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Dedicated to Armin Herzer on his 60th birthday.

Hans Havlicek

In a desarguesian projective plane we discuss those degenerate
conics whose parameters have degree two over the centre of the
underlying skew field. Such degenerate conics are closely related
with Baer subplanes. This relationship enables us to improve and
reformulate in a geometric language some theorems which previously
have been established in a purely algebraic way. A geometric
description of the family of fundamental chains of these degenerate
conics is given.

1. Throughout this article K denotes a non-commutative field.

Z(L) stands for the centralizer in K of LtCtK. If LtCtK is a (skew

or commutative) subfield, then a right vector space V over L is

also written as V . We shall frequently regard K as a right vectorL
space K over L. The affine and projective space on V is denotedL L
by A(V ) and P(V ), respectively. Let (S,L) be a linear space withL L
point set S and line set L. Given TtCtS then put

L t:=t{lnT|leLt^t|lnT|>2}. Hence (T,L ) is the trace space of (S,L)T T
determined by T.

The reader is referred to [10,62-73], [16] and [18,325-333]

for definitions and results on degenerate conics. Our exposition

follows [10].

Suppose that P(V ) is a projective plane on a vector space VK K
and write L for the set of lines of P(V ). Let G be a degenerateK
conic of P(V ). Then there exists an ordered basis (p,q,a) of VK K
and an element atetK\Z(K) such that the proper and improper part of

q *(1) Gtt=tG tutG

are given by
q(2) G t=t{(pt+qta+a)K|ttetK}

and
*(3) G t=tPQ with Pt=tpK, Qt=tqK,

qrespectively [10,65]. In the terminology of [18] G is a

C-configuration. The element a is called a parameter of G. Neither

(p,q,a) nor a is uniquely determined. We denote by A the subfield
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of K which is generated by Z(K)tut{a}. Any two parameters of G are
1in A and have the same degree over Z(K) [10,67]. The set

(4) nt=t{(pt+qta)K|ttetK}

is formed by all points on PQ which are collinear with at least two
qdifferent points of G [10,65].

qTHEOREM 1. Let G be the proper part of a degenerate conic G with
qparameter atetK\Z(K). Then the trace space (G ,L q) is isomorphicGqto the affine space A(K ) and (G ,L q) is an affine plane if,Z(A) G

and only if, the degree |a:Z(K)|t=t2.

Proof. The subset Wt:=t{pt+qta|ttetK} of V is closed under

linear combinations with coefficients in Z(A), i.e. W is a right

vector space over Z(A). The map

i:KtLtW, tt9Ltpt+qta,

is an isomorphism of the vector spaces K and W . By (2),Z(A) Z(A)
there exists a bijection

qe:WtLtG , pt+qtat9Lt(pt+qta+a)K.

If points t , t , t are collinear in A(K ), then their images0 1 2 Z(A)
under i and ie are collinear in A(W ) and P(V ), respectively.Z(A) K
On the other hand, given three pairwise different collinear points

(pt +qt a+a)K (it=t0,1,2) in P(V ) there are uniquely determinedi i K
elements r, stetK with r+st=t1 and t t=tt r+t s. By collinearity,2 0 1
t at=tt ar+t as, whence r, stetZ(A). This in turn shows that2 0 1 qA(K ) and (G ,L q) are ismorphic linear spaces.Z(A) G qThe dimension of (G ,L q) equals the right degree |K:Z(A)|. ByG
the centralizer theorem (cf. e.g. [9,42]), |K:Z(A)|t=t2 if, and

only if, |A:Z(K)|t=t|a:Z(K)|t=t2 as required.p

qSince |Z(A)|t>t3, there is a unique parallelism in (G ,L q)G
which coincides with the image under ie of the parallelism relation

qon A(K ). Two lines of (G ,L q) are parallel if, and only if,Z(A) G
their hulls in P(V ) have a common point on n. Thus the points ofK 2ntCtPQ may be identified with the hyperplane at infinity of the

q qaffine space (G ,L q). If |K:Z(A)|t=t2, then (G ,L q) is an affineG G
plane and n is a Z(A)-chain of PQ. As an immediate consequence of

