HIGHER ORDER CONTACT
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Abstract It is well known that Cayley’s ruled cubic surface carries a thremupater family of twisted
cubics sharing a common point, with the same tangent and the same osculatieg WWameport on
various results and open problems with respect to contact of higher andedual contact of higher
order for these curves.
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1 Introduction

1.1 The author’s interest in higher order contact of twistedicsiland in Cayley’s ruled cubic
surface arose some time ago when investigating a threeadioreal analogue of Laguerre’s
geometry of spears in terms of higher dual numbers. We refeutt joint paper with Klaus List

[13] for further details.

It is well known that Cayley’s ruled cubic surfade or, for short, theCayley surfacecarries
a three-parameter family of twisted cubi€ss ,; cf. formula (3) below. All of them share a
common point/, with the same tangemtand the same osculating plangsay. Thus all these
curves touch each other @t some of them even have higher order contaéf at

Among the curves, s - are theasymptotic curvesf F'. They form a distinguished subfamily.
When speaking here of asymptotic curvesoive always mean asymptotic curves other than
generators. In a paper by Hans Neudorfer, which appearée iyetar 1925, it is written that the
osculating curves have contactatler fouratU. This statement can also be found elsewhere,
e.g. in [16, p. 232]. Neudorfer did not give a formal proof. El@aphasized instead that his
statement would be immediate, since under a projection edgtitreU/ (onto some plane) the
images of the asymptotic curves give rise to a pencil of hygpaulating conics [17, p. 209].
Ten years had to pass by before Walter Wunderlich deternaredrect result in his very first
publication [21, p. 114]. He showed that distinct asymgtotirves have contact ofder three
atU, even though their projections through the cewtreave order four, as was correctly noted
by Neudorfer. The reason for this discrepancy is that thé&reef projection coincides with the
point of contact of the asymptotic curves.

The inner geometry of Cayley’s surface was investigatediinginly by Heinrich Brauner in [3].



He claimed in [3, pp. 96-97] that two twisted cubics of our ilgna,, s, with contact of order
four are identical. However, this contradicts a result i8,[p. 126], where a one-parameter
subfamily of twisted cubics with this property was shownxse

The author accomplished the task of describing the ordeomtact between the twisted cubics
ca 5~ IN[12]. The proof consists of calculations which are eletagn but at the same time long
and tedious, whence a computer algebra system (Maple) veds Tkis could explain why we
could not find such a description in one of the many papers@Hyley surface.

1.2 The aim of the present note is to say a little bit more aboutréiselts obtained in [12],

where we did not only characterize contact of higher ordér,dbut also the order of contact
of the associated dual curvesipic envelopgsat their common plang. Furthermore, we state
open problems, since for some of those results no geometeigretation seems to be known.

There is a wealth of literature on the Cayley surface and itsynfiascinating properties. We
refer to [6], [10], [11], [12], [14], [15], [18], [19], and [@]. This list is far from being complete,
and we encourage the reader to take a look at the referenaasigithe cited papers.

2 TheCayley surface

2.1 In this note we consider the three-dimensional real projesipace and denote it [ (RR).

A point is of the formRx with = (g, z1, 72, 23)T € R**! being a non-zero column vector.
We consider the plange with equationz, = 0 as theplane at infinity and we regards;(RR)
as a projectively closed affine space. We shall use somensofiom projective differential
geometry without further reference. All this can be founglpand [9].

2.2 The following is taken from [12], where we followed [3Layley’s(ruled cubiq surfaceis,
to within collineations ofP;(R), the surfacd” with equation

370111y — T — 3w375 = 0. (1)

The Cayley surface contains the lihe o = z; = 0, which is a torsal generator of second
order and at the same time a directrix for all other genesatbF’. The pointl/ = R(0,0,0,1)"

is the cuspidal point om; it is a so-calledpbinch point[16, p. 181]. No generator of’ other
thant passes throughl. Each point oft \ {U} is incident with precisely one generatgrt.
Likewise, each plane througdtother thanv intersectsF residually along a generatgr t. The
planew meetsF’ att only. See Figure 1.

The set of all matrices

1 0 0 O
a c 0 O
Mape = b ac & 0 (2)

ab—%a‘% be ac® ¢

w

wherea,b € R andc € R\ {0} is a three-parameter Lie group, s@y under multiplication.
Confer [3, p. 96], formula (9). All one- and two-parametergudups ofGG were determined in
[3, pp. 97-101].



The groupG acts faithfully onP3(R) as a group of collineations fixing'. Under the action
of G, the points ofF" fall into three orbits:F' \ w, t \ {U}, and{U}. The groupG yieldsall
collineations ofF’; cf. [11, Section 3], where this problem was addressed imfilder context
of an arbitrary ground field. Since we did not exclude fieldsladracteristi® in that article, it
was necessary there to rewrite equation (1) in a slighthgidiht form.

