of a pro-
jective double space

(
P(HF), ‖`, ‖r

)
being motivated by the following result: if a

projective collineation of P(HF) preserves at least one Clifford-like parallelism of(
P(HF), ‖`, ‖r

)
, then all its Clifford-like parallelisms are preserved.1 This follows

from [18, Thm. 3.5] in case (A) and holds trivially in case (B). In our algebraic
setting these projective collineations are induced by F-linear transformations of
H which are described in Subsection 3.1, where we determine all F-semilinear
automorphisms of the right parallelism. In preparation for Section 4, we exhibit
for a quaternion skew field H the orbits of certain points and lines of P(HF) under
the group of inner automorphisms of H and we determine all ‖r-classes that are
fixed under a left translation of H.

The main results are stated in Section 4. In Theorem 4.1, we consider a three-
dimensional projective space P that is made into a double space in two ways.
If there exists a parallelism ‖ on P that is Clifford-like w.r.t. both double space
structures then the given double spaces coincide up to a change of the attributes
“left” and “right” in one of them. This finding improves [17, Thm. 4.15] (see
Corollary 4.2) and it simplifies matters considerably. Indeed, when dealing with
a Clifford-like parallelism, there is only one corresponding double space structure
in the background. In Theorems 4.3, 4.5 and 4.6 we characterise the Clifford par-
allelisms among the Clifford-like parallelism of

(
P(HF), ‖`, ‖r

)
via the existence of

automorphisms with specific properties. For example, Theorem 4.3 establishes
that a Clifford-like parallelism of

(
P(HF), ‖`, ‖r

)
is Clifford precisely when it ad-

mits an automorphism that fixes all its parallel classes and acts non-trivially on
the point set of the projective space P(HF).

1The situation gets intricate when dealing with a non-projective collineation that preserves at
least one Clifford-like parallelism of

(
P(HF), ‖`, ‖r

)
. See the examples in [18, Sect. 4].
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Next, let us emphasise that some of our investigations are in continuity with
classical results on dilatations in kinematic spaces. For example, in our proof
of Theorem 4.3 we could use the fact that the existence of a proper non-trivial
dilatation (namely a non-identical collineation with a fixed point and the property
that all parallel classes remain invariant) is possible only in the commutative case,
i.e. in our case (B) (see [35, Teorema 2] or [27, (II.10)]). We decided instead to
include a short direct proof in order to keep the paper self-contained. There are
also neat connections to the theory of Sperner spaces and (generalised) translation
structures; we refer the interested reader to [1], [38], [39] and the many references
given there.

Finally, another remark seems appropriate. Any Clifford-like parallelism on
the three-dimensional real projective space is Clifford (see Remark 3.6). The Clif-
ford parallelisms on this space are the only topological parallelisms that admit an
automorphism group of dimension at least 4; see [33] and the intimately related
articles [3], [5], [31], [32]. In contrast to our considerations, in this beautiful result
only the “size” of an automorphism group is taken into account and not its action
on the parallel classes.

2 Preliminaries on Clifford and Clifford-like paral-
lelisms

A parallelism ‖ on a projective space P is an equivalence relation on the set L
of lines such that each point of P is incident with precisely one line from each
equivalence class. (If P is a finite projective space then a parallelism is also called
a packing or a resolution.) For each line M ∈ L we write S(M) for the parallel
class of M, that is, the equivalence class containing M. This notation arises quite
naturally, since any parallel class is in fact a spread (of lines) of P. When consid-
ering several parallelisms, we distinguish among the above notions and symbols
by adding appropriate attributes, subscripts or superscripts. We refer to [2], [20,
Ch. 17], [22], [23] and [24, § 14] for a wealth of results about parallelisms and
further references.

Let P and P′ be projective spaces with parallelisms ‖ and ‖′, respectively and
let κ be a collineation of P to P′ such that, for all lines M,N ∈ L, M ‖ N implies
κ(M) ‖′ κ(N). Then κ takes any ‖-class to a ‖′-class by [18, Lemma 2.1]. Such a κ
is frequently called an isomorphism2 of (P, ‖) to (P′, ‖′).

Suppose that a projective space P is endowed with two (not necessarily dis-
tinct) parallelisms, a left parallelism ‖` and a right parallelism ‖r. Following [25],

2A slightly different terminology will be used when dealing with projective spaces over vector
spaces; see the first paragraph of Section 3.1.
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(P, ‖`, ‖r) constitutes a projective double space if the following axiom is satisfied.

(DS) For all triangles p0, p1, p2 in P there exists a common point of the lines
M1 and M2 that are defined as follows. M1 is the line through p2 that is
left parallel to the join of p0 and p1, M2 is the line through p1 that is right
parallel to the join of p0 and p2.

Given a projective double space (P, ‖`, ‖r) each of ‖` and ‖r is referred to as a
Clifford parallelism3 of (P, ‖`, ‖r). More generally, a Clifford-like parallelism of
(P, ‖`, ‖r) is defined as a parallelism ‖ on P such that, for all M,N ∈ L, M ‖ N im-
plies M ‖` N or M ‖r N (see [17, Def. 3.2]). Each parallel class of a Clifford-like
parallelism ‖ of (P, ‖`, ‖r) is a left or a right parallel class: see [17, Thm. 3.1], where
this topic appears in the wider context of “blends” of parallelisms. A Clifford-like
parallelism of (P, ‖`, ‖r) is said to be proper if it does not coincide with one of ‖`
and ‖r. In what follows, whenever we say that a parallelism ‖ on a projective space
P is Clifford (respectively Clifford-like) it is intended that P can be made into a
double space (P, ‖`, ‖r) such that ‖ is one of its Clifford (respectively Clifford-like)
parallelisms.

