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I. COMPLETION OF INCOMPLETE CONTEXTS

We shall find and analyze orthogonal vectors spanning two-
dimensional subspaces of four-dimensional real or complex
Hilbert space that are orthogonal to a given two-dimensional
subspace. In particular, we are interested whether those vec-
tors are indecomposable—a property of pure state vectors sig-
nifying entanglement of multipartite quantized systems.

In physics, this question is pertinent to a variety of tasks:
First, any orthonormal basis can be, by dyadic or tensor prod-
ucts, rewritten as a system of mutually perpendicular orthogo-
nal projection operators. This system can be extended to max-
imal hermitian operators associated with maximal quantum
observables in terms of their spectral sums containing mutu-
ally distinct eigenvalues. Often these maximal operators are
denoted as, and identified with, quantum mechanical contexts.

Quantum contexts serve as the basic building blocks of
quantum logical and probabilistic certification of quantiza-
tion. Boole-Bell type arguments consider three or more
isolated contexts and compare classical with quantum pre-
dictions of expectation functions. Hardy-type arguments
involve multiple intertwining contexts with two endpoints,
such that classical predictions relate the truth values of
these endpoints. Intertwining contexts with “scarce” two-
valued states—featuring classical nonseparability of elemen-
tary propositions or nonunital sets of two-valued states in-
terpretable as classical (truth) value assignments—yield log-
ics that cannot be homomorphically embedded into “larger”
Boolean algebras. And Kochen-Specker-type arguments
demonstrate the total absence of any classical interpretation
in terms of the aforementioned two-valued states.

All of the above tactics to certify quantization need quan-
tum representations of contexts in terms of (intertwining) or-
thonormal bases. Often the algebraic structures are formu-
lated and depicted in terms of (hyper)graphs [1]. These hy-
pergraphs, to be realizable in terms of quantum observables,
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need to allow a faithful orthogonal representation [2, 3], es-
sentially a vertex labeling by vectors, such that adjacent ver-
tices correspond to orthogonal vectors. Although in principle
the equations resulting from such relations may be solvable,
their direct solution turns out to be unattainable. Therefore
one is left with heuristic methods of parametrization [4] that
yield incomplete orthonormal systems; and therefore the ne-
cessity to complete those findings by supplementing missing
base vectors.

In four dimensions, concerning indecomposability—or,
in physical terms, entanglement—this task is straightfor-
ward for three given mutually orthogonal unit vectors—the
one-dimensional subspace spanned by the missing vector is
uniquely defined, and there is no choice. However, a com-
pletion with (in)decomposable vectors is not straightforward
for two given unit vectors. As we shall see there are rather
subtle criteria of (in)decomposability if the four-dimensional
Hilbert space is interpreted as a tensor product of two two-
dimensional spaces.

Such analysis is pertinent to the aforementioned task of
completing one or more bases or contexts of a (hyper)graph:
find a complete faithful orthogonal representation (aka coor-
dinatization) of a hypergraph when only a coordinatization
of the intertwining observables is known. For instance, for
Hardy type arguments, it is significant whether the resulting
completion of the context may comprise (in)decomposable
vectors [5].

We shall, in particular, consider a four-dimensional real or
complex Hilbert space H , where H is either the column
space R4 or C4. Suppose further that two unit vectors e1 and
e2 are known which are orthogonal, such that 〈e1|e2〉= 0. An
orthogonal basis can be formed with these two known vec-
tors, as well as with two “missing” vectors a and b. Those
latter missing vectors ought to have additional properties we
are interested in; in particular, for Hilbert spaces which can be
considered as tensor products of smaller-dimensional spaces,
(in)decomposability.

One uniform way of finding the general form of the miss-
ing vectors is by arranging a to-be-completed orthonormal
basis (aka context) B =

{
e1,e2,a,b

}
into a unitary matrix
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U=
(
e1,e2,a,b

)
and solving [6, Theorem 2]

|det(U)|= 1
4

Tr
(
UU†)= 1, (1)

where “†” stands for transposition and complex conjugation
(which, in the real case, reduces to transposition “ᵀ”).

The subspace M⊥ of the Hilbert space H orthogonal to
the subspace M spanned by both e1 and e2 will be two-
dimensional and spanned by a and b. This leaves a continuity
of freedom in choosing those latter vectors.

Continuity of choices aside; whether or not the missing
vectors can be selected to be (in)decomposable is not merely
a question of choice but depends on the vectors e1 and e2
one started with. For instance, if e1 =

(
1,0,0,0

)ᵀ and e2 =(
0,1,0,0

)ᵀ an elementary calculation shows that there is no
option for both a as well as b not to be decomposable: Sup-
pose a ∝

(
a1,a2,a3,a4

)ᵀ; then 〈a|e1〉 = 〈a|e2〉 = 0 implies
a1 = a2 = 0. Therefore, a must be of the form

(
0,0,a3,a4

)ᵀ.
The same argument holds for b. By the criterion of decompos-
ability for vectors derived later, by which the scalar product of
the two “outer” components of the vector must be equal to the
two “inner” components of the vector, both a as well as b are
decomposable.

For the sake of an example in which a as well as b may ei-
ther be chosen decomposable or indecomposable, consider the
instance e1 =

(
1,0,0,0

)ᵀ and e2 =
(
0,0,0,1

)ᵀ which allows
either decomposable completions such as a =

(
0,1,0,0

)ᵀ
and b =

(
0,0,1,0

)ᵀ or indecomposable completions such as
a = 1√

2

(
0,1,1,0

)ᵀ and b = 1√
2

(
0,1,−1,0

)ᵀ.
The general question therefore remains: given two orthogo-

nal unit vectors e1 and e2, when is it possible for those missing
vectors a and b of a “completed” orthogonal basis (aka con-
text) B =

{
e1,e2,a,b

}
to be (in)decomposable?

II. NOMENCLATURE

Let H2 and H either denote the real vector spaces R2 and
R4 or the complex vector spaces C2 and C4. The standard
inner product 〈·|·〉 makes H2 and H into a Hilbert space.
We identify the outer or tensor product H2 ⊗H2 with H
as follows. Given vectors u =

(
u1,u2

)ᵀ and v =
(
v1,v2

)ᵀ in
H we let u⊗ v =

(
u1v1,u1v2,u2v1,u2v2

)ᵀ ∈ H , which is
a form of “vectorization” (that is, a flattening) of this tensor
product. This product can be compared to the general form
of a vector in four dimensions z =

(
z1,z2,z3,z4

)ᵀ. Therefore,
for z to be decomposable z1 = x1y1, z2 = x1y2, z3 = x2y1, and
z4 = x2y2, from which, because of commutativity of scalar
multiplication, follows that

z1z4 = x1y1x2y2 = x1x2y1y2 = x1y2x2y1 = z2z3. (2)

That is, the product of the “outer components” z1z4 of z must
be equal to the product of its “inner components” z2z3, or
equivalently, z1z4− z2z3 = 0 [7, p. 18]. This condition is also
sufficient, as it renders three equations for the four unknowns
x1, x2, y1 and y2.

