
Nuclei of Normal Rational Curves

Johannes Gmainer* and Hans Havlicek

A k–nucleus of a normal rational curve in PG(n, F ) is the intersection over all k–dimensional
osculating subspaces of the curve (k ∈ {−1, 0, . . . , n− 1}). It is well known that for charac-
teristic zero all nuclei are empty. In case of characteristic p > 0 and #F ≥ n the number of
non–zero digits in the representation of n+ 1 in base p equals the number of distinct nuclei.
An explicit formula for the dimensions of k–nuclei is given for #F ≥ k + 1.

1 Introduction

Non–zero characteristic of the (commutative) ground field F heavily influences the geometric
properties of Veronese varieties and, in particular, normal rational curves. Best known is
probably the fact that in case of characteristic two all tangents of a conic are concurrent.
This has lead to the concept of a nucleus. However, it seems that there are essentially
distinct definitions. Some authors use the term “nucleus” to denote a point which completes
a normal rational curve to a maximal arc (F a finite field of even order), others use the same
term for the intersection of all osculating hyperplanes of a Veronese variety.

In the present paper we restrict ourselves to the discussion of normal rational curves in n–
dimensional projective spaces over F . It turns out that in the ambient space of a normal
rational curve there is a family of distinguished subspaces which will be called k–nuclei.
Their definition is natural: A k–nucleus is the intersection over all k–dimensional osculating
subspaces of the curve. The two types of nuclei mentioned above are just particular examples
fitting into this general concept.

Our major result is a formula expressing the dimension of the k–nucleus of a normal rational
curve in n–dimensional projective space for characteristic p > 0. For k = n − 1 such a
formula has been established by H. Timmermann [16, 4.15]; cf. also [15]. Other results
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on nuclei are due to H. Brauner [1, 10.4.10], D.G. Glynn [3, 49–50], A. Herzer [8],
H. Karzel [12], J.A. Thas [14], and J.A. Thas – J.W.P. Hirschfeld [11, 25.1].

It turns out that the geometric properties of a k–nucleus are closely related to binomial
coefficients that vanish modulo p and, on the other hand, to the representations of the
integers n, n + 1, and k in base p. The zero entries of Pascal’s triangle modulo p fall into
various classes. The corresponding partition gives rise to three functions (T,Φ,Σ) which
form the backbone of our considerations. All this is discussed in Section 2 and then applied
to geometry in Section 3.

Throughout this paper it will be assumed that the ground field has sufficiently many el-
ements. Otherwise, our results on nuclei would become even more complicated, because
one has to take into account that the elements of F are satisfying non–trivial polynomial
identities.

2 On Pascal’s Triangle modulo p

Throughout this section p denotes some fixed prime.

The representation of a non–negative integer n ∈ N := {0, 1, 2, . . .} in base p has the form

n =
∞∑
λ=0

nλp
λ =: 〈nλ〉

with only finitely many digits nλ ∈ {0, 1, . . . , p − 1} different from 0. The following is
well–known; cf., among others, [2, 364]:

LEMMA 1 (Lucas) Let 〈nλ〉 and 〈jλ〉 be the representations of non–negative integers n
and j in base p. Then (

n

j

)
≡
∞∏
λ=0

(
nλ
jλ

)
(mod p).

Since we are mainly interested in binomial coefficients that vanish modulo p, we adopt the
following definition:

DEFINITION 1 Given a prime p then define a half order on N as follows:

〈jλ〉 � 〈nλ〉 :⇔ jλ ≤ nλ for all λ ∈ N.

Thus we have (
n

j

)
≡ 0 (mod p) ⇐⇒ j 6� n.

In the sequel the (infinite) Pascal triangle modulo p will be denoted by ∆. In addition, we
introduce an (infinite) Pascal square modulo p written as . Its (n, j)–entry is given by

(
n
j

)



modulo p, where n and j are non–negative integers. So the numbering of rows and columns
will always start with the index 0. Clearly, is an infinite lower triangular matrix

= ∆∇,

where each entry of ∇ is zero.

Moreover, let i be the submatrix of that is formed by the rows and columns 0, 1, . . . , pi−1
with i ∈ N. All entries of i that are above the main diagonal give rise to a triangle ∇i,
the remaining part of the matrix is a subtriangle of Pascal’s triangle modulo p which will be
written as ∆i. Observe that the baseline of ∆i has pi entries, whereas the top line of ∇i is
formed by pi − 1 entries. So ∇0 is empty.