An algebraic description—up to isomorphism—of all projective double
spaces (P, ‖`, ‖r) that contain at least two distinct lines and satisfy the so-called
“prism axiom” was given in [25]. It is based on quaternion skew fields and purely
inseparable commutative field extensions of characteristic two. According to [26,
Satz 1] and [28, Satz 2], the prism axiom appearing in [25] is redundant; see also
the surveys in [24, § 14] and [22, pp. 112–115]. This is why we omit to consider
this axiom here. From now on we exhibit exclusively three-dimensional projec-
tive double spaces.4 We therefore recall only their algebraic description in the
next few paragraphs.

We adopt the following settings throughout this article: F denotes a commu-
tative field and H is an F-algebra with unit 1H satisfying one of the following
conditions.

(A) H is a quaternion skew field with centre F1H.

(B) H is a commutative field with degree [H : F1H] = 4 and such that h2 ∈ F1H

for all h ∈ H.

In what follows, we identify any f ∈ F with f 1H ∈ H, whence F turns into
a subfield of H. If E is a subfield of H, then H is a left vector space and a

3This definition does not include Clifford parallelisms that arise from octonions (see [6], [41],
[42], [43], [44]). The (generalised) Clifford parallelisms appearing in [11, Kap. 12] and [40] are
not fully covered.

4In any other dimension (DS) implies ‖` = ‖r, whence proper Clifford-like parallelisms of
(P, ‖`, ‖r) do not exist.
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right vector space over E. We denote these spaces as EH and HE, respectively.
Whenever E is contained in the centre of H, we do not distinguish between EH
and HE. In each of the cases (A) and (B), HF is an infinite kinematic (or, in a
different terminology: quadratic) F-algebra, i.e.,

h2 ∈ F + Fh for all h ∈ H. (1)

If (B) applies then the characteristic Char F equals two and H is a purely insepa-
rable extension of F.

All F-linear endomorphisms of HF constitute the F-algebra End(HF). The
left regular representation λ : H → End(HF) sends each h ∈ H to the mapping
λ(h) =: λh given as λh(x) := hx for all x ∈ H. The image λ(H) is an isomorphic
copy of the field H within End(HF). The elements of the multiplicative group5

λ(H∗) = GL(HH) are the left translations. Similarly, the right regular represen-
tation ρ : H → End(HF) sends each h ∈ H to ρ(h) =: ρh given as ρh(x) := xh
for all x ∈ H. In this way we obtain ρ(H) as an antiisomorphic copy of H within
End(HF) and the group of right translations6 ρ(H∗) = GL(HH). For all g, h ∈ H,
the mappings λg and ρh commute. The multiplicative group H∗ admits the repre-
sentation ˜( ) : H∗ → GL(HF) sending each h ∈ H∗ to h̃ := λ−1

h ◦ ρh, which is an
inner automorphism of the field H. Clearly, in case (B) the group H̃∗ comprises
only the identity idH.

The projective space on the vector space HF , in symbols P(HF), is understood
to be the set of all subspaces of HF with incidence being symmetrised inclusion.
We adopt the usual geometric terms: Points, lines, and planes of P(HF) are the
subspaces of HF with vector dimension one, two, and three, respectively; the set
of all lines is written as L(HF). The following notions rely on HF being an F-
algebra. In P(HF), lines M and N are defined to be left parallel, M ‖` N, if
λc(M) = N for some c ∈ H∗. Similarly, M and N are said to be right parallel,
M ‖r N, if ρc(M) = N for some c ∈ H∗. Then

(
P(HF), ‖`, ‖r

)
is a projective double

space. The parallelisms ‖` and ‖r are distinct in case (A) and identical in case (B).

Remark 2.1. The left and right parallelism w.r.t. (H,+, ·) are the same as the right
and left parallelism defined by the opposite field of H. So, from a geometric point
of view, the choice of the attributes “left” and “right” is immaterial.

The multiplication on the field (H,+, ·) may be altered without changing the
associated projective double space

(
P(HF), ‖`, ‖r

)
. Let us choose any e ∈ H∗. Then

we can define a multiplication ·e on H via x ·e y := x · e−1 · y for all x, y ∈ H.
This makes (H,+, ·e) into an F-algebra, which will briefly be written as He. The
left translation λe (w.r.t. H) is an F-linear isomorphism of H to He, whence the
arbitrarily chosen element e ∈ H∗ turns out to be the unit element of He. The

5We abbreviate H \ {0} as H∗ and use the same kind of notation for any field.
6Observe that the zero endomorphism λ0 = ρ0 is not among the left and right translations.
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projective double spaces arising from the F-algebras H and He are the same, since
λh = λe

h·e and ρh = ρe
e·h for all h ∈ H∗.

Let us briefly sketch a more conceptual verification of our second observation.
The point Fe and the parallelisms ‖` and ‖r can be used to make the point set P(HF)
into a two-sided incidence group with unit element Fe [25, §3]. (The prism axiom
appearing in [25] can be avoided [26, Satz 1], [28, Satz 2].) Then, using the group
structure on P(HF), the F-vector space H can be endowed with a multiplication
making it into a field with unit element e (see [9, Satz 1] and [45, Hauptsatz]). This
field, which coincides with our He, therefore provides an alternative description
of the projective double space

(
P(HF), ‖`, ‖r

)
.

Remark 2.2. There are various other ways to define a Clifford parallelism on a
three-dimensional (necessarily pappian) projective space. We refer to [4], [7], [13,
p. 46], [14, Sect. 2], [15], [16] and the references given there. On that account, it
is our aim to make use only of the above algebraic approach.

