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Abstract

Recently, a number of interesting relations have been dised be-
tween generalised Paildirac groups and certain finite geometries. Here,
we succeeded in finding a general unifying framework for ladise rela-
tions. We introduce gradually necessary anfiicient conditions to be met
in order to carry out the following programme: Given a grdepwe first
construct vector spaces over Ql(p a prime, by factorisings over ap-
propriate normal subgroups. Then, by expressing @bk terms of the
commutator subgroup @&, we construct alternating bilinear forms, which
reflect whether or not two elements Gfcommute. Restricting tp = 2,
we search for “refinements” in terms of quadratic forms, Whiapture the
fact whether or not the order of an elemeni®is < 2. Such factor-group-
generated vector spaces admit a natural reinterpretatidimeilanguage of
symplectic and orthogonal polar spaces, where each paionies a “con-
densation” of several distinct elements®f Finally, several well-known
physical examples (single- and two-qubit Pauli groupshlibe real and
complex case) are worked out in detail to illustrate the finé< of the for-
malism.
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Introduction

The purpose of this paper is to establish the most generakiiaetting for refor-
mulating, whenever possible, basic properties of groupsrims of vector spaces,
alternating bilinear forms, quadratic forms and assodigiejective and polar



spaces. As far as we know, the first outline of such an anatgsisbe tracked
back in the textbook of Huppert [1], when addressing theatedextra-special
groups however, the assumptions made there were rather spedifiocimite ge-
ometry was explicitly mentioned. Another treatment of th&uie, with important
physical applications, was given by Shaw and his collaloosd®2], [3], [4], [5],
[6], [7]. These papers deal with thidrac groupsand their relationship to projec-
tive spaces over GF(2). They include also a detailed diatypfrom group theory
to finite geometry andice versasee also [8]). Being unaware of these develop-
ments, Planat and Saniga and others set up a similar proggd@jni10], [11],
[12], [13], [14], [15], [16], [17] [18], [19], [20], [21], [2], (see also [23]), and
discovered various kinds of finite geometry behind the gaissd Pauli groups
of specific finite-level quantum systems, their results ggiat into a more gen-
eral context by Koen Thas [24p(= 2) and [25] > 2); these works, however,
focussed uniquely on symplectic case (alternating bilif@ans), leaving the im-
portance of quadratic forms simply unnoticed. In what fekowve shall not only
fill this gap, but develop the theory to such an extent thatitlles between the
above-mentioned approaches become clearly visible artieagame time, dif-
ferences between some closely related finite groups (e2guelen the real and
complex two-qubit Pauli groups) will be revealed and propenderstood.

2 Preliminaries

We first collect some notions which will be used throughoetlaper:
Let (G, -) be a group with neutral elemeatGiven a seM C G we denote by
(M) the subgroup ofs generated by. Also, we let

MM = (x| xe M} forall me Z. (1)

The commutator ofy, b € G is written as § b] := aba*b™t. The commutator
group (derived group)3, G] =: G’ is the subgroup ofs which is generated by all
commutators. The centre G&fis written asZ(G).

Furthermore, lep be a fixed prime. We denote the Galois field wijitel-
ements by GHY) = Z/(Zp). We shall always use,Q,...,p— 1 € Z as rep-
resentatives for the elements of @lr( Vector spaces over GpY have a series
of rather simple, but nevertheless noteworthy propertie€hvare not shared by
vector spaces over arbitrary fields. \ ) is vector space over Gp) then

mv=v+v+---+V forall me GF(p), veV. (2)
R

m

So the additive group\ +) or, more preciselyy as az-module, determines the



structure as a vector space over @H( auniqueway. In particular, we have

V+V+---+v=o0 forall veV, (3)
————
P

whereo denotes the zero element\df Consequently, any subgroupéfis also
a (vector) subspace. Furthermore, any additive mappingectov spaces over
GF(p) is also linear; see, among others, [26] and [27]. Convgrastommutative
group , +) satisfying (3) can be turned into a vector space overggby defining
the product oim € GF(p) andv € V by (2).

3 Vector spaces oveGF(p)

We aim at constructing vector spaces over @y factorisingG modulo appro-
priate normal subgroups.

Let N < G, i. e., N is a normal subgroup o&. The factor groupG/N is
commutative if, and only ifG’ < N. FurthermoreG/N is isomorphic to the
additive group of a vector space over @Fif, and only if, it satisfies the following
condition:

Condition 1. N is a normal subgroup d& which contains the commutator sub-
groupG’ and the seGP of pth powers.

Remarkl. Let N < G be asubgroupof G satisfyingG’ < N. We recall thatN

is anormal subgroumf G in this case, since for all € N and allx € G we have
xax ! =[x, ala € N. This means that Condition 1 can be relaxed by omitting the
word “normal”.