For example, let p = 3 and consider the triangle ∆3:
1

1 1
1 2 1

1 0 0 1
1 1 0 1 1

1 2 1 1 2 1
1 0 0 2 0 0 1

1 1 0 2 2 0 1 1
1 2 1 2 1 2 1 2 1

1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1 1

1 2 1 0 0 0 0 0 0 1 2 1
1 0 0 1 0 0 0 0 0 1 0 0 1

1 1 0 1 1 0 0 0 0 1 1 0 1 1
1 2 1 1 2 1 0 0 0 1 2 1 1 2 1

1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1
1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1

1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1
1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1
1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1

1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1
1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1

1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1
1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1

1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

It is easily seen from Lemma 1 that each triangle ∆i+1 (i ≥ 0) has the following form, with
products taken modulo p: (

0
0

)
∆i(

1
0

)
∆i ∇i

(
1
1

)
∆i(

2
0

)
∆i ∇i

(
2
1

)
∆i ∇i

(
2
2

)
∆i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
p−1

0

)
∆i ∇i . . . ∇i

(
p−1
p−1

)
∆i

The binomial coefficients on the left hand side of the ∆i’s are exactly the entries of ∆1. None
of them is congruent 0 modulo p. If i ≥ 2, then each subtriangle

(
n
j

)
∆i from above can be

decomposed into subtriangles proportional to ∆i−1 and non–empty subtriangles ∇i−1, and
so on. See also, among others, [9, 91–92] or [13, Theorem 1].

Thus we get a partition of the zero entries of Pascal’s triangle modulo p into maximal
subtriangles ∇i (i ∈ N+). If we add the infinite triangle ∇, then a partition of the zero
entries of Pascal’s square modulo p is obtained. We get a coarser partition, by gluing
together all triangles ∇i of same size to one class. A formal definition of this partition is as
follows:



DEFINITION 2 Let p be a prime. A pair (n, j) = (〈nλ〉, 〈jλ〉) of non–negative integers
with j 6� n and

L := max{λ ∈ N | jλ > nλ} ∈ N
is in class i, if

i = inf{λ | λ > L, jλ < nλ} ∈ N+ ∪ {∞}.
If we are given a fixed n ∈ N, then i(n) denotes the set of all elements j ∈ N with (n, j) ∈ i.

In the definition above the maximum L exists, since j 6� n. The infimum i is well–defined
by the usual convention inf ∅ :=∞. It is easily seen that for each i ∈ N+ ∪ {∞} the set i is
non–empty, whence we actually have a partition.

A pair (n, j) is in ∞ if, and only if, j > n. The conditions, in terms of digits, for (n, j) to
be in i 6=∞ are as follows:

jλ ≤ p− 1 for all λ ∈ {0, 1, . . . , L− 1}
jL > nL for one L ∈ {0, 1, . . . , i− 1}
jλ = nλ for all λ ∈ {L+ 1, L+ 2, . . . , i− 1}
ji < ni
jλ ≤ nλ for all λ ∈ {i+ 1, i+ 2, . . .}


(1)

In fact, the first line of (1) could be omitted. It simply says that there is no restriction on
the digits j0, j1, . . . , jL−1.

The essential properties of the classes i and the sets i(n) are described in the following
Lemmas. We start with a “horizontal” result by counting the number of elements of class
i 6=∞ belonging to a fixed row n of Pascal’s square modulo p.

LEMMA 2 Given n = 〈nλ〉 ∈ N and i ∈ N+ then

Φ(i, n) := #i(n) =
(
pi − 1−

i−1∑
µ=0

nµp
µ
)
· ni ·

∞∏
λ=i+1

(nλ + 1). (2)

Proof. We just have to count how the digits of j = 〈jλ〉 can be chosen so that (1) holds true.
If we fix one L < i, then there are

pL · (p− 1− nL) · 1i−L−1 · ni ·
∞∏

λ=i+1

(nλ + 1)

possibilities for j; the factors in the formula above are corresponding to (j0, j1, . . . , jL−1), jL,
(jL+1, jL+2, . . . , ji−1), ji, and the remaining digits jλ, respectively. Summing up gives then

Φ(i, n) =
( i−1∑
L=0

pL(p− 1− nL)
)
· ni ·

∞∏
λ=i+1

(nλ + 1)

=
(
pi − 1−

i−1∑
L=0

nLp
L
)
· ni ·

∞∏
λ=i+1

(nλ + 1),



as required. 2

Note that Φ(i, n) remains undefined for i = 0 and i =∞.