Let A(HF) ⊂ L(HF) denote the star of lines with centre F1. By (1), each
line L ∈ A(HF) is readily seen to be a maximal commutative subfield of H and
hence an F-subalgebra. Next, we recall an explicit construction that gives all
Clifford-like parallelisms of

(
P(HF), ‖`, ‖r

)
. Upon choosing any H̃∗-invariant sub-

set F ⊆ A(HF), one obtains a partition of L(HF) by taking the left parallel classes
of all lines in F and the right parallel classes of all lines in A(HF) \ F. This
partition determines an equivalence relation, which turns out to be a Clifford-like
parallelism ‖ of

(
P(HF), ‖`, ‖r

)
. See [17, Thm. 4.10] for a proof in the case when

(A) applies; in case (B) the result is trivial due to ‖ = ‖` = ‖r.

Remark 2.3. Let ‖ be any parallelism on P(HF) and let S(M), M ∈ L(HF), be
one of its parallel classes. We recall that the kernel of the spread S(M) consists
of all endomorphisms ϕ of the abelian group (H,+) such that ϕ(N) ⊆ N for all
N ∈ S(M). This kernel, which will be denoted by K

(
H, S(M)

)
, is a field; see,

for example, [34, Thm. 1.6]. Consequently, if ϕ ∈ K
(
H, S(M)

)
and ϕ , 0, then

ϕ(N) = N for all N ∈ S(M). The following simple reasoning will repeatedly
be used. If ϕ1, ϕ2 ∈ K

(
H, S(M)

)
satisfy ϕ1(g) = ϕ2(g) for some g ∈ H∗, then

(ϕ1 − ϕ2)(g) = 0 forces that ϕ1 − ϕ2 is not injective. Therefore ϕ1 − ϕ2 is the zero
endomorphism or, in other words, ϕ1 = ϕ2.

Proposition 2.4. If Clifford parallelisms ‖ and ‖′ on a three-dimensional projec-
tive space have two distinct parallel classes in common, then these parallelisms
coincide.

Proof. By virtue of the algebraic description of all projective double spaces and
by Remark 2.1, we may assume the following. The parallelism ‖ is the right
parallelism ‖r coming from an F-algebra (H,+, ·) subject to (A) or (B). There is
a multiplication ·′ : H × H → H making the F-vector space HF into an F-algebra
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(H,+, ·′) subject to (A) or (B) such that ‖′ coincides with the right parallelism ‖′r
arising from (H,+, ·′). These algebras share a common unit element 1 ∈ H∗, say.

By our assumption, there are distinct lines L1, L2 ∈ A(HF) such that Sr(L1) =

S′r(L1) and Sr(L2) = S′r(L2). Choose any z ∈ Ln where n ∈ {1, 2}. Then λz and
λ′z are both in K

(
H, Sr(Ln)

)
. According to Remark 2.3, λz(1) = z = λ′z(1) implies

λz = λ′z. Hence

z · x = λz(x) = λ′z(x) = z ·′ x for all x ∈ H and all z ∈ L1 ∪ L2. (2)

More generally, the equality in (2) is fulfilled for all x ∈ H and all z from
the subfield of (H,+, ·) that is generated by L1 ∪ L2. This subfield coincides with
(H,+, ·), since L1 is a maximal subfield of (H,+, ·). All things considered, we
obtain (H,+, ·) = (H,+, ·′) and therefore ‖ = ‖r = ‖′r = ‖′. �

Remark 2.5. Note that the above theorem may alternatively be established by
using the one-to-one correspondence between Clifford parallelisms and external
planes to the Klein quadric (see [16, Cor. 4.5]).

3 Automorphisms, their orbits and actions
This section is devoted to deepen the study of the automorphisms of the Clifford
parallelisms of a three-dimensional projective double space

(
P(HF), ‖`, ‖r

)
as de-

scribed in Section 2. In particular we obtain a description of the orbits of certain
points and lines under the action of the group H̃∗, and we characterise the right
parallel classes fixed (as a set) by a given left translation. In order to avoid trivi-
alities, we shall repeatedly confine ourselves to case (A). These findings will lead
us in Section 4 to the proof of our main results.

3.1 Automorphisms
In this subsection H always denotes an F-algebra subject to (A) or (B). Given any
parallelism ‖ on P(HF), we are going to use from now on the phrase automorphism
of ‖ for any β in the general semilinear group ΓL(HF) that acts as a ‖-preserving
collineation on P(HF). The symbol Γ‖ denotes the automorphism group of ‖. This
terminology is in accordance with the one in [18].

The Clifford parallelisms of the projective double space
(
P(HF), ‖`, ‖r

)
give

rise to automorphism groups Γ‖` =: Γ` and Γ‖r =: Γr. These groups coincide, that
is,

Γ` = Γr. (3)

In case (A), a proof can be derived from [36, p. 166]; see [18, Sect. 2] for further
details. In case (B), equation (3) is trivial. The group λ(H∗) of left translations,
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the group ρ(H∗) of right translations and the group H̃∗ of inner automorphisms are
subgroups of Γ` = Γr.

Lemma 3.1. Let Sr(M) be the right parallel class of a line M ∈ L(HF). The
elements of the kernel K

(
H, Sr(M)

)
are precisely the mappings λg with g ranging

in the line that contains the point F1 and is right parallel to M. Consequently,

λ(H) =
⋃

L ∈A(HF )

K
(
H, Sr(L)

)
=

⋃
M ∈L(HF )

K
(
H, Sr(M)

)
. (4)

A similar result holds with the role of “left” and “right” interchanged.

Proof. There is a d ∈ H∗ such that F1 ⊆ ρd(M) = Md. Choose any g ∈ Md. Then,
for all h ∈ H∗, λg(Mdh) = g(Mdh) = (gMd)h ⊆ Mdh, whence λg ∈ K

(
H, Sr(M)

)
.