Criterion (2) for decomposability can be rewritten in terms
of a symmetric bilinear form as follows. The mapping z =(
z1,z2,z3,z4

)ᵀ 7→ 2(z1z4−z2z3) is a quadratic form which has
an associated bilinear form (not to be confused with the scalar
or inner product denoted by 〈a|b〉)

(a|b) = (a1b4−a2b3−a3b2 +a4b1)

=
(
a1,a2,a3,a4

)0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


b1

b2
b3
b4


= aᵀ ·A ·b,

with A :=

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

(3)

Therefore,

(z|z) = 2(z1z4− z2z3) = 0 (4)

characterises z as decomposable.
The (non-degenerate) bilinear form (3) can then be used to

define a Gramian matrix of two vectors a and b by

Gab =

(
(a|a) (a|b)
(b|a) (b|b)

)
. (5)

This definition of the Gramian matrix for two vectors has a
straightforward generalization for an arbitrary finite number
of vectors which we shall use later.

Because of symmetry (a|b) = (b|a) the Gram determinant
satisfies ∣∣∣∣(a|a) (a|b)

(b|a) (b|b)

∣∣∣∣= (a|a)(b|b)− (a|b)2. (6)

The symmetric matrix A that is defined in (3) coincides
with its inverse A−1. Let x = ℜx− iℑx stand for complex con-
jugation, so that, for real vector spaces, x = x for all vectors
x. The matrix A−1 defines a bijection

x =
(
x1,x2,x3,x4

)ᵀ 7→ A−1 ·x =
(
x4,−x3,−x2,x1

)ᵀ
=
(
x4,−x3,−x2,x1

)†
=: x̃,

(7)

which is linear in the real case and antilinear in the complex
case.

For two vectors x and y, because of A−1 =
(
A−1)ᵀ,

〈x|y〉= x† ·y = x† ·
(
A−1 ·A

)
·y

= xᵀ ·
(
A−1)ᵀ ·A ·y

=
[(
A−1) ·x]ᵀ ·A ·y = (x̃|y),

(8)

where x̃ =
(
A−1) ·x. That is, the inner product can be rewrit-

ten in terms of the bilinear form (3) which enters the Gram
matrix (5). This is a central facility for the following classifi-
cation of two-dimensional planes in four-dimensional Hilbert
space.
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As a side note observe that, though a coordinate change
in the new coordinates x 7→ x′ with x1 7→ x′1 = (x1 + x4)/

√
2,

x2 7→ x′2 = (x2− x3)/
√

2, x3 7→ x′3 = (x2 + x3)/
√

2, and x4 7→
x′4 = (x1−x4)/

√
2 “mixing outer as well as inner components,

respectively”, this symmetric bilinear form can be rewritten in
terms of a diagonal matrix A′ = diag(1,1,−1,−1), such that
(x|y) = (x′)ᵀ ·A′ · y′; and, in particular, (z|z) = (z′)ᵀ ·A′ · z′.
[For a proof, expand (x′)ᵀ ·A′ ·y′ in terms of x and y.] In these
new coordinates z′ a necessary and sufficient criterion for z to
be decomposable is (z′)ᵀ ·A′ · z′ = 0.

Over the complex numbers only, a second coordinate
change x′ 7→ x′′ with x′1 7→ x′′1 = x′1, x′2 7→ x′′2 = x′2, x′3 7→ x′′3 =
ix′3, and x′4 7→ x′′4 = ix′′4 yields A′′ = diag(1,1,1,1) as matrix of
this symmetric bilinear form.

We shall make use of the following equality. Let s =(
s1,s2

)ᵀ, t =
(
t1, t2

)ᵀ, u =
(
u1,u2

)ᵀ and v =
(
v1,v2

)ᵀ
be arbitrary vectors of H2. Then ∑

2
j,k=1 (s jtk)(u jvk) =(

∑
2
j=1 s ju j

)(
∑

2
k=1 tkvk

)
implies

〈s⊗ t|u⊗v〉= 〈s|u〉〈t|v〉. (9)

Eq. (9) can be rephrased in the following way. The inner prod-
uct on H is the second tensor power of the inner product on
H2; see [7, Appendix A, p. 164] or [8, Sect. 3.4, pp. 47–48].

Likewise, s1t1u2v2 − s1t2u2v1 − s2t1u1v2 + s2t2u1v1 =
(s1u2− s2u1)(t1v2− t2v1) results in

(s⊗ t|u⊗v) = det(s,u)det(t,v), (10)

where (s,u) stands for the matrix whose first and second col-
umn are s and u, respectively. That is, the symmetric bilin-
ear form (·|·) on H from (3) is the second tensor power of
the skew-symmetric bilinear form given by the determinant
on H2 [9, Sect. 1.22, p. 30–31].

The (anti)linear transformation of H2 sending u =(
u1,u2

)ᵀ to u× =
(
u2,−u1

)ᵀ satisfies

〈u|u×〉= 0. (11)

Furthermore, it allows us to rewrite any inner product in terms
of the determinant:

〈u|v〉= u1v1 +u2v2 =

∣∣∣∣ u2 v1
−u1 v2

∣∣∣∣= det(u×,v). (12)

We also observe that

〈u×|v×〉= u2v2 +u1v1 = 〈u|v〉= 〈v|u〉. (13)

Furthermore, the second tensor power of the (anti)linear trans-
formation u 7→ u× equals the (anti)linear transformation from
Eq. (7):

u×⊗v× =
(
u2v2,−u2v1,−u1v2,u1v1

)ᵀ
= (̃u⊗v). (14)

III. PLANE TYPES

Let V be any finite dimensional vector space over the real
or complex numbers. Basic results about symmetric bilinear

forms on such a vector space can be found, for example, in
[10, Theorems 11.21, 23, 24, 25, 26, pp. 283–288]. We briefly
recall these results in a form which is tailored to our needs.
That is, we consider a k-dimensional subspace S of H to-
gether with the restriction of (·|·) to S rather than V together
with an arbitrary symmetric bilinear form on V .

