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Abstract

The nucleus of a Veronese variety is the intersection of all its oscu-
lating hyperplanes. Various authors have given necessary and sufficient
conditions for the nucleus to be empty. We present an explicit formula
for the dimension of this nucleus for arbitrary characteristic of the ground
field. As a corollary, we obtain a dimension formula for that subspace in
the t–th symmetric power of a finite–dimensional vector space V which is
spanned by the powers at with a ∈ V.
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1 Introduction

It is well known that, in a projective plane over a (commutative) field F of charac-
teristic two, the tangents of a conic have a common point called nucleus. In fact,
conics are just specific examples of Veronese varieties and a tangent of a conic
may be seen as an osculating hyperplane. So the intersection of all osculating
hyperplanes of a Veronese variety will be called its nucleus. In case of character-
istic zero such a nucleus is always empty, since all osculating hyperplanes form a
Veronese variety in the dual of the ambient space. For non–zero characteristic all
Veronese varieties with empty nucleus have been determined independently by H.
Timmermann [11], [12], A. Herzer [6], and H. Karzel [9]. The inaugural thesis [12]
contains a formula for the dimension of the nucleus of a normal rational curve,
i.e. a Veronese image of a projective line. Another proof of that formula and
further references can be found in [4]. See also J.A. Thas [10], J.W.P. Hirschfeld
and J.A. Thas [7, 25.1].

In the present paper we improve the above mentioned results by giving an
explicit formula for the dimension of the nucleus of a Veronese variety. We have
to assume, however, that the ground field has sufficiently many elements, since
otherwise a Veronese variety consists of “few” points in some “high dimensional”
space.

In the second chapter we present a slightly modified version of Herzer’s elegant
coordinate–free approach to Veronese varieties and their osculating subspaces.
See 2.5 for a motivation of our modification.

The announced dimension formula for nuclei can be found in Chapter 3, The-
orem 2. Finally, we apply our results to show that three (seemingly strong) condi-
tions are not sufficient to characterize Veronese mappings to within collineations.
Cf. however [5], where quadratic Veronese mappings have been characterized in
a purely geometric way.

Throughout this paper symmetric powers of vector spaces and divisibility of
multinomial coefficients by primes play an essential role. In the t–th symmetric
power of a finite–dimensional vector space V there is a distinguished subspace A
which is generated by all powers at where a ranges in V. In case of characteristic
zero the subspace A equals the t–th symmetric power of V.

In Corollary 2 we find a formula for the dimension of A for non–zero char-
acteristic. As before, the ground field has to be sufficiently large. In fact, the
codimension of A is, up to an additive constant, the projective dimension of the
nucleus of a Veronese variety.

2 Veronese Mappings

2.1 Let X be an (m+ 1)–dimensional vector space over a field F with m ∈ N =
{0, 1, . . .}. We denote by X∗ its dual space and by SnX∗ the n–th symmetric
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power of X∗ (n ∈ N), where S0X∗ = F . Cf., among others, [1, Chapter III, §6].
We fix one t ∈ N \ {0} and assume that (StX∗,Y) is a dual pair of F–vector

spaces with a (non–degenerate bilinear) pairing 〈 , 〉 : StX∗ ×Y → F . Via 〈 , 〉,
the space Y turns into the space of symmetric t–multilinear forms on X∗.

Each vector x ∈ X defines a symmetric t–multilinear form

(X∗)t → F, (a∗1, a
∗
2, . . . , a

∗
t ) 7→ a∗1(x) · a∗2(x) · . . . · a∗t (x).

By the universal property of symmetric powers, there exists a unique vector in
Y, say g(x), with

〈a∗1 · a∗2 · . . . · a∗t , g(x)〉 = a∗1(x) · a∗2(x) · . . . · a∗t (x) (1)

for all a∗1, a
∗
2, . . . , a

∗
t ∈ X∗. So we have a well defined mapping

g : X→ Y, x 7→ g(x) (2)

which will be used to define the Veronese mapping in 2.4.