Conversely, let ϕ ∈ K
(
H, Sr(M)

)
. Then ϕ(1) ∈ Md gives λϕ(1) ∈ K

(
H, Sr(M)

)
, and

ϕ(1) = λϕ(1)(1) implies ϕ = λϕ(1) according to Remark 2.3.
Equation (4) is now immediate, since each element of H is contained in at

least one line of the star A(HF) and each right parallel class contains a line passing
through F1. �

Any line L ∈ A(HF) is a commutative quadratic extension field of F contained
in H. The above Lemma illustrates the rather obvious result that the restriction
to L of the representation λ (respectively ρ) provides an isomorphism of the field
L onto the kernel of the right (respectively left) parallel class of the line L. This
proves anew that all left and right parallel classes are regular spreads (see [7,
4.8 Cor.], [15, Prop. 3.5] or [16, Prop. 4.3]). Maybe less obvious is the following
conclusion. Any semilinear transformation ϕ ∈ ΓL(HF) that fixes all lines of one
right (respectively left) parallel class is a left (respectively right) translation and
therefore in the automorphism group Γ` = Γr.

In the next proposition we describe the automorphism group Γ` = Γr. Alter-
native proofs, which cover only the case when H is a quaternion skew field, can
be retrieved from [6, Sect. 4], [36, Thm. 1] and [37, Prop. 4.1 and 4.2]. Below, we
follow the exposition in [18, Sect. 2].

Proposition 3.2. Let
(
P(HF), ‖`, ‖r

)
be a projective double space, where H is an

F-algebra subject to (A) or (B). The automorphism group of the right parallelism
satisfies

Γr = λ(H∗) o Aut(H/F), (5)

where Aut(H/F) denotes the group of all automorphisms of the field H that fix F
as a set.
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Proof. A direct verification shows that the group Aut(H/F) is a subgroup of Γr.
As we noted at the beginning of this subsection, the same applies for the group
λ(H∗). For all γ ∈ Γr and all lines M ∈ L(HF), we have

K
(
H, Sr(γ(M))

)
= γ ◦ K

(
H, Sr(M)

)
◦ γ−1. (6)

Using (4), this implies that λ(H∗) is a normal subgroup of Γr.
Let us choose any β ∈ Γr. We define ϕ := λ−1

β(1) ◦ β, whence ϕ ∈ Γr fixes 1 ∈ H.
In order to verify

ϕ ◦ λz ◦ ϕ
−1 = λϕ(z) for all z ∈ H, (7)

we proceed as follows. There is a line L with 1, z ∈ L. Applying (6) to γ := ϕ
and M := L gives that ϕ ◦ λz ◦ ϕ

−1 as well as λϕ(z) belongs to K
(
H, Sr(ϕ(L))

)
.

Now (ϕ ◦ λz ◦ ϕ
−1)(1) = λϕ(z)(1) together with Remark 2.3 establishes (7). For all

x, y ∈ H, we have

ϕ(xy) = (ϕ ◦ λx ◦ λy)(1)

=
(
(ϕ ◦ λx ◦ ϕ

−1) ◦ (ϕ ◦ λy ◦ ϕ
−1)

)
(1)

= (λϕ(x) ◦ λϕ(y))(1)
= ϕ(x)ϕ(y)

so that ϕ is an automorphism of the field H. Furthermore, ϕ(1) = 1 together with
ϕ being F-semilinear implies ϕ(F) = F. �

Take notice that F is the centre of the quaternion skew field H in case (A) and
so under these circumstances Aut(H/F) = Aut(H).

Suppose that ϕ ∈ Aut(H/F) is F-linear or, equivalently, that ϕ fixes F ele-
mentwise. Then ϕ ∈ H̃∗ is an inner automorphism of the field H. In case (A),
this follows from the theorem of Skolem-Noether [21, Thm. 4.9]. In case (B), any
inner automorphism of H is trivial and ϕ = idH, since any h ∈ H∗ \ F∗ is a double
zero of the polynomial h2 + t2 ∈ F[t], which is the minimal polynomial of h over
F. So, by (5), the group of all F-linear automorphisms of ‖r can be written in the
form

Γr ∩ GL(HF) = λ(H∗) o H̃∗. (8)

Let ‖ be any Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
. The group appearing in

(8) coincides with the group Γ‖∩GL(HF) comprising all F-linear automorphisms
of ‖ (see [18, Thm. 3.5]). The problem to determine the full automorphism group
Γ‖ without extra assumptions on H, F or ‖ seems to be open. Partial solutions can
be found [18, Sect. 3]. The examples in [18, Sect. 4] show the existence of proper
Clifford-like parallelisms ‖ satisfying Γ‖ = Γ` = Γr and also of proper Clifford-like
parallelisms ‖ satisfying Γ‖ ⊂ Γ` = Γr.
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3.2 Orbits under the group of inner automorphisms
In this subsection H denotes an F-algebra subject to (A), that is, a quaternion
skew field with centre F. The following outcomes fail in case (B), since there the
group of inner automorphisms is trivial.

Recall that, given any h ∈ H, the trace and the norm of h are the elements of
F defined, respectively, by tr(h) = h + h and N(h) = hh = hh, where h denotes the
conjugate of h. The conjugation is an antiautomorphism of H of order 2 that fixes
F elementwise. The identity h2− tr(h)h+ N(h) = 0 holds for any h ∈ H. The norm
N is a multiplicative quadratic form and its associated symmetric bilinear form is

〈 · , · 〉 : H × H → F : (x, y) 7→ 〈x, y〉 = tr(xy) = xy + yx. (9)

The form 〈 · , · 〉 is non-degenerate and so the mapping sending each subspace X of
HF to its orthogonal subspace X⊥ is a polarity of P(HF).

The next result is briefly mentioned in [7, Rem. 4.5] and [30, p. 76, Ex. 10]
(Char F , 2 only). For the sake of completeness, a proof will be presented below.

Lemma 3.3. Given quaternions q1, q2 ∈ H there exists an inner automorphism of
H taking q1 to q2 if, and only if, tr(q1) = tr(q2) and N(q1) = N(q2).