As an immediate consequence of Lemma 2 we obtain that

Φ(i, n) = 0⇐⇒ ni = 0 or ni−1 = . . . = n1 = n0 = p− 1, (3)

where i ∈ N+. This result may be reformulated as follows:

LEMMA 3 Let n = 〈nλ〉 ∈ N, i ∈ N+, and put

n+ 1 =: b = 〈bλ〉, M := min{λ | bλ 6= 0}. (4)

Then

Φ(i, n) = #i(n) = 0⇐⇒
{
bi−1 = 0 if i ∈ {1, 2, . . . ,M},
bi = 0 if i ∈ {M + 1,M + 2, . . .}. (5)

Proof. We infer from the definition of M that

b = 〈. . . , bM+1, bM , 0, . . . , 0〉 and n = 〈. . . , nM+1, nM , p− 1, . . . , p− 1〉.

Therefore, bM = nM + 1, 0 ≤ nM < p− 1, and

bλ = nλ for all λ ∈ {M + 1,M + 2, . . .}. (6)

So, by (3), the assertion holds true. 2

The major advantage of formula (5) is that one has only to look at the non–zero digit bM
and the zero–digits of b in order to decide whether a set i(n) is empty or not.

Next we investigate a “vertical” property of a class i 6=∞:

LEMMA 4 Let n ∈ N, i ∈ N+, j ∈ i(n), and put

T := n−
i−1∑
λ=0

nλp
λ. (7)

Then j � T − 1 and j ∈ i(x) for all x ∈ {T, T + 1, . . . , n}.

Proof. We adopt the notations of (1). If x runs from n down to

n−
L∑
λ=0

nλp
λ = 〈. . . , ni+1, ni, . . . , nL+1, 0, . . . , 0〉, (8)

then clearly j ∈ i(x) by (1).



If ni−1 = . . . = nL+2 = nL+1 = 0, then we are finished, as

T − 1 = n− 1−
L∑
λ=0

nλp
λ = 〈. . . , ni+1, ni − 1, p− 1, . . . , p− 1〉

and j � T − 1.

Otherwise, put L′ := min{λ ∈ {L + 1, L + 2, . . . , i− 1} | nλ 6= 0}. Subtracting 1 from both
sides of (8) gives

n′ := n− 1−
L∑
λ=0

nλp
λ = 〈. . . , ni+1, ni, . . . , nL′ − 1, p− 1, . . . , p− 1〉.

By jL′ = nL′ , we obtain jL′ > nL′ − 1, whence j ∈ i(n′). If T ′ is defined according to (7) by
replacing n with n′, then T ′ = T .

So, if we proceed with n′ and j as above, then the required result follows after a finite number
of steps. 2

With the settings of the previous Lemma put T =: 〈Tλ〉. Then j ∈ i(T ) implies ji < Ti = ni
and jλ ≤ Tλ = nλ for all λ ∈ {i+ 1, i+ 2, . . .}. Hence

Y := j −
i−1∑
λ=0

jλp
λ = 〈. . . , ji+1, ji, 0, . . . , 0〉 � T

and
Y + pi = 〈. . . , ji+1, ji + 1, 0, . . . , 0〉 � T,

whereas {Y + 1, Y + 2, . . . , Y + pi − 1} ⊂ i(T ). By the well known recurrence
(
r
s

)
+
(

r
s+1

)
=(

r+1
s+1

)
, it follows that line T of Pascal’s triangle modulo p is the top line of a subtriangle ∇i

which is surrounded by non–zero entries. Observe that the number T does not depend on
the choice of j ∈ i(n).

From here the following is easily seen: Given an i ∈ N+ and n, j ∈ N then (n, j) ∈ i if, and
only if, the (n, j)–entry of Pascal’s square modulo p is in one maximal subtriangle ∇i. The
class ∞ corresponds to the infinite triangle ∇ of Pascal’s square modulo p.

