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In a desarguesian projective plane we discuss those degenerate
conics whose parameters have degree two over the centre of the
underlying skew field. Such degenerate conics are closely related
with Baer subplanes. This relationship enables us to improve and
reformulate in a geometric language some theorems which previously
have been established in a purely algebraic way. A geometric
description of the family of fundamental chains of these degenerate
conics is given.

1. Throughout this article K denotes a non-commutative field.
Z(L) stands for the centralizer in K of L ¢ K. If L ¢ K is a (skew
or commutative) subfield, then a right vector space B over L is
also written as ‘BL. We shall frequently regard K as a right vector

space K. over L. The affine and projective space on ‘BL is denoted

by sd(‘BLI; and ?(‘BL), respectively. Let (¥,%) be a linear space with
point set ¥ and line set £ Given J < ¥ then put
xg = {lnT |1lef A |InT|=2}. Hence (ﬁ,jeg) is the trace space of (¥,%)
determined by 7.

The reader is referred to [10,62-73], [16] and [18,325-333]
for definitions and results on degenerate conics. Our exposition
follows [10].

Suppose that P(B ) is a projective plane on a vector space B

K K
and write £ for the set of lines of ?(‘BK). Let T be a degenerate
conic of ?(‘BK). Then there exists an ordered basis (p,q,a) of ‘BK

and an element a € K\Z(K) such that the proper and improper part of
(1) T =T ur”
are given by

{(pt+qta+a)K|t € K}

N
_
I

(3) T'" = PQ with P = pK, Q = gk,
respectively [10,65]. In the terminology of [18] T’ is a
C-configuration. The element a is called a parameter of T'. Neither

(p,q,0) nor a is uniquely determined. We denote by A the subfield



of K which is generated by Z(K) u {a}. Any two parameters of I are
in A and have the same degree1 over Z(K) [10,67]. The set

(4) n = {(pt+qta)K|t € K}

is formed by all points on PQ which are collinear with at least two

different points of T'° [10,65].

THEOREM 1. Let T° be the proper part of a degenerate conic T' with
parameter a € K\Z(K). Then the trace space (1"0,.581_,0) is isomorphic

to the affine space sd(KZ ) and (1"0,.581_,0) is an affine plane if,

and only if, the degree Ia(:é)(K)I = 2.

Proof. The subset B := {pt+qtalt € K} of B is closed under
linear combinations with coefficients in Z(4), i.e. B is a right
vector space over Z(A). The map

vK > B, t > ptgta,
is an isomorphism of the vector spaces K
there exists a bijection

e > T, ptegta > (pt+rgta+ra)K.

If points ¢ t t., are collinear in sd(KZ ), then their images

(0} 17 "2
under ¢ and te are collinear in sd(‘BBZ

(A)

(A)) and ?(‘BK), respectively.

On the other hand, given three pairwise different collinear points
(thi+qtia+a)K (i =0,1,2) in ?(‘BK) there are uniquely determined
elements r, s € K with r+s = 1 and t, = t.r+t.s. By collinearity,

2 0 1

t2a = toar+t1as, whence r, s € Z(4). This in turn shows that

sd(KZ(A)) and (1"0,.581_,0) are ismorphic linear spaces.
The dimension of (1"0,.581_,0) equals the right degree |K:Z(A)|. By
the centralizer theorem (cf. e.g. [9,42]), |[K:Z(4)| = 2 if, and

only if, |A:Z(K)| = |a:Z(K)| = 2 as required.o

Since |Z(A)| = 3, there is a unique parallelism in (1"0,.581_,0)
which coincides with the image under te of the parallelism relation

on (K ). Two lines of (1"0,.581_,0) are parallel if, and only if,

their hli(lg) in ?(‘BK) have a common point on n. Thus the points of
n < PQ may be identified with the hyperplane at infinity2 of the
affine space (1"0,.581_,0). If |K:Z(A)| = 2, then (1"0,.581_,0) is an affine
plane and n is a Z(A4)-chain of PQ. As an immediate consequence of

Theorem 1 and |K:Z(A)| = |a:Z(K)| = 2 we infer the following

TAll degrees written down in this articles are right degrees. Cf.
however Theorem 3.1.2 in [8,311].