2.2 Let b0,b1, . . . ,bm be a basis of X and put b∗0,b
∗
1, . . . ,b

∗
m ∈ X∗ for the dual

basis. Then the
(
m+t
t

)
distinct vectors b∗e00 ·b∗e11 · . . . ·b∗emm , where (e0, e1, . . . , em)

runs in the set

Et
m := {(e0, e1, . . . , em) ∈ Nm+1 | e0 + e1 + . . .+ em = t}, (3)

form a basis of StX∗. Denote by

{ce0,e1,...,em | (e0, e1, . . . , em) ∈ Et
m} ⊂ Y (4)

its dual basis with respect to the pairing 〈 , 〉. Hence

g(
m∑
i=0

xibi) =
∑
Etm

xe00 x
e1
1 . . . xemm ce0,e1,...,em (xi ∈ F ). (5)

2.3 Given an element r ∈ StX∗ then

r′ : X→ F, x 7→ 〈r, g(x)〉 (6)

is a homogeneous polynomial function of degree t and all such functions arise in
this way according to (5). Clearly, the functions r′ form a subspace, say (StX∗)′,
of the space of all functions X→ F . It is necessary to distinguish between StX∗

and (StX∗)′ exactly if g(X) does not generate Y or, equivalently, exactly if there
is a non–zero element r ∈ StX∗ with r′ = 0.

Lemma 1 The vector space Y is spanned by g(X) if, and only if, #F ≥ t or
m = dim X− 1 = 0.
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Proof. (a) Assume #F =: q < t and dim X > 1. Choose two basis forms, say
b∗0 and b∗1 (cf. 2.2), and define

r := b∗q0 b∗t−q1 − b∗0b
∗t−1
1 6= 0.

Put x =
∑m

i=0 xibi ∈ X with xi ∈ F . From xq − x = 0 for all x ∈ F we obtain

r′(x) = xq0x
t−q
1 − x0x

t−1
1 = xt−q1 (xq0 − x0x

q−1
1 ) = 0 for all x ∈ X.

(b) If m = 0, then dim X = dimStX∗ = dim Y = 1. Hence Y is spanned by
any g(x) with x ∈ X \ {0}.

(c) Let #F ≥ t. If r ∈ StX∗ satisfies r′ = 0, then r = 0 by [6, (1.2)]. From
the remarks above, Y is spanned by g(X). 2

2.4 Next we are going to interpret (2) in geometric terms. The Veronese mapping

γ : P(X)→ P(Y), Fx 7→ F (g(x)) (7)

assigns to each point of the projective space on X a point of the projective space
on Y, since (1) forces that g(x) 6= 0 whenever x 6= 0 and g(wx) = wtg(x) for
all w ∈ F and all x ∈ X. The image set γ(P(X)) =: V tm is a Veronese variety.
According to (5) this approach coincides with the classical one [3].

2.5 Herzer’s coordinate–free definition of a Veronese variety [6, (2.1)] uses a dual
pair ((StX∗)′,Z) of F–vector spaces. In our approach this Z may be chosen as the
subspace of Y spanned by g(X). So, in contrast to [6, p. 144], a Veronese variety
does not necessarily span P(Y). The entire space P(Y) is spanned, however, by
the union of all (or sufficiently many) osculating subspaces (cf. 2.7).

For example, let m = 1, t = 3, and #F = 2. Then V3
1 is a twisted cubic

consisting of three non–collinear points. So, following [6], such a twisted cubic
should be considered as a triangle in a plane T , say. However, none of the tangents
and none of the osculating planes (according to our definition) is contained in
that plane T .

2.6 The definition of a Veronese variety in the papers of Karzel [9] and Tim-
mermann [11], [12] follows Burau [3]. It is based upon Segre varieties or, in
algebraic language, the tensor product

⊗t X. We sketch the connection with our
definition.