Obviously, the definition of T in (7) still makes sense if n, i ∈ N are arbitrary. However, as
in Lemma 3, we change from n to n + 1 =: b, as we prefer to use (5) rather than (3) when
characterizing non–empty sets i(n). So we put

T (R, b) := b−
R−1∑
λ=0

bλp
λ for all R ∈ N ∪ {∞}. (9)

We read off from (4) and (5) that the “top line function” T (R, b) satisfies

0 = T (∞, b) ≤ . . . ≤ T (M + 2, b) ≤ T (M + 1, b) < T (M, b) = . . . = T (0, b) = b. (10)

In fact, if R ∈ N is chosen sufficiently large, then T (R, b) = 0.



For each non–empty set i(n) 6= ∞ it follows from (5) that i > M . So, by (6), the number
T (i, b) coincides with the corresponding bound (7). Moreover, we have

T (i, b)− 1 = 〈. . . , ni+1, ni − 1, p− 1, . . . , p− 1〉 = max i(n), (11)

since i(n) 6= ∅ implies that at least one of the digits n0, n1, . . . , ni−1 is smaller than p−1 and
bi = ni > 0. Finally, by (5),

i1(n) 6= ∅ 6= i2(n) and i1 > i2 implies T (i1, b) < T (i2, b). (12)

If i ∈ {1, 2, . . . ,M}, then i(n) = ∅ and T (i, b) = b > n expresses the fact that line n of
Pascal’s triangle modulo p does not meet a subtriangle ∇i. For i ∈ {M + 1,M + 2, . . .} with
i(n) = ∅, formula (5) implies T (i, b) = T (i+ 1, b).

The following result gives the essential information on zero–entries in line n of Pascal’s
triangle modulo p:

LEMMA 5 Let n ∈ N and i ∈ N+. Then

Σ(i, n) :=
∞∑
η=i

Φ(η, n)

= #
(
i(n) ∪ (i+ 1)(n) ∪ . . .

)
(13)

= n+ 1−
(
1 +

i−1∑
µ=0

nµp
µ
) ∞∏
λ=i

(nλ + 1).

Proof. (a) We are going to determine all integers j = 〈jλ〉 such that j � n. Clearly, each
digit jλ can be chosen in exactly nλ + 1 ways to meet this condition. Hence there are

∞∏
λ=0

(nλ + 1) = n+ 1− Σ(1, n) (14)

such elements and (13) holds true for i = 1. In fact, (14) is well known; cf., e.g., [9, 98].

(b) Suppose that (13) has been established for i ≥ 1. We infer from (2) and (13) that

Σ(i+ 1, n) = Σ(i, n)− Φ(i, n)

= n+ 1−
(
1 +

i−1∑
ξ=0

nξp
ξ
) ∞∏
ν=i

(nν + 1)−
(
pi − 1−

i−1∑
µ=0

nµp
µ
)
ni

∞∏
λ=i+1

(nλ + 1)

= n+ 1−
(
1 +

i∑
ξ=0

nξp
ξ
) ∞∏
ν=i+1

(nν + 1)

which completes the proof. 2

Formula (13) has the nice property that with increasing i one digit after another moves
from the product on the right to the sum on the left where it is then multiplied with the
corresponding power of p.



3 Nuclei

Let PG(n, F ) be the n–dimensional projective space on F n+1, where n ≥ 2 and F is a
(commutative) field.

Each normal rational curve (NRC) is projectively equivalent to the NRC

Γ := {F (1, t, . . . , tn) | t ∈ F ∪ {∞}}. (15)

Note that t = ∞ yields the point F (0, . . . , 0, 1). The subsequent exposition follows [5] and
uses the non–iterative derivation of polynomials due to H. Hasse, F.K. Schmidt, and
O. Teichmüller; cf., e.g., [4] or [10, 1.3].

The column vectors of the matrix

Ct :=



(
0
0

)
0 0 . . . 0(

1
0

)
t

(
1
1

)
0 . . . 0(

2
0

)
t2

(
2
1

)
t

(
2
2

)
. . . 0

... . . . ...(
n
0

)
tn

(
n
1

)
tn−1

(
n
2

)
tn−2 . . .

(
n
n

)


(16)

with t ∈ F are (from the left to the right) written as ct, c′t, . . . , c
(n−1)
t , c

(n)
t and yield

the derivative points of the parametric representation (15). Moreover, we put c(k)
∞ :=

(δ0,n−k, . . . , δn,n−k). The osculating k–subspace (k ∈ {−1, 0, . . . , n − 1}) of Γ at the point
Fct is

span {Fct, F c′t, . . . , F c
(k)
t } =: S(k)

t Γ.

All osculating subspaces at Fct form a chain with dimS(k)
t Γ = k.