Suppose that an arbitrary basis of S is given. Then the
Gramian matrix of this basis with respect to (·|·), which is
defined in analogy to (5), is a symmetric (k× k)-matrix. In
a first step, one can switch to a (not necessarily orthogonal)
basis {b1,b2, . . . ,bk} of S which has a Gramian matrix in
diagonal form. Next, by scaling and reordering the vectors
b j, j = 1,2 . . . ,k, in an adequate way, one obtains a basis
{c1,c2, . . . ,ck} of S such that its Gramian matrix with respect
to (·|·) takes the form

diag(1,1, . . . ,1︸ ︷︷ ︸
p≥0

,−1,−1, . . . ,−1︸ ︷︷ ︸
r−p≥0

,0,0, . . . ,0︸ ︷︷ ︸
k−r≥0

) (15)

for some p,r in the real case and the form

diag(1,1, . . . ,1︸ ︷︷ ︸
r≥0

,0,0, . . . ,0︸ ︷︷ ︸
k−r≥0

) (16)

for some r in the complex case. (The need to distinguish be-
tween these two cases stems from the fact that negative real
numbers do not admit a real square root.) The numbers r and
p appearing in (15) and (16) are thereby uniquely determined
by S and (·|·), that is, they do not depend on the choice of an
appropriate basis of S . We also observe that the radical of
S , which is defined as

rad(S ) = {x ∈S | (x|y) = 0 for all y ∈S },

satisfies

rad(S ) = span{cr+1,cr+2, . . . ,ck}. (17)

In particular, letting S = H yields the matrices A′ =
diag(1,1,−1,−1) (real case) and A′′ = diag(1,1,1,1) (com-
plex case) that we already encountered at the end of Section II.

Let S = M be some plane, defined as a two-dimensional
subspace of the Hilbert space H . Then, by the above, there
exists at least one basis {c1,c2} of M such that the Gramian
matrix Gc1c2 defined in (5) with respect to the bilinear form
defined in (3) takes on one of the following forms:

(i) real (Hilbert space) case:

(i.1) Gc1c2 = diag(0,0),

(i.2) Gc1c2 = diag(1,0),

(i.3) Gc1c2 = diag(−1,0),

(i.4) Gc1c2 = diag(1,1),

(i.5) Gc1c2 = diag(−1,−1),

(i.6) Gc1c2 = diag(1,−1);

(ii) complex (Hilbert space) case:

(ii.1) Gc1c2 = diag(0,0),
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(ii.2) Gc1c2 = diag(1,0),

(ii.3) Gc1c2 = diag(1,1).

If, say, the plane M is (uniquely) associated with the Gramian
matrix of the form diag(1,0) then we shall denote M as a
plane of type (1,0). The other cases are treated accordingly.
Our discussion below will establish the existence of all these
possible plane types.

Let us come back to an earlier question: Suppose that an
arbitrary basis {a,b} of M has been found. The question
then is: does this two-dimensional subspace allow or support
(in)decomposable vectors in four-dimensional space?

The cases (i.1)–(i.6) for real four-dimensional Hilbert space
H =R4 as well as (ii.1)–(ii.3) for complex four-dimensional
Hilbert space H = C4 discussed earlier present a means to
answer this question. Thereby the Gramian matrix Gab is
used for an identification and characterization of the partic-
ular unique plane type of M .

For real four-dimensional Hilbert space H = R4 there are
six types of planes, corresponding to the cases (i.1) to (i.6)
mentioned earlier. In what follows three cases and the respec-
tive subcases will be discussed which characterize those six
plane types. We thereby apply results that provide, for real
vector spaces of any finite dimension, necessary and sufficient
conditions for the (semi)definiteness of a quadratic form in
terms of principal minors of its Gramian matrix with respect
to an arbitrary basis.

In the following analysis, based on the earlier classification
(i.1)–(i.6) for real four-dimensional Hilbert space as well as
(ii.1)–(ii.3) for complex four-dimensional Hilbert space, the
Gram determinant det(Gab) will be denoted by G, and Gi j
stands for the element in the ith row and the jth column of the
Gramian matrix Gab.

A. Gram determinant G > 0, plane of types (1,1) or (−1,−1)

G > 0 means that (a|a) as well as (b|b) have the same sign
and are both non-zero.

1. G11 = (a|a)> 0, plane of type (1,1)

In this subcase (a|a) is positive, which indicates a plane of
type (1,1) [11, Thm. 3, p. 306]. Consequently, all non-zero
vectors of M are indecomposable.

A typical example is the two-dimensional subspace
spanned by a =

(
0,1,−1,0

)ᵀ and b =
(
1,0,0,1

)ᵀ. Any ele-
ment of the span of a and b can be written as

(
x1,x2,−x2,x1

)ᵀ.
The associated Gramian is of the form Gab = diag(2,2).

2. G11 = (a|a)< 0, plane of type (−1,−1)

In this subcase (a|a) is negative, which indicates a plane of
type (−1,−1) [11, Thm. 5, p. 308]. Consequently, all non-
zero vectors of M are indecomposable.

A typical example is the two-dimensional subspace
spanned by a =

(
0,1,1,0

)ᵀ and b =
(
1,0,0,−1

)ᵀ. Any ele-
ment of the span of a and b can be written as

(
x1,x2,x2,−x1

)ᵀ.
The associated Gramian is of the form Gab = diag(−2,−2).

B. Gram determinant G = 0,
plane of types (0,0), (1,0) or (−1,0)

1. G11 = (a|a) = G22 = (b|b) = 0, plane of type (0,0)

In this subcase G = (a|b)2 = 0, so that the Gramian van-
ishes – that is, Gab = diag(0,0). Hence, by definition, M is a
plane of type (0,0). Any plane of this type contains a continu-
ity of decomposable vectors and no indecomposable vector.

A typical example is the two-dimensional subspace
spanned by a=

(
1,0,0,0

)ᵀ and b=
(
0,1,0,0

)ᵀ. Any element
of the span of a and b can be written as

(
x1,x2,0,0

)ᵀ.

2. G11 = (a|a)> 0 or G22 = (b|b)> 0, plane of type (1,0)

In this subcase one of (a|a) and (b|b), say (a|a), is assumed
to be positive. Then the other one, in this case (b|b), needs to
be non-negative, because only then the product (a|a)(b|b) is
non-negative and therefore may “compensate” the subtraction
of the non-negative term (b|a)2 of the Gram determinant (6).
From [11, Thm. 4, p. 307], M is a plane of type (1,0).