% This is one of those projective spaces discussed in [11].



COROLLARY. If la:Z(K)| = 2, then (l"oun,.iel_,oun) is a Baer subplane of
P(B_) with Z(A) as underlying field.

K
2. The following sections of this article are subject to the
assumption
la:Z(K)| = 2,
whence there exist my, m, € Z(K) such that
(5) a2 = mytm, a.
We shall frequently make use of the identity a_lm = (a-m,) without

0 1
further notice.

The group G of automorphic collineations of I has been
determined in [10,71]. Now we have an alternative description of G:

If ¥ € G, then yll"<> is an affinity of (1"0,.581_,0). Conversely,
let B be an affinity of (1"0,.581_,0). Hence sBs_l is product of a

translation and a semi-linear isomorphism of with respect to

Z(4)
b € Aut(Z(A4)), say. This B is extendable to a collineation ¥ of
?(‘BK) if, and only if, b is restriction of an automorphism of K. If

Y exists3, then ¥y € G.

3. It is our goal to discuss the partition of PQ\n which is given
by the fundamental chains of T [10,69]. This will be done in terms
of affine geometries which may be regarded as affine derivations of
the geometry of L-chains on PQ [5,320], where L denotes a proper
subfield of K. But first we give an alternative description of

fundamental chains:

THEOREM 2. Let ¥ be the group of projective collineations of ?(‘BK)
leaving r’un pointwise invariant4. The orbit X\I/ of any X € PQ\n
equals the only fundamental chain CX of I passing through X.

Proof. Suppose Yy € VU. Clearly Xw

€ ¢y for Xw = X. Restricting
¥ to the pencil of lines with vertex X yields a projectivity «,
say. If X # Xw, then T' is a subset of the point set generated by «
[10,43], since (PQ)* = PQ and Y = (XY)n(XY)* for all Y e I'". But
every line through X other than PQ intersects 1"0, as follows from

the fact that X is element of a fundamental pair of T [10,69].

3The collineation ¥ need not exist. Take the field H of real
quaternions. The centralizer of any a € H\R where R = Z(H) is a
field of complex numbers C, say. Then there exists b € Aut(C) such
that R is not invariant, whence has b has no extension to H.
Cf. e.g. [14], [17].

4Any Y € ¥ is a quasiperspective collineation.



Hence « is a generating map of ' and X\I/ < Cy-

On the other hand, assume X = (pv+qw)K € PQ\n. We read off
from formula (3.21) in [10,69]

2
Cy = {(Jp(w—mlv+qmov)zo + (Jpv+qw)zl)K|(0,0):t(zo,zl)eZ(K) *.
Those maps of GL(‘BK) having matrices
z, "Mz Z, 0 X
myZ zZ, 0 , (0,0) # (ZO’ZI) e Z(K)7,
0 0 (az—ml)zo+z1

with respect to the ordered basis (p,q,a) induce a subset & of VU,

since every vector pt+qta+a (t € K) is eigenvector with

(a-m )z +z = m. z aliz 20
1’071~ 070 1
being its (right) eigenvalue. (In fact & = ¥.) By construction,
X\I/ > XCD = Cy which completes the proof.o

We remark that a non-projective collineation v which leaves
r’un elementwise invariant takes X e PO\n to XV & CX: Firstly,
X # X' as there is no subline of PQ which is properly between n and
PQ due to |K:Z(4)| = 2. Secondly, assume X # x¥ e CX. The
restriction of v to the pencil of lines with vertex X is a
bijection u, say, such that I'" = xXyn(xy)*ver®. But (x,x%) is a
fundamental pair of I'. Hence p is a projectivity which generates T,
a contradiction.