We infer from C−1
t = C−t that the osculating subspace S(k)

t Γ (t ∈ F ) equals the set of all
points F (x0, . . . , xn) satisfying the following linear system:(

k+1
0

)
(−t)k+1x0 +

(
k+1

1

)
(−t)kx1 + . . .+

(
k+1
k+1

)
xk+1 = 0(

k+2
0

)
(−t)k+2x0 +

(
k+2

1

)
(−t)k+1x1 + . . . +

(
k+2
k+2

)
xk+2 = 0

... . . . ...(
n
0

)
(−t)nx0 +

(
n
1

)
(−t)n−1x1 + . . . +

(
n
n

)
xn = 0


(17)

On the other hand, S(k)
∞ Γ is given by the linear system

x0 = x1 = . . . = xn−k−1 = 0. (18)

REMARK 1 Each semilinear bijection τ ∈ ΓL(2, F ) acts on the NRC (15) in a well–known
way: A point Fct with t = t1t

−1
0 , (t0, t1) ∈ F 2 \ {(0, 0)} goes over to Fct̃, where t̃ := t̃1t̃

−1
0

and (t̃0, t̃1) := τ(t0, t1). This bijection of Γ extends to an automorphic collineation of Γ that



preserves all osculating subspaces. Thus a collineation group G(n−1) isomorphic to PΓL(2, F )
is obtained.

In fact, the NRC (15) gives rise to a family G(k) (k ∈ {0, 1, . . . , n−1}) of collineation groups
of PG(n, F ) as follows: G(k) is defined by the property that the system of all osculating
r–subspaces with r ≤ k remains invariant.

Hence G(0) is the group of all collineations fixing Γ, as a set of points. If #F ≥ n + 2
or n = 2, then G(0) = G(n−1). Otherwise, there are automorphic collineations of the NRC
that do not preserve all osculating subspaces, whence the concept of osculating subspaces
depends on the parametric representation of the NRC rather than on the points of the NRC
[6], [7, 2.4].

Instead of a parametric representation one could also use a generating map in order to define
osculating subspaces. This point of view has been adopted in [5] and [7]. Cf. also [8] for
further remarks on the phenomena arising for a “small” ground field.

In all results of the present paper a NRC Γ is understood as a set of points endowed with a
fixed parametric representation which arises from (15) by applying a projective collineation.

DEFINITION 3 The k–nucleus N (k)Γ (k ∈ {−1, 0, . . . , n− 1}) of a normal rational curve
Γ in PG(n, F ) is the intersection over all its osculating k–subspaces.

The nuclei of a NRC Γ yield an ascending chain

∅ = N (−1)Γ = N (0)Γ = . . . = N (r)Γ ⊂ . . . ⊂ N (n−1)Γ
(
r := bn− 1

2
c
)
, (19)

because Sk0Γ ∩ Sk∞Γ = ∅ = N (k)Γ for all k ∈ {−1, 0, . . . , r}.

In the following result nuclei of a NRC are linked with binomial coefficients that vanish
modulo the characteristic of F .

THEOREM 1 If F has at least k + 1 elements, then the nucleus N (k)Γ of the normal
rational curve (15) equals the subspace Q spanned by those base points Pj of the standard
frame of reference, where j ∈ {0, 1, . . . , n} is subject to(

k + 1
j

)
≡
(
k + 2
j

)
≡ . . . ≡

(
n

j

)
≡ 0 (mod charF ). (20)

Proof. (a) Let F (x0, x1, . . . , xn) be a point of N (k)Γ. By (18) and #F ≥ k + 1, every left
hand side term in (17) is a zero–polynomial in t. Hence xj 6= 0 implies (20), whence the
point belongs to Q.

(b) Suppose that (20) holds true for some j. As
(
r−1
s

)
≡
(
r
s

)
≡ 0 (mod charF ) implies(

r−1
s−1

)
≡ 0 (mod charF ), it follows that(

k + 1
j − l

)
≡
(
k + 2
j − l

)
≡ . . . ≡

(
n− l
j − l

)
≡ 0 (mod charF )



for all l ∈ {0, 1, . . . , n− k − 1}. So j > n− k − 1.