For each σ in the symmetric group St there is a unique linear automorphism
fσ of

⊗t X such that x1⊗x2⊗· · ·⊗xt 7→ xσ(1)⊗xσ(2)⊗· · ·⊗xσ(t) for all xi ∈ X.
There are two distinguished subspaces in

⊗t X :

Y := {k ∈
⊗

t X | fσ(k) = k for all σ ∈ St} (8)

is the space of symmetric tensors and

M := span {k− fσ(k) | k ∈
⊗

t X, σ ∈ St} (9)
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is the kernel of the canonical mapping
⊗t X→

⊗t X/M = StX.
The tensor products

⊗t X∗ and
⊗t X form a dual pair of vector spaces with

the pairing 〈 , 〉⊗ given as complete contraction of (
⊗t X∗)⊗ (

⊗t X). By virtue
of this pairing, the elements of

⊗t X are the t–multilinear forms on X∗ and Y
is the subspace of symmetric t–multilinear forms. Orthogonality with respect to
〈 , 〉⊗ will be denoted by ⊥⊗.

As Y⊥⊗ is kernel of the canonical mapping
⊗t X∗ → StX∗, the vector spaces

StX∗ =
⊗t X∗/Y⊥⊗ and Y form a dual pair with the pairing 〈 , 〉, say, induced

by 〈 , 〉⊗. This is in accordance with our approach in 2.1. In the present context
the mapping (2) takes the form

g(x) = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
t

for all x ∈ X. (10)

Also, the basis (4) may be understood in terms of
⊗t X: If (e0, e1, . . . , em) ∈ Et

m,
then let be0,e1,...,em := bi1 ⊗ bi2 ⊗ . . . ⊗ bit with 0 ≤ i1 ≤ . . . ≤ it ≤ m and each
basis vector bi appearing exactly ei times. As σ runs in St we obtain exactly(

t

e0, e1, . . . , em

)
=

t!
e0!e1! . . . em!

distinct vectors fσ(be0,e1,...,em) and their sum is easily seen to be ce0,e1,...,em . The
canonical mapping

⊗t X→ StX maps ce0,e1,...,em ∈ Y to

ce0,e1,...,em + M =
(

t

e0, e1, . . . , em

)
be00 · be11 · . . . · bemm . (11)

2.7 Returning to the settings of 2.1, let U ⊂ X be an (r + 1)–dimensional
subspace (0 ≤ r < m). First we show that the restriction of γ to the projective
subspace P(U) is a Veronese mapping.

We write U∗ for the dual space of U and U◦ for the annihilator (orthogonal
subspace) of U in X∗. It is easily seen that there are canonical isomorphisms

U∗ ∼= X∗/U◦,
StU∗ ∼= St(X∗/U◦) ∼= StX∗/(U◦ · St−1X∗),

where U◦·St−1X∗ is a shorthand for the subspace of StX∗ spanned by all products
of the form

a∗1 · a∗2 · . . . · a∗t with a∗1 ∈ U◦, a∗2, . . . , a
∗
t ∈ X∗.

So StU∗ and the subspace (U◦ ·St−1X∗)⊥ of Y form a dual pair of vector spaces
with the pairing induced by 〈 , 〉. Hence

gU : U→ (U◦ · St−1X∗)⊥, u 7→ g(u)

5



yields a Veronese mapping of P(U) and γ(P(U)) is a Veronese variety V tr con-
tained in V tm.

Following Herzer [6, (4.1)], we associate with U the subspaces

(Sk+1U◦ · St−k−1X∗)⊥ with k ∈ {−1, 0, . . . , t− 1}. (12)

In projective terms they yield the k–osculating subspaces of V tm along the subva-
riety V tr arising from P(U). See [3] or [7] for geometrical interpretations of those
subspaces.

We are interested in the special case that U = ker a∗ (a∗ ∈ X∗) is a hyperplane
of X and that k = t− 1 is maximal. This gives

(StU◦ · S0X∗)⊥ = (Fa∗t)⊥, (13)

i.e., a hyperplane of Y. The corresponding projective hyperplane is the osculating
(or contact) hyperplane of V tm along the subvariety V tm−1 = γ(P(U)). Such an
osculating hyperplane meets the Veronese variety V tm exactly in a subvariety
V tm−1. Thus, finally, we have established the dual Veronese mapping

γ∗ : P(X∗)→ P(StX∗), Fa∗ 7→ Fa∗t. (14)

With the notations of 2.2 we obtain

(
m∑
i=0

aib∗i )
t =

∑
Etm

(
t

e0, e1, . . . , em

)
ae00 a

e1
1 . . . aemm b∗e00 ·b∗e11 ·. . .·b∗emm (ai ∈ F ). (15)

See also [3, pp. 160–163].