Remark2. The complex produds’GP = {xy| xe G, y € G} is easily seen to
be a subgroup dB. Thus, by Remark 1, we have

GGP =(GuGP) «G. (4)

Remark3. The casep = 2 deserves particular mention. Here Condition 1 can
be further relaxed by deleting the conditi@ < N, becaus&s® < N implies
that all elements of5/N have order one or two, which in turn guarantees the
commutativity ofG/N.*

We assume until further notice that Condition 1 holds. Theneat

(V.+) :=(G/N,), (5)

A group of prime exponenp > 2 need not be commutative. For example, the set of upper
triangular 3x 3 matrices over GH) with 1s along the diagonal is a non-commutative group of
exponentp under matrix multiplication fop > 2.
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I. e., the composition iv will be written additively, and we consid&tas a vector
space over GH) in accordance with (2).

It is an easy exercise to express notions form the vectorespdtke linear
dependence, dimension, etc.) in terms of the factor geUd. For example, a
linear combinatiorﬁik:1 myv; with m € GF(p), vi = x;N andx; € G translates into
VitVo2 v ¥N. The factors in this product may be rearranged in any ordee T
set of all subspaces df is precisely the set

{SIN|N<S<G}. (6)

The factor spaces of have the fornv/(S/N), with S as above. There exists the
canonical isomorphism (of vector spaces)

G/S— (G/N)/(S/N) : xS = (xN)(S/N) (7)
by the homomorphism theorem. Therefore, up to the canomeatification
G/S= (G/N)/(S/N) = V/(S/N), 8)
the set of all factor spaces Wfis precisely the set
{G/SIN<S<G}. (9)

The identification (8) will frequently be used in the sequ#l.V is finite then
#V = pY, andd is the dimension o¥/. Hence in this case the dimension\dtan
be found by a simple counting argument.

We close this section with a complete description of all @espaces arising
from our previous construction.

Theorem 1. Let G be any group. Then the following assertions hold:

(@) The subgroupNg := G’'GP is normal inG and meets the requirements of
Condition1. Hence it yields the vector spacg @+ G/Ng overGF(p).

(b) The set of vector spacé&s/N, whereN < G is subject to Conditiord, is
precisely the set of all factor spaces @f Up to the canonical identification
G/N = Vp/(N/No) from (8).

Proof. Ad (a) This is clear by Remarks 1 and 2.

Ad (b) A subgroupN < G satisfies Condition 1 if, and only ifjjp < N. Under
these circumstances the canonical identification from é8)lwe applied t@/N.
This establishes the result. ]

The previous result can be rephrased as follows: Our cartgiruyields (to
within isomorphism) precisely homomorphic images of thetoespace/.

Of course, in Theorem 1 the trivial cadg = G may occur so that, turns
out to be the zero vector space over Bf-(Take, for exampleG as a cyclic group
of prime order# p. At the other extreme, I is a commutative group of indgx
thenNg = {e}.



4 The underlying field

For our construction of an alternating bilinear form in $a&ct5, we shall need
an interpretation of the Galois field Gbj(within the groupG in terms of the
commutator grouss’. The (multiplicative) grouf’ is isomorphic to the additive
group of the Galois field GF) precisely when the following is satisfied:

Condition 2. The commutator grou@®’ has ordeip.

This is due to the fact that any two groups of orgeare cyclic and hence
isomorphic. Condition 2 is very restrictive, in sharp castrto Condition 1.

Remark4. Condition 2 implies thaG is anon-commutative groyginceG’ has
to have more than one element.

Let us assume until the end of this section that Conditionl8shoFor each
generatog of G’ (viz. each elemerg € G’ \ {e}) the mapping

Yy (G,) = (GF(P).+) : g"— m with me {0,1,...,p-1} (10)

is an isomorphism of groups. Given a genergar G’ there exists an element
ke{l,2,...,p—- 1} such thag = §*, whence

(g o ygH)(m) = km for all me GF(p). (11)

Therefore, loosely speakin@’ could be identified with GRKY) up to a non-zero
scalar ke GF(p). In fact, Condition 2 just guarantees tl@itis a one-dimensional
vector space over GBJ, but it does not provide a unique way to ident®y with
GF(p) unlessp = 2. Examples of groups satisfying Condition 2 will be exhehlit
in Section 9.

Remark5. If Conditions 1 and 2 are satisfied then, taking into acc%ﬁ(m) =
g™ andv = xN for somem € GF(p) and somex € G, onemust notcalculate
the productmvin terms of the factor grou®/N as @"N)(xN) = g™xN. For
examplem = 0 andv # o (zero vector) yield Ov = 0, butg®xN = xN = v # o.
Observe that this applies even in the cpse 2, where there is just one possibility
for choosing an isomorphis,.