S

Figure 1

3 A family of cubic parabolas

3.1 We now turn to the family of twisted cubics dn already mentioned in the introduction.
From an affine point of view all these twisted cubics aubic parabolasi.e., the plane at
infinity is one of their osculating planes. For the sake of ptateness we state the next result
together with its short proof:

Proposition 3.2 Leta, 3,~ € R such thats # 0, 3. Then

u?+a u—r
ca”gﬂ::{R(l,u—% ERRET

is a cubic parabola on the Cayley surfa¢é Conversely, the set formed by all suchs .,
coincides with the set of all those twisted cubicsFowhich contain/, havet as a tangent line,
andw as an osculating plane.

(B2 +a) = 8u=27) T e RU (] @)

Proof. The first assertion is immediately seen to be true by a $tifaigvard calculation.

In order to show the converse, we consider an arbitrary édistibicd C F passing through
U, touching the ling, and osculating the plane Soc’ is a cubic parabola. Our aim is to show
thatc’ = ¢, g, for certain elements, 3,y € R with 3 # 0, 3. The auxiliary cubic parabola

c={R(1,u,v*u*)" |u e RU{c0}}

is not onF'. By a well known result (see, e.g. [7, p. 204]), for any twodgaf distinct points
on ¢ andc there exists a unique collineation Bf(R) which takes the first to the second triad
and the twisted cubicto ¢'.



The cubic parabolasandc have the common poirdf, with the same tangemtand the same
osculating planev. Every planer D t with 7 # w intersects: and ¢ residually at a unique
point# U. By the above, there exists a unique collineatigrsay, takinge to ¢’ such that/
remains fixed and such th&{(1,0,0,0)T € candR(1,1,1,1)T € ¢ go over to affine points of
c inthe planes;; = 0 andx, — z; = 0, respectively. AdJ is fixed, so are the tangent linend
the osculating plane. Hencex is an affinity. Altogetherg fixes three distinct planes through
t. Consequently, all planes of the pencil with aki®main invariant. Thus can be described
by a lower triangular matrix of the form

1
A= 0 1 € GL4(R). 4)

Q20 Aa21 (22
azp asr Gaz2 ass

By substitutingA - (1, u, u?,v?)"™ in the left hand side of (1) we get the polynomial identity

1
3 ((%2 — a3z — g)ug + (ag1 — a32)u2 + (agy — ag)u — a30> =0 forall uc R. (5)

The coefficients at the powers othave to vanish. So we obtain

1
azp = 0, az; = ag, azx = ag;, andass = agzy — 3= 0. (6)
Also, sinceA is regularas, # 0, 5. Taking into account (6) the column vectdr (1, u, u?, u®)*
turns into
1 T
(1, U, Gsg + A1 + au®, azu + aznu’ + (azn — g)u‘g) . (7)

Then, putting? := 1/as, v := a21b/2, a := ageb — ¢, andu’ := u — ¢ shows that’ = ¢, 3.,
as required. O

3.3 If we allow the exceptional valug = 3 in (3) then the vector in that formula simplifies to
w4 o u—ry
3 7 3
In fact, we get in this particular case a parabola, gay,, lying on . Each parabola of this

kind is part of the intersection of the Cayley surfdcavith one of its tangent planes. Clearly,
we cannot have = 0 in (3).

(1,u—’y, (Oz+2u7—72))T. (8)

Each curver, 35, (8 # 0) is on theparabolic cylinderwith equation
axg — Broxs + (21 + y20)* = 0. 9

In projective terms the vertex of this cylinder is the pdint (The intersection of this cylinder
with the planer; = 0 gives the projection of, 3, used by Neudorfer in [17].) The mapping
(o, 8,7) — cap~ is injective, since different triad&y, 5,7) € R3, 3 # 0, yield different
parabolic cylinders (9).



It should be noted here that Proposition 3.2 doesdescribe all twisted cubics of. There
are also twisted cubics ofi with two distinct points at infinity. We shall not need thisuod,
whence we refrain from a further discussion.

3.4 The the grougZ of all matrices (2) acts on the family of all cubic parabotag ,. Each
matrix M, ;. € G takes a cubic parabola, s, to a cubic parabola, say, ;5. The values

a, 3,~ are given as follows:

a = —d’ %2 — acBy + Ca+bp, (20)
B = B, (11)
v = a g ; 2 +cy. (22)

See [3, p. 97], formula (12), where some signs in the formaafare reproduced incorrectly.

3.5 An interpretation of the three numbers, v, associated with each of our cubic parabolas,
can be given in terms of distance functioron F' \ ¢ which is due to Brauner. This distance
function assumes all real numbers and the vatuet does not satisfy the triangle inequality.
Moreover, the distance from a poiit to a pointY” is in generahot the distance fromt” to X.
The distance function is @-invariant notion. See [3, pp. 115] for further details.

By (11), the paramete?s is a G-invariant notion, whereas and~ describe, loosely speaking,
the “position” of the cubic parabola on the Cayley surface. b€omore precise, up to one
exceptional case the following holds: Each cutyg ., contains ecircle with midpoint A/ and
radiusp # 1 in the sense of Brauner’s distance function. Due to the spamifiperties of this
distance function, the midpoidt is also orc, g, \ {U}. (The tangent te, g, at a midpoint is
an osculating tangent.) The parameterquals2p/(p — 1), whereasy and~ can be expressed
in terms of the midpoinfl/ and the radiug. All this can be read off from formula (70) in [3,
pp. 116].