Decomposability (4) requires that, for some ξ ,
(ξ a + b|ξ a + b) = G11ξ 2 + 2G12ξ + G22 = 0, and

thus, ξ =
(
−2G12±

√
4G2

12−4G11G22

)
/(2G11) =(

− G12 ±
√
−G︸ ︷︷ ︸
=0

)
/G11 = −G−1

11 G12. Note that, in order

for the denominator G11 = (a|a) not to vanish, ξ must be
multiplied with the indecomposable vector a. Therefore there
exists (up to scale factors) only a unique decomposable vector
in M , namely c =−G−1

11 G12a+b. All vectors in M that are
not in the span of c – indeed, a continuity of vectors – are
indecomposable.

A typical example is the two-dimensional subspace
spanned by a =

(
0,1,−1,0

)ᵀ and b =
(
1,0,0,0

)ᵀ. Any ele-
ment of the span of a and b can be written as

(
x1,x2,−x2,0

)ᵀ.
The associated Gramian is of the form Gab = diag(2,0).

3. G11 = (a|a)< 0 or G22 = (b|b)< 0, plane of type (−1,0)

In this subcase one of (a|a) and (b|b), say (a|a), is assumed
to be negative. Then the other one, in this case (b|b), needs to
be non-positive, because only then the product (a|a)(b|b) is
non-positive and therefore may “compensate” the subtraction
of the non-negative term (a|b)2 of the Gram determinant (6).

Again, there exists (up to scale factors) only a unique de-
composable vector in M , namely c =−G−1

11 G12a+b.
A typical example is the two-dimensional subspace

spanned by a =
(
0,1,1,0

)ᵀ and b =
(
1,0,0,0

)ᵀ. Any ele-
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ment of the span of a and b can be written as
(
x1,x2,x2,0

)ᵀ.
The associated Gramian is of the form Gab = diag(−2,0).

C. Gram determinant G < 0, plane of type (1,−1)

In this case (a|a) as well as (b|b) can be anything (positive,
negative, zero). By the characterizations in [11, Thm. 3, 4, 5,
6, pp. 306–308], the plane M has to be of the only remaining
type, that is, of type (1,−1).

There exists (up to scale factors) only two unique distinct
decomposable vectors c±, in accordance with the construc-
tion given next. All other vectors – indeed, a continuity
of vectors in the plane spanned by a and b – are indecom-
posable. This can again be shown by assuming the case
(a|a) 6= 0, and by noting that decomposability (4) requires
that, for some ξ , (ξ a+b|ξ a+b) = G11ξ 2 +2G12ξ +G22 =

0, such that ξ± =
(
−2G12±

√
4G2

12−4G11G22

)
/(2G11) =(

−G12±
√
−G︸ ︷︷ ︸
6=0

)
/G11. Note that these two solutions c± =

[(
−G12±

√
−G
)
/G11

]
a+ b need not be mutually orthogo-

nal. In the second case one supposes that, instead of (a|a) 6= 0,
now (b|b) 6= 0, and carries through an analogous calculation.
In the third case (a|a) = (b|b) = 0 both vectors a as well as b
are already decomposable. Note that, in order for the denom-
inator not to vanish, ξ must be multiplied with the respective
indecomposable vector.

A typical example is the two-dimensional subspace
spanned by a =

(
1,0,0,0

)ᵀ and b =
(
0,0,0,1

)ᵀ. Any ele-
ment of the span of a and b can be written as

(
x1,0,0,x2

)ᵀ.

The associated Gramian is of the form Gab =

(
0 1
1 0

)
.

The main results of those considerations, as it concerns the
question of (in)decomposability, is that, with the exception
of type (0,0) planes which contain only decomposable vec-
tors, all other five plane types contain (a continuity of) or-
thogonal bases spanning them whose basis vectors are both
indecomposable: planes of type (1,−1) contain (up to scale
factors) a single orthogonal basis whose elements are decom-
posable; and planes of types (1,0) and (−1,0) contain (up to
scale factors and permutations) a single orthogonal basis with
one decomposable and one indecomposable element. Planes
of plane of types (1,1) and (−1,−1) contain no decompos-
able non-zero vectors. This completes the characterisation of
the real case.

For complex four-dimensional Hilbert space H = C4, ac-
cording to the cases (ii.1) to (ii.3) mentioned earlier, the rank
of Gab determines the type of M [10, Theorem 11.24, p. 287]:

(i) If rank(Gab) = 0 then M is of type (0,0). Earlier
remarks concerning properties of a plane of real type
(0,0) pertain.

(ii) If rank(Gab) = 1 then M is of type (1,0). This sit-
uation parallels that of a plane of real type (1,0). In
particular, the calculation from there, yielding a unique
decomposable vector c ∈M , carries over provided that

G11 = (a|a) 6= 0. Moreover, there is continuity of inde-
composable vectors in M which are not in the span of
c.

(iii) If rank(Gab) = 2 then M is of type (1,1). There is a
neat analogy to the case of a plane of real type (1,−1).
Note that any quadratic equation over the complex num-
bers with non-vanishing discriminant has precisely two
distinct solutions. Therefore, the calculation of the de-
composable vectors c± ∈M carries over, provided that
G11 = (a|a) 6= 0.

All three plane types actually occur. This follows imme-
diately from a reinterpretation of our various examples in the
real case.

The various types of planes admit a geometric interpreta-
tion in terms of the projective space P(H ). We recall that
the points of P(H ) are the one-dimensional subspaces of H .
A set of points is called a projective line (projective plane)
of P(H ) if it comprises all one-dimensional subspaces of
H that are contained in some fixed two-dimensional (three-
dimensional) subspace of H ; see, for example, [12, p. 122].
All points of P(H ) that are spanned by decomposable vectors
constitute a ruled quadric Φ, say, with equation z1z4− z2z3 =
0 [12, pp. 143–144]. The type of a projective line is under-
stood to be the type of the associated subspace of H .

In the real case the points off the quadric Φ fall into two
classes, namely the sets of points span{z}, z ∈ H , with
(z|z)> 0 and (z|z)< 0, respectively. We call these two classes
the positive and the negative side of Φ, respectively. (From a
geometric point of view, the attributes “positive” and “nega-
tive” are immaterial. Indeed, multiplying the equation of Φ by
some negative real number will change the labelling of the two
sides but not the quadric Φ.) A projective line is of type (0,0)
precisely when it is contained in Φ. A projective line is of type
(1,0) [of type (−1,0)] if and only if it meets Φ at a unique
point whereas all its other points are on the positive [nega-
tive] side of Φ. The projective lines of type (1,1) [of type
(−1,−1)] are those which are contained in the positive [neg-
ative] side of Φ. Finally, a projective line is of type (1,−1)
precisely when it meets Φ at exactly two distinct points. (Any
such line contains points from either side.)