5 An alternating bilinear form

Given a groupG and a normal subgrould < G satisfying Condition 1, we want
to turn the commutator mapping ] : Gx G — G’ into a function which is well
defined oV x V. This amounts to requiring that for adly € G their commutator



[x,y] does not change ik is replaced by any element from the cosét and
likewise fory. For anya € N we have k, y] = [xa V] if, and only if,

xyxty?t = xayaixty?

or, equivalentlyay = ya. Since herg/ € G is arbitrary, this holds precisely when
a e Z(G). We are thus lead to the following:

Condition 3. The normal subgroupl is contained in the centre @.

By virtue of this condition, we have indeed, ] = [xa yb] for all x,y € G
and alla,b € N. However, there does not seem to be an obvious meaning of
the commutator grou@’ for our vector spac¥. Hence we assume until further
notice that Conditions 1, 2, and 3 hold. Therefore

GGPaN<Z(G) <G (12)

is satisfied. Also, we choose an isomorphiggraccording to (10). This allows to
define a mapping

[ 1o : VXV = GF(p) : (v,w) = (XN, yN) = ig([x Y1), (13)
wherex,y € G. We collect now several basic properties of this mapping.

Theorem 2. Suppose that the group and the normal subgroupl < G satisfy
Conditionsl, 2, and 3. Also, let g be a generator of the commutator gr@sp
Then the following assertions hold:

(a) The mapping-, -]4 given by(13)is an alternating bilinear form on the vec-
tor space V= G/N.

(b) Two elements,y € G commute if, and only if, the corresponding vectors
v=XN,w=yN eV are orthogonal with respect {o, ], i. e.,[v,w]g = 0.

(c) The bilinear form[-,-]4 is non-zero and has the radical*V= Z(G)/N.
Consequently, this form is non-degenerate if, and onlM i€oincides with
the centre ofG.

Proof. Ad (a): Givenx,y € G we letv := xN andw := yN. Then
[V. VI = ¥g([x X]) = yg(€) =0 (14)

and
[W, VIg = dg(ly: X)) = dg([x Y1) = —[w, Vg (15)



Also, we obtain

[Vi+Vawlg = Yg((XX)y(XaX2) 'y ™)
= Yg(XxyX Xy ™)
= Yglxa Oy ) X hxayxgty ™) (16)
—
= YOy Hxayxty ™)
= Yy([%, Y] - [X, Y1)

= [vi, W]g + [V2, W]g.

Here we used tha®’ is fixed elementwise under the inner automorphism given
by x; due to (12). The last equality follows, because ConditionrzdsG’ to be
commutative. From (15) and (16), the function]f, is biadditive and therefore
also bilinear. Hence the assertion follows.

Ad (b): This is immediate from the definition of [],.

Ad (c): We noted already in Remark 4 th@tis a non-commutative group.
Consequently, the bilinear form {] is non-zero. Its radical is

Vt={veV|v.LwforallweV} (17)
We read @& from (b) thatvV+ = Z(G)/N and the rest is clear. O

Observe that the bilinear form []4 has to be degenerate when ditvs an odd
integer. See Examples 1 and 2 in Section 9.

The previous result (b) about commuting elements does nuerdkon the
choice of the isomorphismy. Replacingg by any generatog 6f the commutator
groupG’ changes the bilinear form, []g by a non-zero factok € GF(p), that is
[-.-ls = K[-,"]g- But the orthogonality relations with respect to these taoris
are identical. We could even rule out the isomorphiggnby considering the
mappingV xV — G’ : (XN,yN) — [x,y]. The proof of Theorem 2 shows that
this is a non-zero alternating bilinear mapping of vectacgs over GHf). The
interpretation of our results in terms of projective geamyeitill also eliminate the
explicit choice of an isomorphisiy. See Section 7.

We end with a complete description of all vector spaces ahdlt@rnating
bilinear forms arising from our construction from the abosfe Theorem 1.

Theorem 3. Let G be a group such that Conditiok holds. Furthermore, let
at least one of the normal subgroups®fsatisfy Conditionsl and 3. Choose
g € G\ {e}. Then the following assertions hold:

(@) The subgroupNy, = G'G is normal inG and meets the requirements of
Conditionsl and 3. It yields the vector space,\= G/Ng over GF(p), the
alternating bilinear form(-, -]g0 on Vp, and the radical .
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(b) The set of vector spac&/N, whereN is subject to Conditions and 3, is
precisely the set of factor spaceg/$, where S is any subspace ¢f,Wip
to the canonical identification fror8).

(c) Interms of the identification froif8) the alternating bilinear fornj-, -]4 on
any vector spac&/N = Vy/S as in(b) is inherited from the bilinear form
[', ']g,O on Vo.

Proof. Ad (a): By the hypotheses of the theorely, < Z(G) holds, whence (a) is
fulfilled.