2.8 It is an essential property of the Veronese mapping γ that for each collineation
κ of P(X) there is a collineation κ̃ of P(Y) with κ̃ ◦ γ = γ ◦ κ. In our approach
this is easily derived from the universal property of StX∗: Let f : X→ X be
a semilinear bijection inducing κ with accompanying automorphism ι ∈ AutK.
Put f> : X∗ → X∗ for its transpose mapping. For each y ∈ Y there is a unique
vector in Y, say f̃(y), with

〈a∗1 · a∗2 · . . . · a∗t , f̃(y)〉 = ι(〈f>(a∗1) · f>(a∗2) · . . . · f>(a∗t ),y〉)

for all a∗1, a
∗
2, . . . , a

∗
t ∈ X∗. Then f̃ : Y → Y is a ι–semilinear bijection inducing

κ̃. It is straightforward to show that κ̃ preserves the Veronese variety γ(P(X))
and its osculating subspaces.

Observe that we did not assert the uniqueness of κ̃. Also, there may be
collineations of P(Y) fixing V tm as a set of points without preserving its osculating
subspaces. Clearly, such collineations cannot arise from collineations of P(X).
The existence of such “exceptional collineations” is immediate whenever V tm does
not span P(Y). Another example is given in 3.6.
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3 Nuclei

3.1 In this section we investigate a fixed Veronese variety V tm. In order to avoid
trivialities we assume m ≥ 1 and t ≥ 2.

Definition 1 The nucleus of a Veronese variety is defined as the intersection of
all its osculating hyperplanes.

As we aim at a formula for the dimension of the nucleus of a V tm we shall use
coordinates. However, all results do not depend on the specific choice of a basis
b0,b1, . . . ,bm of X.

Theorem 1 The nucleus N of a Veronese variety V tm contains exactly those base
points Fce0,e1,...,em of P(Y) satisfying(

t

e0, e1, . . . , em

)
≡ 0 (mod charF ). (16)

If #F ≥ t, then the nucleus is spanned by those base points.

Proof. (a) A fixed base point Fce0,e1,...,em belongs to N exactly if(
t

e0, e1, . . . , em

)
ae00 a

e1
1 . . . aemm = 0 for all a0, a1, . . . am ∈ F

by (15). This in turn is equivalent to (16).
(b) Each vector y ∈ Y defines a function

y′′ : X∗ → F, a∗ 7→ 〈a∗t,y〉.

Letting y =
∑

Etm
ye0,e1,...,emce0,e1,...,em and a∗ =

∑m
i=0 aib

∗
i gives

y′′(a∗) =
∑
Etm

ye0,e1,...,em

(
t

e0, e1, . . . , em

)
ae00 a

e1
1 . . . aemm .

So y′′ is a homogeneous polynomial function of degree t.
Now let Fy be a point in the nucleus, whence y′′ = 0. By #F ≥ t and [6,

(1.2)] we obtain

ye0,e1,...,em

(
t

e0, e1, . . . , em

)
= 0 for all (e0, e1, . . . , em) ∈ Et

m.

Therefore
(

t
e0,e1,...,em

)
6≡ 0 (mod charF ) implies ye0,e1,...,em = 0, as required. 2

3.2 When comparing (5) with (15) it is tempting to define a linear mapping

h : Y → StX∗ by ce0,e1,...,em 7→
(

t

e0, e1, . . . , em

)
b∗e00 · b∗e11 · . . . · b∗emm . (17)
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Clearly, such an h depends on the basis b0,b1, . . . ,bm of X, but the induced
(possibly singular) duality will take the point set of V tm onto the set of osculating
hyperplanes. However, the kernel of h has an invariant meaning. Regard Y as
subspace of

⊗t X (cf. 2.6). From (11), kerh is spanned by all vectors ce0,e1,...,em
satisfying (16). Thus kerh = Y∩M. This is a description “from outside Y”. For
#F ≥ t we may also describe that kernel “from within Y” as subspace orthogonal
to all a∗t ∈ StX∗ or, in projective terms, as nucleus of V tm.