Theorem 1 and |K:Z(A)|t=t|a:Z(K)|t=t2 we infer the following

----------------------------------------------------------------------------------------------------
1All degrees written down in this articles are right degrees. Cf.
however Theorem 3.1.2 in [8,31].
2 This is one of those projective spaces discussed in [11].
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qCOROLLARY. If |a:Z(K)|t=t2, then (G un,L q ) is a Baer subplane ofG un
P(V ) with Z(A) as underlying field.K

2. The following sections of this article are subject to the

assumption

|a:Z(K)|t=t2,

whence there exist m , m tetZ(K) such that0 12(5) a t=tm +m a.0 1 -1We shall frequently make use of the identity a m t=t(a-m ) without0 1
further notice.

The group G of automorphic collineations of G has been

determined in [10,71]. Now we have an alternative description of G:
q qIf gtetG, then g|G is an affinity of (G ,L q). Conversely,Gq -1let b be an affinity of (G ,L q). Hence ebe is product of aG

translation and a semi-linear isomorphism of W with respect toZ(A)WbtetAut(Z(A)), say. This b is extendable to a collineation g of
WP(V ) if, and only if, b is restriction of an automorphism of K. IfK 3g exists , then gtetG.

3. It is our goal to discuss the partition of PQ\n which is given

by the fundamental chains of G [10,69]. This will be done in terms

of affine geometries which may be regarded as affine derivations of

the geometry of L-chains on PQ [5,320], where L denotes a proper

subfield of K. But first we give an alternative description of

fundamental chains:

THEOREM 2. Let J be the group of projective collineations of P(V )Kq 4 Jleaving G un pointwise invariant . The orbit X of any XtetPQ\n

equals the only fundamental chain c of G passing through X.Xj jProof. Suppose jtetJ. Clearly X tetc for X t=tX. RestrictingX
j to the pencil of lines with vertex X yields a projectivity a,

jsay. If Xt$tX , then G is a subset of the point set generated by a
a a q[10,43], since (PQ) t=tPQ and Yt=t(XY)n(XY) for all YtetG . But

qevery line through X other than PQ intersects G , as follows from

the fact that X is element of a fundamental pair of G [10,69].

----------------------------------------------------------------------------------------------------
3The collineation g need not exist. Take the field H of real
quaternions. The centralizer of any atetH\R where Rt=tZ(H) is aWfield of complex numbers C, say. Then there exists btetAut(C) suchWthat R is not invariant, whence has b has no extension to H.
Cf. e.g. [14], [17].
4Any jtetJ is a quasiperspective collineation.
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JHence a is a generating map of G and X tCtc .X
On the other hand, assume Xt=t(pv+qw)KtetPQ\n. We read off

from formula (3.21) in [10,69]
2c t=t{(p(w-m v+qm v)z t+t(pv+qw)z )K|(0,0)$(z ,z )eZ(K) }.X 1 0 0 1 0 1

Those maps of GL(V ) having matricesK
& z -m z z 0 *1 1 0 0? ? 2m z z 0 , (0,0)t$t(z ,z )tetZ(K) ,? 0 0 1 ? 0 1
7 0 0 (a-m )z +z 81 0 1

with respect to the ordered basis (p,q,a) induce a subset F of J,

since every vector pt+qta+a (ttetK) is eigenvector with
-1(a-m )z +z = m z a +z t$t01 0 1 0 0 1

being its (right) eigenvalue. (In fact Ft=tJ.) By construction,
J FX tBtX t=tc which completes the proof.pX

We remark that a non-projective collineation n which leaves
q nG un elementwise invariant takes XtetPQ\n to X tmtc : Firstly,XnXt$tX as there is no subline of PQ which is properly between n and

nPQ due to |K:Z(A)|t=t2. Secondly, assume Xt$tX tetc . TheX
restriction of n to the pencil of lines with vertex X is a

q m q nbijection m, say, such that G t=t{XYn(XY) |YeG }. But (X,X ) is a

fundamental pair of G. Hence m is a projectivity which generates G,

a contradiction.