Only the curves:, g, with 3 = 2 and~ # 0 do not allow for this interpretation, since none of
their tangents at an affine point is an osculating tangeht édn the other hand, the asymptotic
curves ofF' are obtained for any € R, 5 = 2, andy = 0, whencep = co. They play a special
role: Each affine point of an asymptotic curve can be considerednaslpoint

In [11, Section 5] an alternative approach to Brauner’s disgafunction was given in terms
of cross-ratios. As a matter of fact, the distance functiar[8] and [11] are identical up to a
bijection of R U {oc}. This difference became necessary in order to establisresutts in [11]
for a wider class of projective spacé&sach distance preserving mappigg F\t — F'\t comes
from a unique matrix in7 [11, Theorem 5.5]. No assumptions like injectivity, sutjeity or
even differentiability ofp are needed for the proof. This means that Brauner’s distamotion
is adefining functior(see [1, p. 23]) for the Lie groug'.

3.6 We now turn to our original problem of describing the ordercohtact at/ of our cubic
parabolas given by (3). Also, we state necessary and sulfficanditions for theidual curves
(formed by all osculating planes) to have contact of a prieedrorder atv. We shortly speak of
dual contacin this context. Recall that the distinction between congact dual contact cannot



be avoided in three dimensional projective differentiadmetry, whereas for planar curves the
concepts of contact and dual contact are self-dual notidds.refer also to [8, Theorem 1]
for explicit formulas describing contact of higher ordetvieeen curves inl-dimensional real
projective space.

Since twisted cubics with (dual) contact of order five arentdml [2, pp. 147-148], we may
restrict our attention to distinct curves with (dual) cantaf order less or equal four. The
following was shown in [12, Theorem 1] and [12, Theorem 3]:

Theorem 3.7 Distinct cubic parabolas, s, andcg; 5~ on Cayley’s ruled surface have

(a) second order contact df if, and only if,3 = for 3 = 3 — 3;
(b) third order contact at’ if, and only if, 3 = 3andy = y,or g = 3 =

[\eJ[oV]

(c) fourth order contact at/ if, and only if, 3 = 3 = 2 and~y = .

(d) second order dual contact atif, and only if,3 = 3;

(e) third order dual contact at if, and only if, 3 = Fandy =, or 3 = 3 = ;
(f) fourth order dual contact av if, and only if, 3 = 3 = I andy = 7.

It follows from Theorem 3.7 that cubic parabolas; ., with

3 5) 7
5—575—57 andﬁ—g (13)
should play a special role. Note that none of them yields gyengtotic curves of", as they

have the fornr,, 5, with o € R, 8 = 2, andy = 0.

For some of the values in (13) we could find a geometric ingtgion, but a lot of open prob-
lems remain.

3.8 The flag(U, t,w) turnsP3(RR) into atwofold isotropic(or flag) space The definition of met-
ric notions (distance, angle) in this space is based upoitémification ofR(1, 2y, o, 23)T €
P3(R) \ w with (z1, 79, 23)T € R**!, and the canonical basis Bf*!, which defines the units
for all kinds of measurements in this space. See [4] for aildédtdescription.

By [5, p. 137], each cubic parabala s , has

1 9
55(3—5) < 3 (14)

as itsconical curvaturan the sense of the twofold isotropic spagenong all cubic parabolas
Ca,3,, the ones with? = 3 are precisely those whose conical curvature attains the maki
valueg [12, Theorem 2]. Of course, this is a characterization imseof theambient spacef
F', whence we are lead to the following question:

Problem 3.9 Is there a characterization of the cubic parabelas, with 5 = 2 in terms of the
inner geometryn the Cayley surface?



By inner geometryof F' we mean here the geometry éh\ ¢ given by the action of the group
G, in the sense of Felix Klein’s Erlangen programme.

3.10 The next noteworthy value i$ = g Presently, its meaning is not at all understood by the
author. So we can merely state the following:

Problem 3.11 Give anygeometric characterization of the cubic parabelas., with 5 = g

3.12 Finally, we turn tog = 1. If we take two distinct cubic parabolas s, andc; 5 with
parameters

6:B:gand7:§:0 (15)

then their osculating planes comprise two cubic envelogag lon a certain Cayley surface of
the dual space. With respect to this dual Cayley surface tlengiubic envelopes correspond
to the parameters

2 _ 2 _ —, 3 —
o/ =—Za,0'=—Za, §=F"= andy =7 =0, (16)

respectively. This means contact of order four for the cebielopes. In this way it is possible
to link the results in (c) and (f) from Theorem 3.7. This cependence can be established in a
more general form [12, Theorem 4].

Acknowledgement. The figure of the Cayley surface was creatddthe help of a macro
package Maple goes POV-Raywritten by Matthias Wielach in one of the author’s laborgto
courses at the Vienna University of Technology.
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