In the complex case, a projective line is of type (0,0), (1,0)
or (1,1) precisely when it is contained in Φ, it meets Φ at a
unique point or it meets Φ at exactly two distinct points.

In order to visualize this situation in the real case, we con-
sider the affine space on R3; its points are the vectors of R3,
an affine line (affine plane) is a translate of a one-dimensional
(two-dimensional) subspace of R3. There is a one-one cor-
respondence between the set of points of P(H ) that are not
contained in the projective plane z4 = 0 and the set of points
of the affine space on R3 as follows:

span{(z1,z2,z3,z4)
ᵀ} 7→ (w1,w2,w3)

ᵀ =

(
z1

z4
,

z2

z4
,

z3

z4

)ᵀ

.

Under this correspondence a projective line (plane) corre-
sponds to an affine line (plane) unless it is contained in the
projective plane z4 = 0 [12, p. 124].
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The points (off the plane z4 = 0) of the ruled quadric Φ cor-
respond to the points of a hyperbolic paraboloid with equation
w1 = w2w3, which is depicted in Fig. 1. The figure also shows
several affine lines together with the type of their associated
projective lines. All affine lines on the paraboloid, among
which are the w2-axis and the w3-axis are of type (0,0). The
points “above” (”below”) the paraboloid illustrate the positive
(negative) side. The w1-axis thereby is understood to be “tend-
ing upwards”. Take notice that this picture lacks all points
of P(H ) in the projective plane z4 = 0. Therefore, in some
cases, it provides an incomplete illustration. For example, the
w1-axis has just one point in common with the paraboloid,
namely (0,0,0)ᵀ even though it corresponds to a projective
line of type (1,−1), which is spanned by the decomposable
vectors (1,0,0,0)ᵀ and (0,0,0,1)ᵀ.

w2

w3

w1

(1,1)

(1,0)

(−1,0)

(−1,−1) (1,−1)

FIG. 1. Schematic drawing of various plane types.

The paraboloid from Fig. 1 is one way to visualize the ruled
quadric Φ comprising all points that are spanned by decom-
posable vectors; this can also be found in Refs. [13, Fig. 6,
p. 4687] and [14, Fig. 16.1, p. 438]. For an alternative point
of view, from which Φ appears as a hyperboloid of one sheet,
see Refs. [12, Fig. 2.17, p. 35] and [14, Fig. 4.3, p. 113].

IV. IDENTIFICATION AND CHARACTERIZATION OF
(ORTHOGONAL) PLANES

We are now in a position to solve the problem mentioned
earlier: suppose we are given two orthogonal unit vectors e1
and e2 spanning a plane (aka the two-dimensional subspace)
M of a four-dimensional Hilbert space H . One intermediate
task – a straightforward [e.g. via the system of non-linear
equations (1)] exercise – is to find an orthogonal basis {a,b}
of the plane M⊥ orthogonal to M . Here we are not concerned
with the explicit realization of two remaining vectors a and b.
We focus instead on the identification and analysis of the plane
M⊥, which allows us to decide whether or not a and b can be
chosen indecomposable.

We shall solve this latter problem directly by substitution
of the inner product 〈·|·〉 by the bilinear form (·|·) from (3), as
exposed in Eq. (8).

We start by introducing the plane which is defined as the
image of M under the (anti)linear transformation (7):

M̃ =
{(

A−1) ·x | x ∈M
}
= {x̃ | x ∈M } . (18)

The first essential point is as follows. The planes M and M̃
are of the same type regarding (·|·). In order to prove the
assertion, we note that, by a straightforward calculation,

(x̃|ỹ) = (x|y) for all x,y ∈H . (19)

Now let {c1,c2} be a basis of M such that the Gramian matrix
Gc1c2 has the distinguished form as described in (15) for the
real case or as in (16) for the complex case. Then {c̃1, c̃2} is a
basis of M̃ and (19) gives

Gc̃1 c̃2
= Gc1c2 = Gc1c2 , (20)

which establishes the result.
The second essential point is that the type of M⊥ regarding

(·|·) is co-determined by the type of M̃ regarding (·|·). Notice,
however, that, as earlier, the real and complex cases have to
be treated separately: whereas in the complex (Hilbert space)
case M⊥ and M̃ are of the same type, in the real (Hilbert
space) case

(i) M⊥ is of type (0,0)⇔ M̃ is of type (0,0),

(ii) M⊥ is of type (1,−1)⇔ M̃ is of type (1,−1),

(iii) M⊥ is of type (±1,±1)⇔ M̃ is of type (∓1,∓1),

(iv) M⊥ is of type (±1,0)⇔ M̃ is of type (∓1,0).

Our proof is based on the following alternative descrip-
tion of M̃ , which makes use of Eq. (18), the identity M =
(M⊥)⊥, Eq. (3) and the bijectivity of the transformation (7):

M̃ = {x̃ ∈H | x ∈M }
= {x̃ ∈H | x ∈ (M⊥)⊥}
= {x̃ ∈H | 〈x|y〉= 0 for all y ∈M⊥}
= {x̃ ∈H | (x̃|y) = 0 for all y ∈M⊥}
= {z ∈H | (z|y) = 0 for all y ∈M⊥}.

(21)

Likewise, we also have

M⊥ = {y ∈H | 〈x|y〉= 0 for all x ∈M }
= {y ∈H | (x̃|y) = 0 for all x ∈M }

= {y ∈H | (z|y) = 0 for all z ∈ M̃ }.
(22)

Eqs. (21) and (22) imply that

rad(M̃ ) = M̃ ∩M⊥ = rad(M⊥). (23)
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There exist bases {d1,d2} of M̃ and {d3,d4} of M⊥ such
that their Gramian matrices have the distinguished form as
described in (15) for the real case or as in (16) for the complex
case. Let m denote the dimension of the subspace appearing in
Eq. (23). Then Eq. (17), applied to M̃ and its basis {d1,d2},
together with one of Eqs. (15) and (16) shows that the leading
2−m diagonal entries of the Gramian matrix Gd1d2 are non-
zero, whereas the remaining m diagonal entries are zero. The
same result holds, mutatis mutandis, for the Gramian matrix
Gd3d4 . There are three cases.