Let {b ,b } be a basis of K and write b t:=tpb +qb a. Then0 1 Z(A) i i i2nt=t{(b t +b t )K|(0,0)$(t ,t )eZ(A) }. We use b , b to define an0 0 1 1 0 1 0 1
affine coordinatization

s:PQ\{b K}tLtK, (b +b t)Kt9Ltt.1 0 1 sWe shall describe the partition of K\Z(A)t=t(PQ\n) given by the
s -1 -1orbits of J t:=ts Js. The re-transfer under s is immediate.

sThe group J is formed by all inner automorphisms of K such
-1that xt9Ltcxc with ctetA\{0}, since Z(Z(A))t=tA by the

centralizer theorem [9,42]. If ct=taz -z (z , z tetZ(K)), then0 1 0 1-1 ( )( 2 2 )-1c t=t t(a-m )z +z t tm z +m z z -z t9 1 0 1 09 0 0 1 0 1 1 0
and

-1 ( -1 2 2)( 2 2)-1(6) cxc t=t axa m z +(ax-xa+m x)z z -xz m z +m z z -z .9 0 0 1 0 1 1 09 0 0 1 0 1 1 0sJ is a subgroup of the Galois group of K|Z(A) [8,40], but we are

only concerned with inner automorphisms. (Cf. [1,283], [2], [3],

[4], [5,176] for geometric interpretations of Galois groups.)

However if |K:Z(K)|t<t8, then id is only extendable to innerZ(A)
automorphisms of K (cf. e.g. the Corollary in [8,46]) and

qconsequently every collineation which leaves G un elementwise
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invariant belongs to J.

See [1,280] or Theorem 23 in [15,126] for results similar to

the following

sLEMMA. In the affine plane A(K ) the group J is a group ofZ(A)
perspective affinities with common axis Z(A). The pencil of lines

-1parallel to (x-axa )Z(A) (xtetK\Z(A) arbitrary) is elementwise
sinvariant under all transformations of J . The element atetK is

sinseparable over the centre of K if, and only if, J is a group of

shears.
sProof. Clearly J is a group of perspective affinities with

common axis Z(A). We deduce from
-1(7) ax-xa+m xt=ttx(m -a)+(axa )a1 1 sand (6) that the orbit of xtetK\Z(A) under J is a subset of the

-1line joining x and axa . Thus all lines parallel to this one are
s sinvariant under all affinities of J and every orbit of J is

ssubset of such an invariant line. The group J is a group of shears

if, and only if,
-1(x-axa )tetZ(A) for all xtetK

or, in other words,
-1 -1 -1 -1 -1a(x-axa )a t=t(x-axa )(m a -1)t=tx-axa ,1

where the first sign of equality follows from a streightforward
-1calculation. But m a -1t=t1 is equivalent to CharKt=t2 and m t=t01 1

which in turn characterizes a as inseparable over Z(K).p

s sSuppose that J is no group of shears. Then every J -invariant
-1line xt+t(x-axa )Z(A) where xtetK\Z(A) contains exactly one point

px tetZ(A) which is given by
p ( -1 2 )( 2 )-1(8) x t=t axa (2m +m a)+x(2m -m a+m ) 4m +m .9 0 1 0 1 1 09 0 1 0p sHence p:KtLtZ(A), >xt9Ltx , is a projection in K . Now let J beZ(A)

a group of shears. Here we put
p(9) x t:=tax-xat=tax+xa.

pThis map p:KtLtZ(A), xt9Ltx , is Z(A)-linear with kernel Z(A) and

image Z(A).
5 sIn the affine space A(K ) the orbit c of xtetK\Z(A) under JA x

is a subset of a line M , because (6) and (7) are linearx
combinations with coefficients in A. If a is separable over Z(K),

----------------------------------------------------------------------------------------------------
5At=tZ(A) if, and only if, A is a maximal commutative subfield of
K, whence |K:Z(K)|t=t4 by (5), formula (10) in [9,40] and Theorem 4
in [9,45].
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pthen M is given by xt+t(x-x )A. All such lines M withinx yp pxt+t(x-x )Z(A) are incident with x . If a is inseparable over Z(K),
pthen the line M equals xt+tx A and all such lines M within thex yp psubspace xt+tx Z(A) are parallel to x A.