Ad (b): A subgroupN < G satisfies Conditions 1 and 3 if, and only Ny <
N < Z(G) which in turn is equivalent to

No<N and S=N/Ng < Z(G)/No = V¢. (18)

Ad (c): The bilinear form { -]50 induces a well defined bilinear form &fy/S
for any subspac& < Vy via (v+ S,w+ S) = [v,W]go. This induced form
coincides with {, -]4 by its definition. ]

6 A quadratic form

We let p := 2 throughout this section. We exhibit a groGpand a normal sub-
group N satisfying Conditions 1 and 2, but we do not yet assume Ciamndi to
be fulfilled. SoG’ = {e, g}, say, and) = g~* # e. Hence the vector spase= G/N
and the (only) isomorphismg : (G, +) — (GF(2) +) are at our disposal. In the
sequel the group

K:={xeZ(G)| X =¢e} < Z(G) (19)

will play an important role.
Our first aim is merely to define a mappi® — GF(2) by the assignment
X > Yg(X?). This is possible if, and only if, the following holds:

Condition 4. Gis a group such that all its squares belong to its commutatong
i.e,GPcG.

Remark6. We note that Conditions 2 and 4 imply
G@® =@, (20)

since otherwis&® = {e} would forceG to be commutative, a contradiction to
Remark 4.



We continue by demanding that also Condition 4 is satisfiad.g@cond aim
is to find necessary andficient conditions for the mappifg

Q:V — GF(2) :v=xN - (X% (21)
to be well defined. This is the case if, and only if,
x? = xaxaforall xe G andallae N. (22)

Let us consider first of all the particular case= e which yields the necessary
conditiona? = efor alla € N. As N = {e} is impossible due te # g € N, we
continue by assuming the following to be true:

Condition 5. The normal subgroupl < G has exponent 2.

Now, returning to the general case, we can use Condition &adte (22) in
the form
x? = x*(x ta'xa) forall xe G andallae N, (23)

becausa = a*!. Cancellingx? shows that (23) holds precisely whahis in the
centre ofG. Hence, we also have to impose Condition 3 to be valid.

Conversely, with all five conditions at hand we obtain that thappingQ in
(21) is indeed well defined. We notice that under these cistances

=N 2{eg)=G =GPaNIK<IZ(G) <G (24)
is satisfied. We are now in a position to describe the mapRingdetail.

Theorem 4. Suppose that the group and the normal subgroupl < G satisfy
Conditionsl-5for p = 2. Then the following assertions hold:

(a) The mapping Q V — GF(2)given by(21)is a quadratic form.

(b) The polar form of Q equals to the alternating bilinear fornve in(13).
Consequently, Q is non-zero.

(c) The restriction of Q to the radical Vis a linear form \ — GF(2) with
kernelK/N < V+. Hence eitheiK/N = V+ or K/N is a hyperplane of V.

Proof. Ad (a) and (b): In order to show th& is a quadratic form, we have to
verify two conditions. FirstlyQ(kv) = k?Q(v) for all k € GF(2) and allv € V.

2We refrain from writingQg, since there is only one choice fgreven though we maintain the
notation f, -]4 from the previous section.



This follows fromQ(0) = y4(€?) = 0 for k = 0 and is obviously true fok = 1.
Secondly, it remains to establish that the mapping

VXV - GF2): ,w) — Q(v+w) — Q(v) — QW) (25)
is biadditive and hence bilinear. Letting= XN, w = yN with x,y € G gives
(xy)*x 2y 2 = x2(xy)’y 2 = x tyxy ™t = [x Ly (26)

Here the first equation sign holds, beca®® is a commutative group by Re-
mark 6, which allows to rearrange squares. Applicatiopigdermits us to express
(26) as
Q(v+w) — Q(v) - QW) = [V, W]g = [V, W]g. (27)

Since [, |4 is non-zero, so i). This completes the proof of (a) and (b).

Ad (c): The restriction oRQ to the radicaV* = Z(G)/N is additive by (27).
HenceQ|V+* is a linear form in GF(2). By its definitiorQ[V+ vanishes precisely
on the seK/N, which is therefore al/*, or one of its hyperplanes. O

Our final result of this section is in the spirit of Theoremant 8:

Theorem 5. Let G be a group such that Conditiorsand 4 hold for p = 2.
Furthermore, let at least one of the normal subgroupS&datisfy Conditiond,
3, and5. Then the following assertions hold:

(a) The normal subgrouply = G'G® = G’ = G® < G meets the requirements
of Conditionsl, 3, and5. It yields the vector space)\= G/Ng overGF(p),
the quadratic form @on \j, and the subspadé/No < Vy.