In the first case, H is a complex Hilbert space or m = 2.
Then, by the above, Gd1d2 = Gd3d4 so that M̃ and M⊥ are of
the same type. In particular, for m = 2 both planes are of type
(0,0). This establishes the result for a complex space as well
as (i) for a real space.

In the second case, H is a real Hilbert space and m = 0.
The planes M̃ and M⊥ are of types (ε1,ε2) and (ε3,ε4), re-
spectively, where ε1,ε2,ε3,ε4 ∈ {1,−1}. Since m= dim(M̃ ∩
M⊥) = 0, the four vectors d1,d2,d3,d4 constitute a basis
of M̃ ⊕M⊥ = H and Gd1d2d3d4 = diag(ε1,ε3,ε3,ε4). By
Sylvester’s law of inertia [11, Thm. 1, p. 297], this matrix co-
incides – up to a permutation of its diagonal entries – with
the matrix A′ = diag(1,1,−1,−1) from Section II. This es-
tablishes (ii) and (iii).

In the third case, H is a real Hilbert space and m = 1. The
planes M̃ and M⊥ are of types (ε1,0) and (ε3,0), respec-
tively, where ε1,ε3 ∈ {1,−1}. In order to verify (iv), it re-
mains to show that ε1 and ε3 have different signs. Assume
to the contrary that, for example, ε1 and ε3 are both posi-
tive. From Eq. (17), applied to M̃ and its basis {d1,d2},
we obtain d1 /∈ rad(M̃ ) and d2 ∈ rad(M̃ ). The same kind
of reasoning for M⊥ and {d3,d4} yields d3 /∈ rad(M⊥) and
d4 ∈ rad(M⊥). Thus, using Eq. (23), d1,d3 /∈ M̃ ∩M⊥

whereas d2,d4 ∈ M̃ ∩M⊥. The three vectors d1,d2,d3 there-
fore constitute a basis of M̃ +M⊥ and its Gramian matrix
has the form Gd1d2d3 = diag(ε1,0,ε3) = diag(1,0,1). There-
fore (x|x)≥ 0 for all x ∈ M̃ +M⊥. On the other hand, there
exists a plane N of type (−1,−1), whence (x|x) < 0 for all
non-zero vectors x ∈N . Due to dimH = 4, the plane N
has a non-zero intersection with the three-dimensional sub-
space M̃ +M⊥, that is, there exists a vector n ∈ M̃ +M⊥

with (n,n)< 0, a contradiction.
Summing up, the plane type of M⊥ can be directly ob-

tained by analyzing the Gramian matrix Ge1e2 of the two given
“input” vectors e1 and e2, and, in the complex case, determin-
ing its rank.

V. ORTHOGONALITY OF DECOMPOSABLE VECTORS

Throughout this section, M denotes a plane of type (1,−1)
(real case) or of type (1,1) (complex case). Then there exist
vectors s, t,u,v in H2 such that{

s⊗ t,u⊗v
}
, (24)

is a basis of M . Since M is not of type (0,0), we must have,
by virtue of Eq. (10),

(s⊗ t|u⊗v) = det(s,u)det(t,v) 6= 0. (25)

This in turn shows that {s,u} and {t,v} are bases of H2. Now
(25) implies det(s×,u×) = det(s,u) 6= 0 and det(t×,v×) =
det(t,v) 6= 0. Therefore each of the sets {s×,u×} and {t×,v×}
is a basis of H2. Consequently, we obtain{

s×⊗ t×, s×⊗v×︸ ︷︷ ︸
=:b

, u×⊗ t×︸ ︷︷ ︸
=:a

, u×⊗v×
}

(26)

as a basis of H . Furthermore, it is immediate from Eqs. (9)
and (11) that each of the linearly independent vectors a and b
is orthogonal to the vectors s⊗ t and u⊗v, that is, {a,b} is a
basis of the plane M⊥.

If the basis vectors of M appearing in (24) are orthogo-
nal, may we then suspect that there exists a “completed” or-
thogonal basis of the four-dimensional real or complex Hilbert
space H which (includes these two vectors and) consists
solely of decomposable vectors? Stated pointedly, does the or-
thogonality of decomposable vectors spanning the given plane
M imply that the corresponding two decomposable vectors
in the orthogonal subspace M⊥ [which is again of the same
type] are also orthogonal, and vice versa? In what follows we
shall prove that this is indeed the case; that is, the orthogonal-
ity of the two decomposable vectors from (24) is “inherited”
by the two decomposable vectors a and b defined in (26). Us-
ing Eqs. (9) and (13) we obtain:

〈s⊗ t|u⊗v〉= 〈s|u〉〈t|v〉 (27)

and

〈u×⊗ t×|s×⊗v×〉= 〈u×|s×〉〈t×|v×〉= 〈s|u〉〈v|t〉. (28)

Therefore s⊗ t and u⊗v are orthogonal if and only if at least
one of the inner products 〈s|u〉 and 〈t|v〉 vanishes. This in turn
is equivalent to u×⊗ t× and s×⊗v× being orthogonal.

Our considerations from above do not involve the auxiliary
plane M̃ that we used before. We add, for the sake of com-
pleteness, that a basis of M̃ is given by{

s×⊗ t×, u×⊗v×
}
. (29)

This follows from Eq. (14) applied to the basis vectors of M
from (24). Note that Eq. (27) and the analogue of (28) (ob-
tained by interchanging s× and u×) establishes that the or-
thogonality of the decomposable basis vectors of M̃ from (29)
holds precisely when the decomposable basis vectors of M
from (24) are orthogonal.

All things considered, we see that the four decomposable
basis vectors from (26) give rise to six planes. Two of them
are M⊥ and M̃ . The remaining four planes are of type (0,0):
Take, for example, the plane spanned by s× ⊗ t× and s× ⊗
v×. An arbitrary linear combination of these two vectors reads
ξ1(s×⊗t×)+ξ2(s×⊗v×) = s×⊗(ξ1t×+ξ2v×) and therefore
is decomposable.
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In a geometric language, the four vectors from (26) gener-
ate the vertices of a tetrahedron with three specific properties
in the projective space P(H ). First, the vertices of the tetra-
hedron are on the ruled quadric Φ, whose points are given
by all non-zero decomposable vectors. Second, two edges of
the tetrahedron meet Φ at exactly two distinct points. Third,
the remaining four edges lie completely on the quadric Φ.
One tetrahedron of this kind is depicted in Fig. 2, where we
adopted the same affine viewpoint as in Fig. 1.

w2

w3

w1

FIG. 2. Tetrahedron arising from the basis (26).