Proof. From tr(q1) = tr(q2) and N(q1) = N(q2), the quaternions q1, q2 are zeros
of the polynomial m(t) = t2 − tr(q1)t + N(q1) ∈ F[t]. If m(t) is reducible over F,
then m(t) has no zeros in H outside F. Thus q1 ∈ F and m(t) = (t − q1)2. Now
m(q2) = 0 yields q2 = q1, whence the identity idH is a solution. On the other
hand, if m(t) is irreducible over F, then idF can be extended in a unique way to
an isomorphism γ of the commutative field F1 ⊕ Fq1 ⊂ H onto the commutative
field F1 ⊕ Fq2 ⊂ H such that γ(q1) = q2; see, for example, [8, Prop. 7.2.2].
By the theorem of Skolem-Noether [21, Thm. 4.9], this γ extends to an inner
automorphism of H.

The proof of the converse is straightforward. �

The above result describes the orbits under the action of the inner automor-
phism group H̃∗ on quaternions.7 By considering the vector space HF as an affine
space, the orbit of any q ∈ H is the intersection of the affine quadric {x ∈ H |
N(x) = N(q)} with the hyperplane {x ∈ H | tr(x) = tr(q)}. Here, however, we aim
at providing a description of the orbits of the points of P(HF) under the action of
H̃∗. Since the behaviour of the points of the plane (F1)⊥ = {x ∈ H | tr(x) = 0}
is different from that of any other point, these points will be excluded in the next
proposition.

7After extending H to a projective line over H by adding an extra point∞, these H̃∗-orbits turn
into orbits of the group of projectivities that fix the points 0, 1 and ∞. This approach results in an
alternative description, as can be seen from [12].
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Proposition 3.4. Let H be a quaternion skew field with centre F and let Fq,
q ∈ H∗, be a point of P(HF) such that tr(q) , 0. Then the following hold.

(a) The orbit of Fq under the action of the group H̃∗ of inner automorphisms of
H is a quadric of P(HF), say Oq, which is given by the quadratic form

ωq : H → F : x 7→ tr(q)2 N(x) − N(q) tr(x)2.

(b) If q ∈ F∗, then Oq consists of a single point.

(c) If q ∈ H∗ \ F∗, then Oq is an elliptic quadric, no line through F1 is tangent
to Oq, and the polar form of ωq is non-degenerate.

Proof. (a) If F p is in the H̃∗-orbit of Fq, then there are c ∈ F∗ and h ∈ H∗ such
that p = ch−1qh. Consequently, N(p) = c2N(q) and tr(p) = c tr(q). This entails
ωq(p) = c2ωq(q) = 0.

Conversely, let a point F p′, p′ ∈ H∗, be given with ωq(p′) = 0. Then p′ , 0
implies N(p′) , 0 and so tr(p′) , 0 follows from ωq(p′) = 0. We define

p := tr(q) tr(p′)−1 p′.

Then tr(p) = tr(q) , 0, and ωq(p) = 0 establishes N(p) = N(q). Now Lemma 3.3
implies the existence of an h ∈ H∗ such that p = h−1qh.

(b) The quadric Oq, q ∈ F∗, is the H̃∗-orbit of F1, whence it consists of this
single point only.

(c) The point F1 is not in the H̃∗-orbit of Fq and so F1 is off the quadric
Oq. From q + q = tr(q) ∈ F∗ and ωq(q) = 0, the line joining Fq and F1 meets Oq

residually at Fq , Fq and so it is not tangent to Oq. Also, the point Fq is a regular
point of Oq. By the transitive action of the group H̃∗ on the points of Oq, the same
applies to all other points of Oq. The quadric Oq cannot be ruled, because it does
not contain any point of the plane {x ∈ H | tr(x) = 0}.

The polar form of ωq is

(x, y) 7→ tr(q)2〈x, y〉 − 2N(q) tr(x) tr(y) = tr(q)2 tr(xy) − 2N(q) tr(x) tr(y).

If Char F , 2 then the polar form of ωq is non-degenerate, since otherwise Oq

would contain a singular point. In the case of Char F = 2 the form ωq is non-
degenerate, because it merely is a non-zero scalar multiple of the non-degenerate
alternating bilinear form 〈 · , · 〉 from (9). �

Proposition 3.5. Let H be a quaternion skew field with centre F and, in P(HF),
let L be a line that passes through the point F1 and is not contained in the plane
(F1)⊥. Every plane through an arbitrary line in the H̃∗-orbit of L contains in-
finitely many lines of this orbit.
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Proof. By virtue of the action of H̃∗ on H̃∗(L), it is enough to show the assertion
for an arbitrary plane E passing through L.

On the line L, we can pick one point, say Fq, other than F1 such that tr(q) , 0.
By Proposition 3.4, the orbit of Fq is an elliptic quadric Oq. Furthermore, the line
L is a bisecant of this quadric that meets Oq at Fq and Fq , Fq. The plane E
contains the bisecant L of Oq and so E cannot be a tangent plane of Oq. This
implies that E intersects Oq along a regular conic. As F is infinite, so is this conic.
By joining each of the points of the conic with F1 we get infinitely many lines
through F1 in the plane E. All of them are in H̃∗(L). �

Remark 3.6. The orbit of any line L ∈ A(HF) under the group H̃∗ is infinite [10,
Thm. 3]. This result was improved in [46] by showing that any such orbit has
cardinality |F|. Limited to the case of quaternion skew fields and lines of A(HF)
that are not in (F1)⊥, the last proposition enriches this result with a geometric
insight.

From [17, Thm. 4.12], the group H̃∗ acts transitively on A(HF) if, and only
if, F is a formally real pythagorean field and H is an “ordinary” quaternion skew
field with centre F. Precisely under these circumstances,

(
P(HF), ‖`, ‖r

)
admits no

proper Clifford-like parallelisms.

3.3 Parallel classes fixed by automorphisms
First, let

(
P(HF), ‖`, ‖r

)
be a projective double space as specified in Section 2.