(b) The set of vector spac&y N, whereN is subject to Condition, 3, and5,
is precisely the set of factor spacesg/8, where S is any subspacegfNg,
up to the canonical identification frog8).

(c) In terms of the identification fron8) the quadratic form Q on a vector
spaceG/N = Vy/S as in(b) is inherited from the quadratic formd®n V.

Proof. Ad (a): By the hypotheses of the theorem and (84)= G® = Ny < K <
Z(G), whence (a) is fulfilled.

Ad (b): A subgroupN < G satisfies Conditions 1, 3 and 5 if, and only if,
No < N < K which in turn is equivalent to

No <N and S = N/Ng< K/No. (28)

Ad (c): The quadratic fornQ, induces a well defined quadratic form ¥g/S
for any subspac& < K/Ngviav+ S — Qu(v), becauseo(v + 5) = Qo(V) +
Qo(s) + [V, Slg, = Qo(v) for all se S. This induced form coincides witl by its
definition. ]
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Under the assumptions of Theorem 5 suppose khat Z(G). Then there
exists a subgroup with K < N < Z(G), whence Condition 5 is violated, whereas
Conditions 1-3 are satisfied. This means that the vectorespAN is endowed
with an alternating bilinear form by Theorem 3, but theresexno quadratic form
onG/N as in Theorem 5; see Examples 1 and 2 in Section 9.

7 Symplectic polar spaces

Our results from the preceding sections allow a naturafpmétation in terms of
projective geometry. Le¥ be an ( + 1)-dimensional vector space over a field
F, wheren > —1. Recall that theointsof the projective spacenV are its one-
dimensional subspaces (“rays through the origin”). Weeng{lv) for the set of
all such points. Likewise, each subsp&cef V gives rise to a séi(S) of points.
If dim S = k + 1 thenP(S) c P(V) is called ak-flat or k-dimensional projective
subspace In particular,P(V) is the onlyn-flat, i. e., its projective dimension is
n. We use the familiar terminology for low-dimensional flalisres planes and
solidshave projective dimension 1, 2, and 3, respectivélyperplanesof P(V)
are those flat®(S) whereS has codimension 1 iX.

Assume now thagV, [+, -]) is asymplectic vector spac&o it is endowed with
a non-degenerate alternating bilinear form][andn + 1 =: 2r is even. For each
subsetV C V we denote byV+ its orthogonal subspace e. the set of all vectors
in V which are orthogonal to every vector W. In particular,v*- is a subspace
with codimension 1 for each vectore V \ {o}. In projective terms we obtain a
null polarity?, i. e. the mapping which assigns to each p&inits null hyperplane
P(v*+). More generally, one can associate with ekdlat P(S) the (1 — k — 1)-flat
P(SH); it equals to the intersection of all hyperplari&s*), asFv ranges over all
points ofP(S). A subspacé& < V is calledtotally isotropicif S < S+. We use the
same terminology for the fla&(S). Thesymplectic polar spacassociated with
(V,[-,] is the point seP(V) together with the set of all totally isotropic flats. All
maximal totally isotropic flats have projective dimension 1. It is common to
denote this polar space W, _1(F) and, in particulariy_1(q) if F = GF(Q) is
a Galois field. For eachand each- there is a unique symplectic polar space to
within isomorphisms; see [28], [29], and the referencesetine

Two (not necessarily distinct) poinksy, Fw of ‘W,,_;(F) are said to beonju-
gateif v e w* (orw € v*). In other words: Two points are conjugate if one of them
is in the null hyperplane of the other. Two distinct points aonjugate precisely
when they are on a common totally isotropic line. Each pams&lf-conjugate.

3We restrict ourselves to the finite-dimensional case evengh several results from below
could be carried over—mutatis mutandis-to spaces of infinite dimension.
40ther names for this mapping asgmplectic polarityandnull system
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It is now a straightforward task to establish a neat conordbetween our
previous results and symplectic polar spaces:

Theorem 6. Suppose that a grou@® and its centre Z5) =: N satisfy Condi-
tions 1-3for some prime number p. Furthermore, let¥ G/Z(G) be finite and
let an alternating bilinear forni-, -]4 be defined as if13). Then the following
hold:

(@) ([, -]g) gives rise to a finite symplectic polar spa@,_1(p).

(b) The totally isotropic flats ofi,_1(p) have the fornP(C/Z(G)), whereC
ranges over the set of all commutative subgroup& afhich contain the
centre 4G). In particular, the points ofW,_1(p) have the fornC/Z(G),
whereC = (X)Z(G) and xe G\ Z(G).

(c) Two elements,y € G\ Z(G) commute if, and only if, the corresponding
points of Wo4_1(p) are conjugate.

Proof. Ad (a): By Theorem 2 (c), the form,[]q is non-degenerate. Therefore
dimV =: 2r is even and the assertion follows.