Now, finally, take the affine space A(K ). Our previousZ(K)sdiscussions show that c lies in the J -invariant plane M which inx xs pturn is contained in the J -invariant subspace xt+t(x -x)Z(A) or
pxt+tx Z(A) in the separable or inseparable case, respectively. The

configurational properties of these planes and subspaces of

A(K ) follow immediately from the corresponding results in A(K )Z(K) A
and A(K ). Thus we can restrict our investigations to a fixedZ(A)
plane M .x

It will be conveniant to use the projective closure
( )P (Z(K)sK) of A(K ) with ut9Lt(1,u)Z(K) being the canonical9 Z(K)0 Z(K)

embedding. In this projective space the orbit c , as is given byx
(6), may be re-written as the set of all points

( -1 2 2)(m ,axa m )z t+t(m ,ax-xa+m x)z z t+t(-1,-x)z Z(K)9 0 0 0 1 1 0 1 1 02with (0,0)t$t(z ,z )tetZ(K) . Thus c is a conic without points at0 1 x
infinity or, in other words, an ellipse. Cf. e.g. [7,31]. This is

in accordance with [5,225]. Recall that the tangents of c inx-1(m ,axa m )Z(K) and (-1,-x)Z(K) intersect each other in0 0
(10) (m ,ax-xa+m x)Z(K).1 1

Let us return to affine terms: The plane M tCtK carries thex
affine Möbius-geometry A(Z(K),A) in the sense of [5,101] (cf. also

[12,221] and [13]) when identifying

(11) ttetA with y +(y -y )ttetM0 1 0 x
for any two different y , y tetM . This identification does not0 1 x
essentially depend on y , y , because it is unique to within circle0 1
preserving affinities of A(Z(K),A). Hence we may speak unambigously

of circles within the plane M . (Letting ttetK in (11) yields ax
bijection KtLtK which is a circle preserving affinity of the affine

Möbius-geometry A(Z(K),K).)

sTHEOREM 3. The orbit c of xtetK\Z(A) under J is a circle of thex
plane M .x

Case 1 - a is separable over Z(K): The mid-point (CharKt$t2)
por nucleus (CharKt=t2) of the circle c tCtM is the point x tetZ(A)x x sas given by (8). A circle of M is an orbit of J if, and only if,x pits mid-point respectively nucleus equals x .

Case 2 - a is inseparable over Z(K): All tangents of c arex
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p pparallel to the line x Z(K) with x given by (9). A circle of the
splane M is an orbit of J if, and only if, there exists ax

translation mapping it into c .x
Proof. The orbit c is a circle of M , since its image underx x-1s is a Z(K)-chain of PQ.

Case 1: For CharKt=t2 we deduce from m t$t0 and (10) that the1
nucleus of c is not at infinity. The mid-point respectivelyx snucleus of c is invariant under all transformations of J , whencex p p pit has to be x . But y t=tx for all ytetM , so that all orbits cx y
(ytetM \Z(A)) have common mid-point or nucleus, respectively.x

Conversely, let c be a circle of M with mid-pointxprespectively nucleus x . Choose ytetc. As a circle is uniquely

determined by one of its points and its mid-point respectively

nucleus, we get ct=tc .y
Case 2: We read off from (10) together with CharKt=t2 and

pm t=t0 that all tangents of c are parallel to x Z(K).1 xp -1 -1 pIf ytetM , then yt=tx+x s with stetA and cyc t=tcxc +x s.x pThus the translation t:M tLtM , ut9Ltu+x s, maps c into c . Thex x x y
proof is completed by reversing the above arguments.p

We remark that in case 2 there are circles of M whosexp stangents are parallel to x Z(K) without being orbits of J . An
sexample is given by a circle which touches an orbit of J in

exactly one point.

Finally, take as K the real quaternions H. Then M is a planexsof complex numbers and J may be interpreted as a full group of

rotations of the euclidian space A(R,H) with a pointwise invariant

plane. Inner automorphisms of H (cf. formula (6)) are a standard

tool for the representation by quaternions of motions of the

euclidian 2-sphere. Cf. e.g. [6].
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