Suppose that a left translation λg, g ∈ H∗, acts as a non-identical collineation on
P(HF). Hence g ∈ H∗ \F∗. Any line M ∈ L(HF) is left parallel to its image λg(M)
and so λg fixes all left parallel classes. As we saw in Lemma 3.1, Sr(F1 ⊕ Fg)
is the only right parallel class that is fixed linewise under λg. If λg fixes also all
lines of a left parallel class, then Lemma 3.1 forces λg to be a right translation as
well, that is, g has to be in the centre of H. In case (A) this gives a contradiction.
In case (B), H is a commutative field and so this condition imposes no restriction
on g; due to ‖` = ‖r, the given λg fixes precisely one left parallel class linewise,
namely S`(F1 ⊕ Fg).

For the rest of this subsection we confine ourselves to the case (A).

Proposition 3.7. Let H be a quaternion skew field with centre F and let g ∈ H∗ \
F∗. In

(
P(HF), ‖`, ‖r

)
, a right parallel class is invariant under the left translation

λg precisely when it is of the form Sr(M), where M is a line satisfying at least one
of the following conditions:

M = F1 ⊕ Fg; (10)

F1 ⊆ M ⊆ g−1(F1)⊥. (11)
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Proof. (a) Suppose that (10) holds. From Lemma 3.1, all lines of the right parallel
class Sr(M) are fixed under λg.

(b) Suppose that a line M satisfies (11). The line M⊥ is left parallel and right
parallel to M (see [17, Cor. 4.4]) and it is contained in (F1)⊥. The line gM is also
left parallel to M. As M⊥ and gM are incident with the plane (F1)⊥, they share
a common point and so they must coincide. Taking into account that λg ∈ Γr and
M⊥ ‖r M we obtain λg

(
Sr(M)

)
= Sr(gM) = Sr(M⊥) = Sr(M), as required.

(c) Conversely, any λg-invariant right parallel class can be written as Sr(M)
with F1 ⊆ M. Then λg(M) ‖` M ‖r λg(M). Again from [17, Cor. 4.4], there
are only two possibilities. First, λg(M) = gM = M, which implies Fg ⊆ M
and establishes (10). Second, λg(M) = gM = M⊥. From F1 ⊆ M we obtain
λg(M) = M⊥ ⊆ (F1)⊥. Applying λ−1

g results in M ⊆ g−1(F1)⊥, whence (11)
holds. �

Remark 3.8. Figures 1 and 2 depict the possible cases in Proposition 3.7 under
the assumption Char F , 2 and Char F = 2, respectively. In all cases, there are
distinct points F1 and Fg as well as distinct planes (F1)⊥ and g−1(F1)⊥. Further-
more, (F1)⊥ ∩

(
g−1(F1)⊥

)
= (F1 ⊕ Fg)⊥.

The pictures on the left-hand side show the situation when F1 * g−1(F1)⊥ or,
in other words, when Fg * (F1)⊥, which in turn is equivalent to tr(g) , 0. Here
there are no lines M subject to (11). The pictures on the right-hand side show the
opposite situation. Here the set of all lines M that satisfy (11) comprises a pencil
of lines. In detail, the circumstances are as follows.

F1
Fg

Fg′ F(g − g)

g−1(F1)⊥

(F1)⊥
(F1 ⊕ Fg)⊥

F1
Fg

g−1(F1)⊥

(F1)⊥
(F1 ⊕ Fg)⊥

Figure 1: Char F , 2

Figure 1, left: the line F1 ⊕ Fg intersects the plane (F1)⊥ at F(g − g) and the
plane g−1(F1)⊥ at Fg′, g′ := g−1(g − g); the points F1, Fg, F(g − g) and Fg′ are
mutually distinct; the lines F1 ⊕ Fg and (F1 ⊕ Fg)⊥ are skew.

Figure 1, right: (F1 ⊕ Fg) ∩ (F1)⊥ = Fg, (F1 ⊕ Fg) ∩ g−1(F1)⊥ = F1; the
lines F1 ⊕ Fg and (F1 ⊕ Fg)⊥ are skew.

Figure 2, left: (F1 ⊕ Fg) ∩ (F1)⊥ = F1, (F1 ⊕ Fg) ∩ g−1(F1)⊥ = Fg−1; the
points F1, Fg and Fg−1 are mutually distinct; the lines F1 ⊕ Fg and (F1 ⊕ Fg)⊥

are skew.
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F1
Fg

Fg−1

g−1(F1)⊥

(F1)⊥
(F1 ⊕ Fg)⊥

F1
Fg

g−1(F1)⊥

(F1)⊥
(F1 ⊕ Fg)⊥

Figure 2: Char F = 2

Figure 2, right: the line F1 ⊕ Fg coincides with (F1 ⊕ Fg)⊥.
Finally, note that the situations depicted on the right-hand side, namely

Fg ⊆ (F1)⊥, comprises precisely the cases when the left translation λg acts as
an involution on the projective space.

4 Main results
The definition of a Clifford-like parallelism in [17, Def. 3.2] is essentially based
on a given projective double space (P, ‖`, ‖r). We are thus led to the problem of
whether or not distinct projective double spaces can share a Clifford-like paral-
lelism.

Theorem 4.1. Let
(
P(HF), ‖`, ‖r

)
be a projective double space, where H is an F-

algebra subject to (A) or (B). Furthermore, let ‖′` and ‖′r be parallelisms such that(
P(HF), ‖′`, ‖

′
r
)

is also a projective double space. Suppose that a parallelism ‖ of
P(HF) is Clifford-like with respect to both double space structures. Then, possibly
up to a change of the attributes “left” and “right” in one of these double spaces,
‖` = ‖′` and ‖r = ‖′r.