It is a straightforward task to obtain all planes of type
(1,−1) (real case) and of type (1,1) (complex case) by a re-
verse approach. Given any two bases {s′,u′} and {t′,v′} of
H2 the analogue of (25) holds. This shows that the plane
spanned by s′⊗ t′ and u′⊗ v′ has the required type. Further-
more, by an appropriate choice of the initial bases, one can
assure that s′⊗ t′ and u′⊗v′ are (non-)orthogonal.

VI. CONSEQUENCES FOR COMPLETION OF
CONTEXTS

One of the main results of this categorization exercise is
that, as long as the two given vectors e1 and e2 do not span a
plane of type (0,0) – that is, as long as their Gramian does not
vanish such that Ge1e2 = diag(0,0) – the vectors completing
the context (four-dimensional orthogonal basis) can always be
chosen to be indecomposable, and therefore correspond to en-
tangled states. In the case the Gramian Ge1e2 vanishes the en-
tire context consists of decomposable vectors associated with
non-entangled states. Moreover, if there exist two orthogo-
nal decomposable vectors spanning a plane it is always pos-
sible to “complete” the respective orthogonal basis by adding
two orthogonal decomposable vectors spanning the orthogo-
nal subspace.

For the sake of a concrete example consider the faithful
orthogonal representation (aka coordinatization) of a hyper-
graph of the Hardy type, as quoted from the last row of Table I

of Ref. [5], as depicted in Fig. 3.

2
3

20

21

17
16

18 19

8
9

12
11

(
i,3,3,5

)ᵀ

(
i,1,− 1

2 ,−
1
2

)ᵀ (
i,− 1

2 ,1,−
1
2

)ᵀ
(
1, i, i,−i

)ᵀ(
1,−i, i, i

)ᵀ (
1, i,−i, i

)ᵀ(
i,2,1,2

)ᵀ (
i,1,2,2

)ᵀ

(
5, i, i, i

)ᵀ

FIG. 3. “Incomplete” faithful orthogonal representation (aka coor-
dinatization) of the orthogonality hypergraph of the Hardy gadget, as
quoted from Figure 1 and the last row of Table I of Ref. [5].

It comprises a pasting of two complete (aka orthogonal
bases, maximal operators [15, § 84, Theorem 1], Boolean
subalgebras or blocks [16], maximal cliques) as well as six
incomplete intertwining contexts{(

i,1,− 1
2 ,−

1
2

)ᵀ
,
(
i,3,3,5

)ᵀ
,2,3

}
,{(

5, i, i, i
)ᵀ

,
(
i,2,1,2

)ᵀ
,8,9

}
,{(

5, i, i, i
)ᵀ

,
(
i,1,2,2

)ᵀ
,11,12

}
,{(

i,− 1
2 ,1,−

1
2

)ᵀ
,
(
i,3,3,5

)ᵀ
,16,17

}
,{(

1,−i, i, i
)ᵀ

,
(
1, i,−i, i

)ᵀ
,18,19

}
,{(

1, i, i,−i
)ᵀ

,
(
i,3,3,5

)ᵀ
,20,21

}
,

(30)

arranged in and 21 atoms or vectors, 2 × 6 = 12
thereof undefined, namely (partitions indicate same contexts)
{{2,3},{8,9},{11,12},{16,17},{18,19},{20,21}}.

By now it should be clear that all of these undefined vec-
tors can be made to be indecomposable: by a parity argument
using their even numbers of imaginary units all of the defined
vectors are indecomposable; hence there is no way that these
could span a (transformed) type (0,0) plane. But in what
plane types exactly are those undefined vectors? All we need
to know is the type of the planes spanned by the transformed
known vector pairs, which reduces to the task of computing
the rank of their Gramian matrices.

For the sake of an explicit computation, take the con-
text defined by

{(
i,1,− 1

2 ,−
1
2

)ᵀ
,
(
i,3,3,5

)ᵀ
,2,3

}
, and iden-

tify e1 =
(
i,1,− 1

2 ,−
1
2

)ᵀ, e2 =
(
i,3,3,5

)ᵀ, a = 2, b = 3, re-
spectively. Then the associated Gramian matrix is Ge1e2 =

1
4

(
2−2i −3+9i
−3+9i −36+20i

)
. The rank of this matrix is two;

therefore the type of plane spanned by the vectors a = 2 and
b = 3 is (1,1). Analogous computations show that all planes
spanned by the “missing” vectors are of type (1,1).

Intuitively speaking there exist “much less” decomposable
vectors than indecomposable ones: from all vectors of four-
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dimensional space only those satisfying condition (4) qual-
ify. Therefore, the task of finding a faithful orthogonal repre-
sentation with only decomposable vectors of a (hyper)graph
turns out to be more difficult than, say, by requiring inde-
composability of the vectors. For some configurations and
(hyper)graphs it is impossible to find faithful orthogonal rep-
resentations by decomposable vectors; even if there exist
“plenty” of such representations containing also indecompos-
able vectors.

Consider, for the sake of such an example, a “triangle” sub-
graph of the hypergraph in Fig. 3. Suppose we wish to “dress”
this hypergraph with a coordinatization involving only de-
composable vectors. In order to show that this task cannot
be accomplished we exhibit a faithful orthogonal represen-
tation of the hypergraph depicted in Fig. 4(a). Thereby we
merely require decomposability of the vectors b2,b3, . . . ,b6
while allowing arbitrary vectors b1,b7,b8,b9. Then there ex-
ist non-zero vectors s j, t j ∈H2 such that b j = s j⊗ t j for all
j = 2,3, . . . ,6.