Let {bO’bl} be a basis of KZ(Zq)

}.

n = {(bot0+blt1 JK | (0,0):;c(150,1f1 JeZ(A)

and write bi = pri+qbia. Then
We use bO’ bl to define an
affine coordinatization

o:PQ\{blK} > K, (bo+blt)K — t.
We shall describe the partition of K\Z(4) = (PO\)” given by the

1\I/o*. The re-transfer under 0“_1 is immediate.

orbits of ¥ := o
The group 1% is formed by all inner automorphisms of K such

that x chc_1 with ¢ € A\{O}, since Z(Z(4)) = A Dby the

centralizer theorem [9,42]. If ¢ = az.-z, (z., z. € Z(K)), then
-1 20 1 0 i -1
c = ( (az—ml)zo+z1 )( MmyZy N Z0Z, 72, )
and
(6) cxc_1 = (axa_lm A 2+(ax—xa+m xX)z z -xz 2) (m z 2+m z .z -z 2)_1.
00 1 01 1 00 17071 71

0 is a subgroup of the Galois group of K|Z(4) [8,40], but we are

only concerned with inner automorphisms. (Cf. [1,283], [21, [3],
[4], [5,176] for geometric interpretations of Galois groups.)
However if |K:Z(K)| < », then idZ(A) is only extendable to inner

automorphisms of K (cf. e.g. the Corollary in [8,46]) and

consequently every collineation which leaves r’un  elementwise



invariant belongs to V.
See [1,280] or Theorem 23 in [15,126] for results similar to

the following

LEMMA. In the affine plane sd(KZ ) the group 0 is a group of

perspective affinities with commoﬁzA)axis Z(A). The pencil of lines
parallel to (x—axa_l)Z(A) (x € K\Z(4) arbitrary) is elementwise
invariant under all transformations of WG. The element a € K is
inseparable over the centre of K if, and only if, 0 is a group of
shears.

Proof. Clearly 0 is a group of perspective affinities with
common axis Z(A4). We deduce from
(7) ax-xa+m x = x(ml—a)+(axa_1)a
and (6) that the orbit of x e K\Z(4) under ¥° is a subset of the
line joining Xx and axa_l. Thus all lines parallel to this one are
invariant under all affinities of ¥’ and every orbit of 0 s
subset of such an invariant line. The group 0 is a group of shears
if, and only if,

(x—axa_l) € Z(4) for all x € K
or, in other words,

-1, -1

alx-axa “Ja = = (x—axa_l)(mla

where the first sign of equality follows from a streightforward

-1) = x—axa_l,

calculation. But mla_l—l = 1 is equivalent to CharK = 2 and m, = 0

which in turn characterizes a as inseparable over Z(K).o

Suppose that ¥ is no group of shears. Then every 1% -invariant
line x + (x—axa_l)Z(A) where x € K\Z(A) contains exactly one point
x" e Z(4) which is given by

ud -1 2 ARG
(8) x = ( axa (2m.+m. a)tx(2m -m a+m, ) )( 4m+m ) .

0o 1 0o 1 0]
Hence m:K > Z(4), x > x', is a projection in K . Now let ¥° be

Z(A)
a group of shears. Here we put
T
(9) x := ax-xa = ax+xa.
This map m:K > Z(4), x = xn, is Z(A)-linear with kernel Z(4) and
image Z(A).
In the affine space5 sd(KA) the orbit c. of x € K\Z(4) under ¥°

is a subset of a line /l/lx, because (6) and (7) are linear

combinations with coefficients in A. If a is separable over Z(K),

°4 = Z(A) if, and only if, A is a maximal commutative subfield of

K, whence |K:Z(K)| = 4 by (5), formula (10) in [9,40] and Theorem 4
in [9,45].



then /l/lx is given by x + (x-x")A. All such lines /l/ly within
x + (x-x")Z(4) are incident with x". If a is inseparable over Z(K),
then the line /l/lx equals x + x"4 and all such lines /l/ly within the
subspace x + x"Z(A) are parallel to x"A.