Proof. First, we consider case (A). We take any line of the star A(HF). We
noted in Remark 3.6 that the orbit of this line under the group H̃∗ of all inner
automorphisms of H is infinite. Thus there are three mutually distinct lines, say
L1, L2 and L3, in this orbit. From [17, Thm. 4.10], the ‖-classes of these lines are
of the same kind w.r.t.

(
P(HF), ‖`, ‖r

)
, i.e., we have either S(Ln) = S`(Ln) for all

n ∈ {1, 2, 3} or S(Ln) = Sr(Ln) for all n ∈ {1, 2, 3}.
Next, we turn to case (B). There exist three mutually distinct lines L1, L2, L3 ∈

A(HF). Their ‖-classes are of the same kind w.r.t.
(
P(HF), ‖`, ‖r

)
due to ‖` = ‖r = ‖.

In both cases, the parallel classes S(Ln), n ∈ {1, 2, 3}, are mutually distinct.
Consequently, among them there are at least two distinct classes of the same kind
w.r.t. the double space (P(HF), ‖′`, ‖

′
r). Up to a change of notation, we may assume

S(Ln) = Sr(Ln) = S′r(Ln) for n ∈ {1, 2}. Now Proposition 2.4 shows that the
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Clifford parallelisms ‖r and ‖′r coincide. This in turn forces ‖` = ‖′`, since the left
parallelism is uniquely determined by the right one (see [24, pp. 75–76] or [19,
§6]). �

Corollary 4.2. Any Clifford-like parallelism ‖ of
(
P(HF), ‖`, ‖r

)
other than ‖` and

‖r is not Clifford.

Proof. Assume to the contrary that ‖ =: ‖′` is Clifford. Then there is a parallelism,
say ‖′r, such that

(
P(HF), ‖′`, ‖

′
r
)

is a projective double space. Applying Theorem 4.1
gives therefore ‖ = ‖` or ‖ = ‖r, a contradiction. �

The above corollary, when restricted to case (A), is just a reformulation of [17,
Thm. 4.15]. Therefore, the rather technical proof in [17], which relies on H being
a quaternion skew field, can now be avoided.

Our final results provide the announced characterisations of Clifford paral-
lelisms among Clifford-like parallelisms.

Theorem 4.3. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
, where H is an

F-algebra subject to (A) or (B). Then the following assertions are equivalent.

(a) The parallelism ‖ is Clifford.

(b) The parallelism ‖ admits an automorphism β ∈ Γ‖ that stabilises all its
parallel classes and acts as a non-identical collineation on the projective
space P(HF).

Proof. (a)⇒ (b). There exists a g ∈ H∗ \ F∗. Corollary 4.2 shows that ‖ = ‖` or
‖ = ‖r. In the first case the left translation λg has the required properties, in the
second case the same applies to the right translation ρg.

(b)⇒ (a) In case (B), ‖` = ‖r implies that ‖ = ‖` is Clifford.
From now on we deal with case (A) only. We select one line N1 through F1

that is not in (F1)⊥. We assume w.l.o.g. that the parallel class S(N1) is a left
parallel class. (Otherwise, we have to interchange the attributes “left” and “right”
in what follows.) Let g := β(1). We consider the left translation λg and the product

α := λ−1
g ◦ β. (12)

We choose one N ∈ H̃∗(N1). Then the parallel class S(N) is a left parallel
class. Thus

N ‖` β(N) ‖` g−1β(N) = α(N). (13)

Formula (13) and α(1) = 1 ∈ N together force α(N) = N. By Proposition 3.5,
every plane through N contains at least two lines from the orbit H̃∗(N1), and so any
such plane is fixed under α. The lines and planes through F1 are the “points” and
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“lines” of a projective plane; “incidence” is given by symmetrised inclusion. Our
α acts on this projective plane as a collineation. By the above, all “lines” through
the “point” N are fixed under α, and so N serves as a “centre” of this collineation.
But N may vary in the orbit H̃∗(N1), which comprises more than one line by the
theorem of Cartan-Brauer-Hua [29, (13.17)]. Consequently, this collineation has
more than one “centre”, that is, α fixes all lines of the star A(HF).

We now consider the action of α on the projective space P(HF). Since all
lines of A(HF) are fixed, α acts as a perspective collineation with centre F1. This
implies that α is F-linear. Since α and λ−1

g are F-linear, so is β. From β ∈ Γ‖ ∩

GL(HF) = Γ` ∩ GL(HF) (see [18, Thm. 3.5]) and λ−1
g ∈ Γ` ∩ GL(HF) follows

α ∈ Γ` ∩ GL(HF). Now pick any line L ∈ L(HF). The left parallel line to L
through F1 is fixed under α ∈ Γ`, whence we have L ‖` α(L). On the other
hand, L is incident with at least one plane through F1. This plane is α-invariant.
Therefore the left parallel lines L and α(L) are coplanar, which in turn implies
L = α(L). So we arrive at α = c idH for some c ∈ F∗. Now, using α(1) = 1, we
end up with α = idH.

Next, we give an explicit description of β. By virtue of (12), our assumption
that β does not fix all lines of P(HF), and α = idH, we have

β = λg and g ∈ H∗ \ F∗.

Finally, we claim that ‖ = ‖`. Assume to the contrary that ‖ , ‖`. So there is
a line M1 with S(M1) = Sr(M1) and F1 ⊆ M1. Then S(M) = Sr(M) for all lines
M ∈ H̃∗(M1), which forces

β
(
Sr(M)

)
= Sr(M) for all M ∈ H̃∗(M1). (14)

We now distinguish three cases.
Case (i). Let F1 * g−1(F1)⊥. From Proposition 3.7 and (14), any line M ∈

H̃∗(M1) has to satisfy (10). This implies H̃∗(M1) = {F1 ⊕ Fg} and contradicts the
theorem of Cartan-Brauer-Hua [29, (13.17)], which says |H̃∗(M1)| > 1.