Ad (b): By (6), any subspace &f has the fornS/Z(G) with Z(G) < S< G
andvice versa The subspac&/Z(G) is totally isotropic if, and only if, {]4
vanishes identically 06/Z(G). This holds precisely when the subgrdsiis com-
mutative. The points ofi,_1(p) are the one-dimensional subspace¥of. e.
the subgroups 06/Z(G) which are generated by a single elem&#{G) with
x € G\ Z(G). Hence they have the asserted form.

Ad (c): This holds according to our definition of {|; and the definition of
conjugate points. O

The structure of the spac®’,_1(p) from above “is” the structure of commut-
ing elements of5. Note that any € G\ Z(G) clearly commutes with all powers
of x and with all elements aZ(G). It is therefore natural to “condense” the com-
mutative subgroupx)Z(G) < G to a single entity—a point oW, _;(p). Also, it
is natural that all elements from the cen#ig) have no meaning fol/,_1(p),
as they commute with every element@f We add in passing that the polar space
W _1(p) does not depend on the choice of the genemtwrG’ which is used to
define [, ]g.

Remark7. The results from Theorem 6 can be easily generalised to thagse
of Theorem 2. Under these circumstances the factor sga¢e together with
the alternating bilinear form, which is inherited frow) takes over the role of the
symplectic vector space from above. This means that oneagstsiplectic polar
space in the projective spaBév/V+). A k-flat of P(V/V+) has, by definition, the
form P(S/V+) with V+ < S <V and dimG/V+*) = k+ 1. It will be convenient
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to identify this flat with the flaP(S) of the projective spacg(V). From this point
of view the flats ofP(V/V+) are the flats oP(V) which containP(V+). Note that
such a flat now haswvo projective dimensionsts dimension with respect ®(V)
is dimS - 1, while its dimension with respect ®(V/V+) is dim(S/V+) — 1; see
Example 1.

8 Orthogonal polar spaces

In view of Section 6 we adopt the following: L&t be an (i + 1)-dimensional
vector space over a field with characteristic 2. LeQ : V — F be a quadratic
form and [, -] be its (alternating bilinear) polar form. We assu@do benon-
singular, which means tha@(v) # O for all non-zero vectors in the radicdl-. A
subspacé& < V is said to besingularif Q vanishes identically o8. We use the
same terminology for the fl&(S). The singular points aP(V) constitute anon-
singular quadricQ of P(V). Theorthogonal polar spacassociated with\{, Q) is
the point seR together with all singular flats ([28], [29]). This orthogampolar
space mirrors the “intrinsic geometry” of the quadficsince the singular flats are
precisely those flats which are entirely containedinFor our purposes also the
“extrinsic geometry”, i. e. the points of the ambient sp&¢(¥) off the quadric,
will be important.

All maximal singular flats o have the same projective dimension 1, but
the integer > 0 depends heavily on the ground figkd the dimension o¥/,
and the quadratic forr@. We need here only the cage = GF(2). It is well
known that to within projective transformations only thdldaing cases occur
[28, p. 58], [30, pp. 121-126]:

n | r—1| Symbol | # Pointset | Name

2k k—1|Qx(2) |2*-1 parabolic
2k+1 |k Q.,(2) | 221+ 2€— 1 | hyperbolic
2k+1 | k—1|@Q,(2)| 22— 2<-1 elliptic

Forn = 2k the polar form ofQ is degenerate, div*- = 1. HenceV*' is a
distinguished point, calleducleus in the ambient projective space @§(2), but
itis not a point 0fR,(2). Otherwise the polar form @ is non-degenerate. Below
we useR(2) to denote any of the quadrics from the above table.

Theorem 7. Suppose that a grou@® and its subgroufK =: N given by(19)
satisfy Conditiond—5for p = 2. Furthermore, let V:= G/K be finite and let a
guadratic form Q be defined as {81). Then the following hold:

(&) Q gives rise to a non-singular quadr@(2) of P(V).
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(b) The totally singular flats of(2) have the fornP(T/K), whereT ranges
over the set of all subgroups & which have exponert and containK.
In particular, the points 0Q(2) have the formT /K, whereT := (x)K with
xe G\ Kand ¥ =e.

Proof. Ad (a): By Theorem 4 (c), the restriction of the quadratiarid® to V+ =
Z(G)/K has the kerneK/K. This is the zero-subspace ¥f, so thatQ is non-
singular.