3.3 If charF = 0, then the nucleus of V tm is empty by Theorem 1. In the
subsequent part of this paper we assume the characteristic of F to be a prime p.

The representation of a non–negative integer n ∈ N in base p has the form
n =

∑
λ∈N nλp

λ with only finitely many digits nλ ∈ {0, 1, . . . , p−1} different from
0. Such representations play a crucial role in the following discussion.

Theorem 2 Let ∑
λ∈N

tλp
λ (18)

be the representation of t in base p = charF > 0. If #F ≥ t, then the nucleus of
a Veronese variety V tm has (projective) dimension(

m+ t

t

)
−
∏
λ∈N

(
m+ tλ
tλ

)
− 1. (19)

Proof. There are
(
m+t
t

)
base points Fce0,e1,...,em of P(Y). The number of (m+1)–

tuples (e0, e1, . . . , em) ∈ Et
m such that the multinomial coefficient

(
t

e0,e1,...,em

)
is

not divisible by the prime p equals∏
λ∈N

(
m+ tλ
tλ

)
=
∏
λ∈N

(
m+ tλ
m

)
; (20)

see [8, Theorem 3.1] or [13, Theorem 2]. This completes the proof. 2

Now the following is immediate.

Corollary 1 Let V be an (m+ 1)–dimensional vector space over a field F with
characteristic p > 0 and let (18) be the representation of t ∈ N in base p. If
#F ≥ t, then (20) is equal to the dimension of the subspace of the t–th symmetric
power of V which is spanned by {at | a ∈ V}.

Theorem 2 has been established by H. Timmermann [12, 4.15] for normal rational
curves V t1. See also [4].

From (5), (15), and Lemma 1 the symmetric powers a∗t with a∗ ∈ X∗ cannot
generate StX∗ when #F < t. So here the nucleus of a Veronese variety V tm is
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non–empty. By Theorem 1, (19) gives a lower bound for the dimension of the
nucleus.

3.4 We add a few remarks on multinomial coefficients. Given d0, d1, . . . , dm ∈ N
with d0 + d1 + . . .+ dm 6= t one usually puts

(
t

d0,d1,...,dm

)
:= 0.

Returning to the settings from above, choose (e0, e1, . . . , em) ∈ Et
m with re-

presentations ei =
∑

λ ei,λp
λ in base p. Then(

t

e0, e1, . . . , em

)
≡
∏
λ∈N

(
tλ

e0,λ, e1,λ, . . . , em,λ

)
(mod p) (21)

[2, 364]. For binomial coefficients this result is due to Lucas. Thus a necessary
and sufficient condition for(

t

e0, e1, . . . , em

)
6≡ 0 (mod p) (22)

is that
tλ = e0,λ + e1,λ + . . .+ em,λ for all λ ∈ N. (23)

This means that no “carries” are made if e0 + e1 + . . . + em is calculated with
digits in base p. Cf. [8, Lemma 2.1] or [13, Theorem 1].

3.5 From (23) it is easy to determine all m, t ∈ N such that (22) holds true for
all (e0, e1, . . . , em) ∈ Et

m.

1. m ≤ 0 or t ≤ 1: Here (22) is always true. Recall, however, that these trivial
cases have been ruled out from our discussion.

2. 2 ≤ t < p: Then (23) holds true, since t0 = t and tλ = 0 for all λ > 0.