(c) Let F (x0, x1, . . . , xn) be a point in Q. By (b), x0 = x1 = . . . = xn−k−1 = 0 in accordance
with (18). If xj 6= 0, then (20) shows that (x0, x1, . . . , xn) is also a solution of (17) for all
t ∈ F . So the point lies in N (k)Γ. 2

By Theorem 1, charF = 0 implies N (n−1)Γ = ∅, whence here the nuclei of a NRC cannot
deserve interest. Thus we assume in the remaining part of this section that

charF =: p > 0,
n =: 〈nλ〉 (in base p),

n+ 1 =: b =: 〈bλ〉 (in base p).

We shall frequently use the “top line function” T (R, b) together with the “cardinality func-
tions” Φ(i, n) and Σ(i, n) that have been defined in Section 2.

THEOREM 2 Let Γ be a normal rational curve in PG(n, F ). If k is an integer satisfying
#F ≥ k + 1 and

T (R, b) = b−
R−1∑
µ=0

bµp
µ ≤ k + 1 < b−

Q−1∑
λ=0

bλp
λ = T (Q, b) (21)

with at most one bλ 6= 0 for λ ∈ {Q,Q+1, . . . , R−1}, then the k–nucleus of Γ has dimension

dimN (k)Γ = n−
(
1 +

R−1∑
µ=0

nµp
µ
) ∞∏
λ=R

(nλ + 1) = Σ(R, n)− 1. (22)

Proof. There is exactly one N ∈ {Q,Q + 1, . . . , R − 1} with bN 6= 0, because of the strict
inequality in (21). Consequently,

T (R, b) = T (R− 1, b) = . . . = T (N + 1, b) < T (N, b) = . . . = T (Q, b). (23)

By Theorem 1, dimN (k)Γ + 1 is equal to the number of elements j ∈ {0, 1, . . . , n} with
property (20). If we are given an integer i ≥ 1, then the conditions

i(n) 6= ∅ and T (i, b) ≤ k + 1 (24)

together are equivalent to the existence of an element j ∈ i(n) satisfying (20). By Lemma
4, if (20) holds for at least one j ∈ i(n), then it is true for all elements of i(n). There are
three possibilities:

For 1 ≤ i ≤ N we read off from (10), (23), and (21) that k+ 1 < T (Q, b) = T (N, b) ≤ T (i, b)
which contradicts (24).

For N + 1 ≤ i ≤ R− 1 we obtain i(n) = ∅ by virtue of (5). Hence (24) does not hold true.

Given an i ≥ R then T (i, b) ≤ T (R, b) ≤ k+ 1 by (10) and (21). So the class i yields exactly
Φ(i, n) ≥ 0 distinct solutions of (20).



Thus the number of elements j which satisfy (20) is given by

∞∑
i=R

Φ(i, n) = Σ(R, n).

This completes the proof. 2

Next we establish an easy formula for the number of distinct nuclei:

THEOREM 3 Let Γ be a normal rational curve in PG(n, F ) and assume that F has at
least n elements. Then the number d of non–zero digits in the representation of b = n + 1
in base p is equal to the number of distict nuclei of Γ.

Proof. Let N1 < N2 < . . . < Nd be the positions of the non–zero digits of b in base p. From
(10) and (12), 0 = T (Nd + 1, b) < T (Nd, b),

T (Nα+1, b) = T (Nα + 1, b) < T (Nα, b) for all α ∈ {d− 1, d− 2, . . . , 1},

and T (N1, b) = b. Thus we obtain d distinct “consecutive” inequalities

T (Nα + 1, b) ≤ k + 1 < T (Nα, b) (α ∈ {d, d− 1, . . . , 1}). (25)

So each k ∈ {−1, 0, . . . , n − 1} is a solution of one and only one inequality (25). It is
immediate from (5) and (13) that

0 = Σ(Nd + 1, n) < Σ(Nd−1 + 1, n) < . . . < Σ(N1 + 1, n),

whence distinct inequalities (25) correspond to distinct dimensions of nuclei. 2

There is always at least one inequality (25). Put

J := Nd = max{λ | bλ 6= 0}.

It follows from (25), with α := d, and (22) that

N (k)Γ = ∅ for all k ∈ {−1, 0, . . . bJpJ − 2} (#F ≥ k + 1). (26)

This improves the bound given in formula (19).

The number k := n − 1 is a solution of the inequality (25) obtained for α := 1. As before,
let

M := N1 = min{λ | bλ 6= 0}.

By (5), Σ(1, n) = Σ(2, n) = . . . = Σ(M + 1, n). Now (14) implies that (22) can be rewritten
as

dimN (n−1)Γ = n−
∞∏
λ=0

(nλ + 1) (#F ≥ n). (27)

Cf. [16, 4.15].