Now, finally, take the affine space (K ). Our previous

discussions show that C, lies in the WG—invariantZ(IJIi)azne /l/lx which in
turn is contained in the ¥’ -invariant subspace x + (x"-x)Z(4) or
x + an(A) in the separable or inseparable case, respectively. The
configurational properties of these planes and subspaces of

A(K ) follow immediately from the corresponding results in (K ,)

Z(K) A
and sd(KZ(A)). Thus we can restrict our investigations to a fixed
plane /l/lx.

It will be conveniant to use the projective closure

?((Z(K)@K) of A(K ) with u — (1,u)Z(K) being the canonical

Z(K)) Z(K)
embedding. In this projective space the orbit c,» as is given by
(6), may be re-written as the set of all points
-1 2 2
((mo,axa mo)zo + (ml,ax—xa+m1x)zoz1 + (—1,—x)z1 )Z(K)

with (0,0) = ( ) € Z(K)”. Thus c. is a conic without points at

2%,
infinity or, in other words, an ellipse. Cf. e.g. [7,31]. This is
in accordance with [5,225]. Recall that the tangents of c. in

(mo,axa mO)Z(K) and (-1,-x)Z(K) intersect each other in

(10) (ml,ax—xa+m1x)Z(K).

Let us return to affine terms: The plane /l/lx c K carries the
affine Mobius-geometry A(Z(K),A) in the sense of [5,101] (cf. also
[12,221] and [13]) when identifying
(11) t € A with y0+(y1—y0)t € /I/lx
for any two different Yo Y| € /l/lx. This identification does not
essentially depend on Yo Yo because it is unique to within circle
preserving affinities of «(Z(K),A). Hence we may speak unambigously
of circles within the plane /le. (Letting t € K in (11) yields a

bijection K - K which is a circle preserving affinity of the affine

Mobius-geometry A(Z(K),K).)

THEOREM 3. The orbit Cx of x € K\Z(A) under \I/G is a circle of the
plane /l/lx.

Case 1 - a is separable over Z(K): The mid-point (CharK # 2)
or nucleus (CharK = 2) of the circle c, ¢ /l/lx is the point x" e Z(4)
as given by (8). A circle of /l/lx is an orbit of o if, and only if,
. . . . us
its mid-point respectively nucleus equals x .

Case 2 - a is inseparable over Z(K): All tangents of ¢, are



parallel to the line x"Z(K) with x" given by (9). A circle of the
plane /l/lx is an orbit of \I/G if, and only 1if, there exists a
translation mapping it into Cx'

Proof. The orbit Cx is a circle of /l/lx, since its image under
0“_1 is a Z(K)-chain of PQ.

Case 1: For CharK = 2 we deduce from m, # 0 and (10) that the
nucleus of C, is not at infinity. The mid-point respectively
nucleus of Cx is invariant under all transformations of WG, whence
it has to be x". But yn = x" for all y € /l/lx, so that all orbits Cy
(y € MX\Z(A)) have common mid-point or nucleus, respectively.

Conversely, let ¢ be a circle of /l/lx with mid-point
respectively nucleus x". Choose y € ¢. As a circle is wuniquely
determined by one of its points and its mid-point respectively
nucleus, we get ¢ = Cy'

Case 2: We read off from (10) together with CharK = 2 and

m, = 0 that all tangents of ¢, are parallel to an(K).

If y /l/lx, then y = x+x"'s with s € A and cyc_1 = cxc +x's.
Thus the translation T:#4 > M , u = u+xns, maps c__ into ¢ . The
X X X y

proof is completed by reversing the above arguments.no

We remark that in case 2 there are circles of /l/lx whose
tangents are parallel to an(K) without being orbits of . An
example is given by a circle which touches an orbit of ¥ in
exactly one point.

Finally, take as K the real quaternions H. Then /l/lx is a plane
of complex numbers and o may be interpreted as a full group of
rotations of the euclidian space «(R,H) with a pointwise invariant
plane. Inner automorphisms of H (cf. formula (6)) are a standard
tool for the representation by quaternions of motions of the

euclidian 2-sphere. Cf. e.g. [6].
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