3. t ≥ p and m = 1: Let J > 0 be the highest position of a non–zero digit
tλ in (18). A binomial coefficient

(
t

e0,e1

)
=
(
t
e0

)
with (e0, e1) ∈ Et

1 vanishes
modulo p exactly if e0,λ > t0,λ for at least one λ < J , since e0 ≤ t implies
e0,J ≤ tJ . So here (22) holds true for all values in Et

1 if, and only if,
t0 = t1 = . . . = tJ−1 = p− 1, i.e., t = tJp

J − 1.

4. t ≥ p and m ≥ 2: Put e0 := 1, e1 := p− 1, e2 := t− p, e3 = . . . = em = 0.
Then (22) is not satisfied.

From this observation and the remarks at the end of 3.3, all Veronese varieties
with empty nucleus are immediate.

3.6 Let U be an (r + 1)–dimensional subspace of X. Put V tr for the Veronese
image of P(U) and Nr for its nucleus. We may assume w.l.o.g. that b0,b1, . . . ,br
form a basis of U.
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If #F ≥ t, then the nucleus Nr is spanned by all base points Fce0,e1,...,em
subject to (16) and er = er+1 = . . . = em = 0. So, from Lemma 1, we obtain

Nr = N ∩ span (V tr). (24)

It should be noted here that in (24) the set V tr has to be the γ–image of a subspace
and not merely a Veronese variety contained (as a point set) in V tm.

Take, for example, F = GF(2), m = 2, and r = 1. Then γ(P(X)) = V2
2

is a frame of the 5–dimensional projective space P(Y), i.e. a set of 7 points in
general position. The nucleus of this Veronese surface is the plane spanned by
Fc0,1, Fc0,2, and Fc1,2. The Veronese image of a line P(U) ⊂ P(X) is a conic
contained in V2

2 . The nuclei of the seven conics that arise as γ–images of the
seven lines of P(X) are given by (24). But any three points of V2

2 form a triangle
or, in other words, a conic. Now choose a triangle ∆ in V2

2 which is no γ–image
of a line. We may suppose that ∆ is the γ–image of Fb0, Fb1, and Fb2. Hence
∆ = {Fc0,0, Fc1,1, Fc2,2} spans a plane skew to N . So if ∆ is regarded as a conic,
then its nucleus does not arise according to (24).

This specific Veronese surface has another striking property: Each of the
7! permutations of V2

2 extends to a unique collineation of P(Y), since any two
ordered frames determine a unique collineation. Thus, although V2

2 spans the
entire space P(Y), there are “exceptional” automorphic collineations that do not
stem from the 7 · 6 · 4 collineations of P(X).

3.7 The Veronese mapping γ : P(X)→ P(Y) has the following well known
properties:

(V1) γ is injective.

(V2) Each line is mapped onto a normal rational curve V t1.

(V3) For each collineation κ of P(X) there is a collineation κ̃ of P(Y) with
(κ̃ ◦ γ)(P ) = (γ ◦ κ)(P ) for all points P ∈ P(X).

The following example shows that (V1), (V2), and (V3) are in general not suffi-
cient to characterize Veronese mappings to within collineations.

Let m = 2 and let F be an infinite field of characteristic p = 2. So V3
2 is

spanning the 9–dimensional projective space P(Y). By (19), the nucleus N of
V3

2 is a single point, namely Fc1,1,1. Under γ the line of P(X) joining Fb0 and
Fb1 goes over to a twisted cubic in the 3–space spanned by the four base points
Fce0,e1,0 with e0 + e1 = 3; so that 3–space is skew to the nucleus. By (V3), these
properties are shared by the γ–images of all lines. Denote by π the projection
of P(Y) with centre N onto a complementary hyperplane. Then π ◦ γ satisfies
(V1), (V2), and (V3). From Lemma 1, no Veronese variety Vs2 over F is spanning
an 8–dimensional projective space.
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Due to the results in 3.5, similar examples are easily found over infinite fields
of any non–zero characteristic p. It is enough to let m ≥ 2 and t = tJp

J − 1 with
1 ≤ tJ < p and J ≥ 2. Then the Veronese mapping takes the lines of P(X) onto
normal rational curves with empty nuclei, whereas the entire projective space
P(X) is mapped onto a Veronese variety with a non–empty nucleus.
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