Ad (b): By (6), any subspace &f has the formS/K with K < S < G and
vice versa The subspac8&/K is singular if, and only if,Q vanishes identically
on S/K. This holds precisely when the subgraBpas exponent 2. The points of
Q(2) are the one-dimensional subspace¥ of. e. the subgroups d&/K which
are generated by a single eleme&Ktwith x € G\ K andx? = e. Hence they have
the asserted form. ]

The structure of the polar space which is based on the qu@@idrom above
“is” the structure of elements with order 2 of the groGp Note that for any
x € G\ K with order 2 the complex produ¢x)K is a subgroup o6 with exponent
2. Itis therefore natural to “condense” the subgréxiyK < G to a single entity—
a point ofQ(2). In our further discussion we have to distinguish twoesas

If n=2k+ 1is odd then the polar form & is non-degenerate which implies
K = Z(G). So the results of Theorems 6 and 7 can be merged immediately
obtain a symplectic polar space which is “refined” by an agthwal one. The fact
that subgroups of exponent 2 are commutative is mirrorelaridact that singular
subspaces are totally isotropic.

If n = 2k is even therK # Z(G). The pointV+ = Z(G)/K is the nucleus
of the quadria?x(2). We have here the orthogonal polar space give@xy2)
and the symplectic polar spa@€,._;(2) which is defined if?(V/V+) according to
Remark 7. It is well known that these two spaces are isomorgn isomorphism
is given by “joining the quadric with its nucleus”: H(S) is a singular subspace
of Qx(2) then its join with the poinV+*, i. e. P(S + V*), is a totally isotropic
subspace aP(V/V+) andvice versa In algebraic terms this gives the following
bijection from the set of all subgroufswith exponent 2 an& < T < G onto the
set of all commutative subgrougswith Z(G) < C < G:

T C:=TZ(G). (29)

9 lllustrative examples from quantum theory

Example 1. We consider theomplex Pauli matrices

e R
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The matrices®os with o € {0,1,2,3} andgB = {0, x,y, z} constitute thePauli
group of order 16, which is now ou6. It acts on the two-dimensional com-
plex Hilbert space of a single qubit. In our terminology (wj := 2) we have
Z(G) = {+o, tiog), G = G@ = K = {+0(} andg = —o. The groupG satisfies
Conditions 2 and 4.

The normal subgroul = Nj satisfies Conditions 1, 3, and 5. The factor
groupG/K has 2 elements; it gives rise to a three-dimensional vector spgce
over GF(2) as in Theorem 2 (a) with a degenerate alternatimgar form [, -]40.
The projective spac®(V,) is theFano plane see Figure 1. The points of the Fano
plane fall into three classes: The thdgrk-shadegoints form a non-degenerate
quadric@,(2) (i. e. a conic). They correspond to those elements pK whose
square isro (i. e. Hermitian matrices). The thréight-shadedpoints represent
the elements o6 \ K whose square isoy (i. . skew-Hermitian matrices). The
remaining point, which is depicted bydmuble circle is the only point of?(Vy)
or, in other words, the nucleus @k(2). It represents the matrices a{G) \

K, which are also skew-Hermitian. The three lines throughniheleus (bold-
faced) are to be identified with the three “points” of the syeofic polar space
P(Vo/Vg) = W1(2) (Figure 2), which has projective dimension one. Its null
polarity is the identity mapping. Two operators@f, K commute if, and only if,
their corresponding points are on a common line through tioéens.

t01, @ +072,
+l0q +lo3 +l02

Figure 1: The fine structure of Figure 2: A coarser representa-
the complex single-qubit Pauli tion, ‘Wy(2), akathe projection
group in terms of the Fano plane. from the nucleus of the conic.

The normal subgrou@g(G) satisfies Conditions 1 and 3, but not 5. The fac-
tor groupG/Z(G) has 2 elements; it gives rise to a two-dimensional symplectic
vector spacé/ over GF(2) and the symplectic polar spa#é,(2) = P(V); see
Figure 2. The factor spad&/V, from above and/ are isomorphic (as symplec-
tic vector spaces). Each point®¥,(2) is totally isotropic. We have no quadratic
form onV. Two operators o5\ Z(G) commute if, and only if, their corresponding
points are identical.
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Example 2. We exhibit the group comprising the Kronecker produtis; ® o,
with B8,y € {0, x,y, z}; cf. (30). This group acts on the four-dimensional Hilbert
space of two qubits. In contrast to Example 1, the syntbalenotes now this
group of order 64. In our terminology (with := 2) we haveZ(G) = {+xoo ®
o0, £ioo®0q}, G = G@ = K = {+0® 0}, andg = —oo® 0. Up to a change of
dimensions, the situation here completely parallels thdtepreceding example:

The factor groups/K gives rise to a four-dimensional projective sp&¢ey)
over GF(2) and a non-degenerate quadli€2). We are not familiar with any
neatly arranged picture of this projective space with it98ihts and 155 lines.
However, the 15 points and 15 singular linesth{2), together with its nucleus
and several poinflines of its ambient space, can be illustrated as in Figure 3.
There are 15 lines joining the nucleB@/;") with the points of the quadriQ.(2),
these lines become the “points” of the factor spa@&'V+) = Ws;(2).