Case (ii). Let F1 ⊆ g−1(F1)⊥ and M1 * (F1)⊥. We choose any plane E other
than g−1(F1)⊥ through the line M1. Let ME denote the set of all lines that are
incident with E and belong to H̃∗(M1). By Proposition 3.5, the set ME is infinite.
From Proposition 3.7 and (14), any line M ∈ ME has to satisfy (10) or (11), that
is M = F1 ⊕ Fg or M = g−1(F1)⊥ ∩ E. This implies |ME | ≤ 2, an absurdity.

Case (iii). Let F1 ⊆ g−1(F1)⊥ and M1 ⊆ (F1)⊥. From Remark 3.8, this applies
precisely when

M1 = F1 ⊕ Fg = (F1)⊥ ∩
(
g−1(F1)⊥

)
; (15)

see the right-hand side of Figure 2. The plane (F1)⊥ is H̃∗-invariant, whence it
contains all lines of H̃∗(M1). From Proposition 3.7 and (14), any line M ∈ H̃∗(M1)
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has to satisfy (10) or (11). By virtue of the second equation in (15), this implies
H̃∗(M1) = {F1⊕Fg} and, as in Case (i), contradicts the theorem of Cartan-Brauer-
Hua. �

Remark 4.4. Note that, as a consequence of the previous theorem, the group of
automorphisms that preserve all parallel classes with respect to a given Clifford-
like parallelism ‖ of

(
P(HF), ‖`, ‖r

)
is contained in GL(HF). Moreover this group

is the group of left translations (or right translations respectively) precisely when
‖ = ‖r (respectively ‖ = ‖`). If, on the other hand, ‖ is a proper Clifford-like
parallelism, then this group is the group of all λg with g ∈ F∗, thus, from the
projective point of view, it comprises only the identity map.

Theorem 4.5. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
, where H is an

F-algebra subject to (A) or (B). Then the following assertions are equivalent.

(a) The parallelism ‖ is Clifford and ‖` , ‖r.

(b) The parallelism ‖ admits an automorphism β ∈ Γ‖ that stabilises a single
parallel class of ‖ and, furthermore, fixes all lines of this particular parallel
class.

Proof. (a) ⇒ (b). Corollary 4.2 shows that ‖ = ‖` or ‖ = ‖r. Let, for example,
‖ = ‖r. We infer from ‖` , ‖r that H is a quaternion skew field. There exists a
g ∈ H \

(
F1 ∪ (F1)⊥

)
; cf. the left-hand sides of Fig. 1 and Fig. 2 for illustrations.

Then no line M ∈ L(HF) satisfies (11). By Proposition 3.7, β := λg stabilises a
single right parallel class, namely Sr(F1 ⊕ Fg), and, furthermore, β fixes all lines
of Sr(F1 ⊕ Fg).

(b)⇒ (a). The only β-invariant parallel class can be written in the form S(L)
with L ∈ A(HF). Let us assume that S(L) is a right parallel class. Since all lines
of Sr(L) are fixed under β, we obtain β ∈ K

(
H, Sr(L)

)∗
= λ(L∗) from Lemma 3.1.

Consequently, all left parallel classes are stabilised under β, whence none of them
is a parallel class of ‖. This shows ‖` , ‖ = ‖r. �

Theorem 4.6. Let ‖ be a Clifford-like parallelism of
(
P(HF), ‖`, ‖r

)
, where H is an

F-algebra subject to (A) or (B). Then the following assertions are equivalent.

(a) The parallelism ‖ is Clifford and ‖` = ‖r.

(b) If an automorphism β ∈ Γ‖ fixes all lines of at least one parallel class of ‖,
then all parallel classes of ‖ are stabilised under β .

(c) The parallelism ‖ admits an automorphism β ∈ Γ‖ that stabilises all its
parallel classes, fixes at least one of its parallel classes linewise, and acts
as a non-identical collineation on the projective space P(HF).
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Proof. (a)⇒ (b). We have ‖ = ‖` = ‖r. Let β ∈ Γ‖ fix all lines of a right8 parallel
class, which will be written as Sr(L) with L ∈ A(HF). From Lemma 3.1, β ∈
K
(
H, Sr(L)

)∗
= λ(L∗) and so β stabilises all left parallel classes or, said differently,

all ‖-classes.
(b)⇒ (c). We may assume w.l.o.g. that there exists a line L ∈ A(HF) with the

property S(L) = Sr(L). There is a g ∈ L∗ \ F∗. The left translation λg =: β fixes all
lines of S(L) = Sr(L) and acts as a non-identical collineation on P(HF). So, by our
assumption, β stabilises all ‖-classes. Thus β meets all the requirements appearing
in (c).

(c)⇒ (a). We may assume w.l.o.g. that β fixes all lines of a right parallel class,
Sr(L) = S(L) with L ∈ A(HF). There are two possibilities.

Case (i). ‖` , ‖r. Theorem 4.3 gives that ‖ is a Clifford parallelism of(
P(HF), ‖`, ‖r

)
. From [17, Cor. 4.3], the parallelisms ‖` and ‖r have no parallel

classes in common. Consequently, Sr(L) being one of the ‖-classes yields ‖ = ‖r.
From Lemma 3.1, the given automorphism β is a left translation λg for some
g ∈ H∗. Since β acts non-identical on P(HF), we have g ∈ H∗ \ F∗. Hence,
by Proposition 3.7, at least one right parallel class is not stabilised under β, a
contradiction.

Case (ii). ‖` = ‖r. Now ‖` = ‖r is the only Clifford-like parallelism of the
projective double space

(
P(HF), ‖`, ‖r

)
, whence ‖ turns out to be Clifford. �
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Università Cattolica del Sacro Cuore
via Trieste, 17
I-25121 Brescia
Italy
silvia.pianta@unicatt.it

22