The plane (span{b1,b7})⊥ contains the two decomposable
vectors b5, b6 as well as a third decomposable vector b4,
all of which are two-by-to linearly independent. This forces
not only (span{b1,b7})⊥ but also span{b1,b7} to be of type
(0,0) (otherwise there would exist at most two such vectors).
Consequently, there are non-zero vectors sk, tk ∈H2 such that
bk = sk⊗ tk for k = 1,7. Using Eq. (10) we arrive at

(b1|b7) = det(s1,s7)det(t1, t7) = 0. (31)

Furthermore, from Eqs. (9) and (12) we obtain

〈b1|b7〉= 〈s1|s7〉〈t1|t7〉= det(s×1 ,s7)det(t×1 , t7) = 0. (32)

Since s1 and s7 are non-zero, the determinants det(s1,s7) and
det(s×1 ,s7) cannot vanish simultaneously. Likewise, det(t1, t7)
and det(t×1 , t7) are not both zero. Consequently, there are
two cases: (i) either det(s1,s7) = det(t×1 , t7) = 0 and, at
the same time, det(t1, t7) 6= 0 6= det(s×1 ,s7), (ii) or, alterna-
tively, det(s×1 ,s7) = det(t1, t7) = 0 and, at the same time,
det(s1,s7) 6= 0 6= det(t×1 , t7). Therefore, either det(s1,s7) =
0 6= det(t1, t7), or, alternatively, det(s×1 ,s7) = 0 6= det(t×1 , t7).
Hence, up to an irrelevant scaling factor, b7 = s7⊗ t7 equals
one of the following vectors:

s1⊗ t×1 , s×1 ⊗ t1. (33)

Next, we repeat the previous reasoning in view of
b2,b3,b7 ∈ (span{b1,b4})⊥. In this way, we regain the de-
composability of b1 and b4 and arrive at precisely the same
vectors from (33). So, one of the vectors from (33) must
be proportional to b4 while the other vector needs to be pro-
portional to b7. The plane span{b4,b7} is of type (1,−1)
in the real and of type (1,1) in the complex case, since
(s1⊗ t×1 |s

×
1 ⊗ t1) = det(s1,s×1 )det(t×1 , t1) 6= 0. We are there-

fore in a position to substitute s by s1, t by t×1 , u by s×1 and
v by t1 in (24), so that the vectors b, a appearing in (26) turn
into

s×1 ⊗ t×1 , (−s1)⊗ (−t1) = s1⊗ t1 = b1. (34)

The decomposable vectors from (34) constitute a basis of
the plane span{b8,b9}. This plane, like its orthogonal plane
span{b4,b7}, is of type (1,−1) in the real and of type (1,1)
in the complex case. Thus, up to scaling factors, the vec-
tors appearing in (34) are the only decomposable vectors of
span{b8,b9}. Also, we established in Section V that the or-
thogonality of b4 and b7 forces the vectors from (34) to be
orthogonal. Now, since our orthogonal representation is faith-
ful, it turns out that b8 is not proportional to s1 ⊗ t1 = b1,
which in turn establishes that b9 is not a multiple of s×1 ⊗ t×1 .
The previous statement remains true when interchanging b8
and b9. Our final conclusion therefore is that b8 and b9 have
to be indecomposable.

Fig. 4(b) displays an explicit example of a non-faithful or-
thogonal representation of a “triangle” in terms of decompos-
able vectors with just one multiplicity. Thereby, it has to be
assumed that {s,u}, {s×,u}, {t,v} and {t×,v} are bases of
H2 in order to avoid any further multiplicities. Of course the
plane span{s×⊗ t×,s⊗ t} admits a continuum of orthogonal
bases containing only indecomposable vectors. Replacement
of the given basis {s×⊗ t×,s⊗ t} with any such basis yields a
faithful orthogonal representation.

b2

b3

b5

b6

b8 b9

b1

b4 b7

s×⊗v

s×⊗v×
u⊗ t×

u×⊗ t×

s×⊗ t× s⊗ t

s⊗ t

s⊗ t× s×⊗ t

(a) (b)

FIG. 4. (a) Subgraph of the triangle hypergraph depicted in Fig. 3
with a faithful orthogonal representation by decomposable vectors
b2,b2, . . . ,b6 and arbitrary vectors b1,b7,b8,b9. Even though it
turns out that b1 and b7 must be decomposable, the remaining vec-
tors b8 and b9 have to be indecomposable. (b) An explicit example
of a non-faithful orthogonal representation of the triangle hypergraph
with only decomposable vectors resulting in the multiple occurrence
of s⊗ t.

VII. STEERING (IN)DECOMPOSABILITY

If the physical means are restricted to real spaces the exis-
tence of “plain” planes which contain only non-zero vectors
of either one of the two categories – factorizable (aka decom-
posable) and indecomposable – and the associated orthogonal
planes which are of the same types allows a sort of “steering”
into such “plain” planes. In this way one party controlling the
source as well as the (two elementary) observables spanning
the “original plane” can, in a directed manner, signal factoriz-
able or entangled states towards a second party at the receiving
end.

For the sake of an example take two factorizable vectors
spanning a type (0,0) plane, and the associated orthogonal
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plane which is also of type (0,0), containing only factoriz-
able vectors. To be more explicit consider a four-port general-
ized beam splitter [17] associated with the output states corre-
sponding to the vectors

(
1,0,0,0

)ᵀ,
(
0,1,0,0

)ᵀ,
(
0,0,1,0

)ᵀ,
and

(
0,0,0,1

)ᵀ, respectively. Suppose the first party called
Alice controls the source and the first two ports associated
with

(
1,0,0,0

)ᵀ and
(
0,1,0,0

)ᵀ, and the second party called
Bob controls the last two ports associated with

(
0,0,1,0

)ᵀ
and

(
0,0,0,1

)ᵀ. If Alice makes sure that she is sending and
receiving no other states then she can be sure that Bob, no
matter what he does on “his side” of the output ports, will end
up with a factorizable state.

If, on the other hand, only plane types (1,1) are in-
volved – say one plane spanned by (1/

√
2)
(
1,0,0,1

)ᵀ
and (1/

√
2)
(
0,1,1,0

)ᵀ on Alice’s state emission and
her beam splitter ports, and (1/

√
2)
(
1,0,0,−1

)ᵀ and
(1/
√

2)
(
0,1,−1,0

)ᵀ on Bob’s ports – Alice can be sure that
Bob, no matter what he does on “his side” of the output ports,
will end up with an entangled state.

Note that is suffices for Alice to generate the respective
states and observe her shares of the ports. In that way one
can imagine a type of BB84 [18] protocol which, instead of
random shared sequences of bits, render shared factorizable
and entangled states.

We close this investigation into the (in)decomposability of
vectors in planes (aka two-dimensional subspaces) of four-
dimensional Hilbert spaces by noting that their structure ex-
hibits a richness which might not be obvious at first glance.
There exist planes consisting of purely decomposable vectors.
Nevertheless, in general indecomposability and thus physi-
cal entanglement and the encoding of relational properties by
quantum states “prevails” and occurs more often than separa-
bility associated with well defined individual, separable states.
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“CPn, or, entanglement illustrated,” International Journal of
Modern Physics A 17, 4675–4695 (2002).

[14] Ingemar Bengtsson and Karol Życzkowski, Geometry of Quan-
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