The factor groufis/Z(G) yields a four-dimensional symplectic vector space
and the symplectic polar spad#’;(2) with P(V) as set of points. It is depicted
in Figure 4 which is known as thaoily®. We have no quadratic form oA. Two
operators ofz \ Z(G) commute if, and only if, their corresponding points are on a

totally isotropic line.
oxlog® o0

Figure 3:Q4(2), its nucleus, and  Figure 4: A coarser view in
a portion of its ambient space terms of W3(2); xy is a short-
as the geometry behind the com- hand for iy ® oy, a €

plex two-qubit Pauli group. {0, 1,2, 3}, etc.

Example 3. The real orthogonal matriced, +X, +Y, +Z, where

{10 .. (01 . (01 _ (1 0
k=0 Yove (0D 2t g e

constitute thereal Pauli groupG. It acts on the Hilbert spade? of a real single
qubit. In our terminology (withp := 2) we haveG’ = G® = K = Z(G) = {+I}

SThis is isomorphic to the so-callé@remona-Richmond configuration.
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andg = —I. Hence there is only one possibility for factorisation, e#yG/Z(G).
This gives the symplectic polar spad&’,(2) based on the projective line over
GF(2) which we already encountered in Example 1. Howevew, this space is
refined by an orthogonal polar space based on a hyperbolurigu@; (2). The
two points of this quadric represent those matriceG inZ(G) whose square i

(i. e. symmetric matrices), the remaining point correspaiodmnatrices irG with
square-I (i. e. skew-symmetric matrices); see Figure 5.

@@

Figure 5. Wi(2) and Q;(2) Flgure 6: W3(2) and Q% (2)

(shaded) of the real single-qubit (shaded) of the real two-qubit

Pauli group. Pauli group. XY is a short-hand
for+X®Y, etc.

Example 4. Here we deal with the group comprising the Kronecker proslo€t
the matrices from Example 3. We change notation as now tbigpgof order 32
is denoted byG. With p := 2 we haveG' = G® =K =Z(G) = {xI ®1}. Uptoa
change of dimensions, the situation here completely psatat of the preceding
example: The factor grou/Z(G) gives rise to the symplectic polar spaidé;(2)
which is refined by an orthogonal polar space based on a hyteduadrioR; (2).
The nine points of this quadric represent matriceS \1Z(G) whose square i3 |

(i. e. symmetric matrices), the remaining points corregsiformatrices irG which
square to-1 ® | (i. e. skew-symmetric matrices); see Figure 6.

Example 5. Finally, we mention thel = 3) case otwo-quitrit Pauli group (see
also [19]). This grouf possesses’®lements, which can be written in the form
w?XPY® @ X9Ye, wherea, b, c,d, e € {0,1, 2}, w is a primitive 3-rd root of unity,
andX andZ are so-called shift and clock operators given by

0 01 1 0 O
1 0 0 and|0 w O],

010 0 0 w?
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respectively (see, e.g., [14], [18]). Its factor graBpZ(G) is of cardinality 3 =
81 and generates the symplectic polar spag(3) of 40 pointgines, with 4
points on each line and, dually, 4 lines through each poinis Gase is noteworthy
in two crucial aspects. First, it is one of the simplest ins&s where a single
point of the associated polar space represents not onlygéesaperator (up to
complex multiples), but encompasses te distinct power®f an operator (up
to complex multiples). Second, it leads to far-reachinggutsl implications for
the so-called black-hole analogy (see, e. g., [31]). As perlatter fact, it has
recently been shown [22] that tH&;s symmetric entropy formula describing
black holes and black strings D = 5 is intimately tied to the geometry of the
generalised quadrangle GQ@, where 27 black-hole charges correspond to the
points and 45 terms in the entropy formula to the lines of G@)2 And there
exists a very intimate connection betwe#;(3) and GQ(24) [32]. Given any
pointU of ‘W5(3), we can “derive” GQ(4) as follows. The points of GQ(2)
are all the points ofiW3(3) not collinear withU, whereas the lines of GQ(2)
are on the one side the lines @f/3(3) not containingJ and on the other hand
hyperbolic lines through) (natural incidence). Hence, this link between the two
finite geometries not only unveils the mystery why= 5 black hole solutions
are related with qutrits, but knowing that each pointlg%(3) comprises a couple
(p—1=3-1=2)of elements 066/Z(G), it also provides a straightforward recipe
for labelling the 45 members of the entropy formula in terrhalbelements of
the two-qutrit Pauli grou®.

Following these examples the interested reader shouldlbe¢@bnd out the
symplectic and orthogonal polar spaces behind any (mehigudit Pauli group
as long as the rant of the qudit is a prime number.
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