REMARK 2 The following example illustrates Theorems 2 and 3: Let p = 3, n = 305 =
〈1, 0, 2, 0, 2, 2〉, and assume that the ground field F has at least n elements. Then b = 306 =
〈1, 0, 2, 1, 0, 0〉 and we get the following table for dimN (k)Γ:

〈0, 0, 0, 0, 0, 0〉 = 0 ≤ k + 1 < 243 = 〈1, 0, 0, 0, 0, 0〉 =⇒ dimN (k)Γ = −1
〈1, 0, 0, 0, 0, 0〉 = 243 ≤ k + 1 < 297 = 〈1, 0, 2, 0, 0, 0〉 =⇒ dimN (k)Γ = 179
〈1, 0, 2, 0, 0, 0〉 = 297 ≤ k + 1 < 306 = 〈1, 0, 2, 1, 0, 0〉 =⇒ dimN (k)Γ = 251

REMARK 3 The NRC Γ admits a group G(n−1) of collineations preserving all osculating
subspaces; see Remark 1. The group G(n−1) acts 3–fold transitively on Γ. All nuclei and the
entire space are G(n−1)–invariant subspaces. However, there may be other G(n−1)–invariant
subspaces:

Suppose that p = 2, n = 4, and #F ≥ 4. By (16), we have

Ct =


1 0 0 0 0
t 1 0 0 0
t2 0 1 0 0
t3 t2 t 1 0
t4 0 0 0 1


with t ∈ F . The bottom line of the matrix shows that dimN (3)Γ = 2, whereas all other
nuclei are empty. Obviously, all derivative points Fc′t (t ∈ F ∪ {∞}) are on the line joining
the base points P1 and P3. There is a unique transversal line for three skew lines spanning
PG(4, F ). The tangents of Γ at Fc0, Fc1, and Fc∞ are mutually skew and spanning the
entire space. Hence there is no line other than P1P3 that is meeting all tangents of Γ.
Therefore, the line P1P3 ⊂ N (3)Γ is G(n−1)–invariant.

REMARK 4 Let R > Q ≥ 0 be integers with

bR 6= 0 = bR−1 = . . . = bQ+1 6= bQ

and put
k := T (R, b)− 1 = 〈. . . , nR+1, nR − 1, p− 1, . . . , p− 1〉.

So k is a minimal solution of the inequality (21). By assuming #F ≥ k+1, Theorem 2 shows
that N (k)Γ is a non–empty nucleus. We aim at characterizing the osculating k–subspaces of
Γ among the k–dimensional subspaces passing through N (k)Γ.

Theorem 1 describes a basis of N (k)Γ. By (11) and (12), the greatest index j of a base point
Pj appearing in that basis is T (R, b)− 1 = k, whence k ∈ R(n). We define

U := max{j ∈ N | j < k and j � n} = 〈. . . , nR+1, nR − 1, nR−1, . . . , n0〉.

The osculating U–subspace S(U)
0 Γ at P0 is spanned by the base points P0, P1, . . . , PU so that

S(U)
0 Γ ∨N (k)Γ = S(k)

0 Γ.



Here the minimality of k is essential. By virtue of the collineation group G(n−1), this property
carries over from P0 = Fc0 to all points of Γ. Therefore, for our specific choice of k, the
following holds true:

A k–dimensional subspace through N (k)Γ is an osculating subspace of Γ if, and only if, it
contains an osculating U–subspace of Γ.

In particular, for n = p = 2 and k = 1 this is well known. Here U = 0 and a characterization
of the tangents of a conic Γ among the lines through the nucleus N (1)Γ is obtained. Cf. also
[8, Satz 2].

REMARK 5 Let #F ≥ k. If N (k)Γ consists of one point only, then necessarily Φ(i, n) = 1
for some i ∈ N+. Thus all factors in (2) are equal to 1 which is easily seen to be equivalent
to

n = 2pi − 2. (28)

Conversely, (28) implies b = n + 1 < pi+1 so that Σ(i + 1, n) = 0 by (5). Hence, Φ(i, n) =
Σ(i, n) = 1, as required. Thus (28) implies that there is a point off the NRC which is fixed
by all collineations of the group G(n−1). This point is the base point Ppi−1. Cf. also [14] and
[3, 49–50].
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