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Abstract

Each vector space that is endowed with a quadratic form determines
its Clifford algebra. This algebra, in turn, contains a distinguished group,
known as the Lipschitz group. We show that only a quotient of this group
remains meaningful in the context of projective metric geometry. This quo-
tient of the Lipschitz group can be viewed as a point set in the projective
space on the Clifford algebra and, under certain restrictions, leads to an al-
gebraic description of so-called kinematic mappings.
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1 Introduction
By a metric vector space we mean a finite dimensional vector space V (over a
field F of arbitrary characteristic) that is endowed with a quadratic form Q. The
description of orthogonal transformations of a metric vector space (V,Q) in terms
of its associated Clifford algebra Cl(V,Q) has a long history. We follow the expo-
sition by E. M. Schröder [50] and provide in Section 2 basic facts about a metric
vector space (V,Q) and its weak orthogonal group O′(V,Q), which in most cases
is generated by reflections. In Section 3, we collect from various sources those
results about the Clifford algebra Cl(V,Q) which are needed later on. Section 4
is based on the work of J. Helmstetter as summarised in [25]. We recall from
there the Lipschitz monoid Lip(V,Q) and the twisted adjoint representation of the

∗Added December 2021: Owing to typographical errors by the author, the conditions on
“dim V” appearing in the published version, formulas (2) and (3), fail to match with the cited
sources. In the present text these mistakes have been remedied.
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Lipschitz group Lip×(V,Q), which provides a surjective homomorphism onto the
weak orthogonal group O′(V,Q).

The main goal of the present note is the interpretation of the Lipschitz group
Lip×(V,Q) in projective terms, that is, we consider the projective metric space
P(V,Q) and the projective space on the associated Clifford algebra Cl(V,Q).
Thereby one is immediately facing the following problem: if the quadratic form
Q is replaced by a non-zero multiple, say cQ with c ∈ F \ {0}, then this does not
affect the geometry of P(V,Q), but the Clifford algebras Cl(V,Q) and Cl(V, cQ)
need not be isomorphic. Therefore, the usage of Clifford algebras in projective
metric geometry at a first sight appears to be problematic.

We start Section 5 by introducing in P
(
Cl(V,Q)

)
point sets M(V,Q) and

G(V,Q) that arise from a quotient of the Lipschitz monoid Lip(V,Q) and a quo-
tient of the Lipschitz group Lip×(V,Q). The latter set can be made into a group
in a natural way and as such it acts on the initial projective metric space P(V,Q).
In Theorems 5.4, 5.5 and 5.6 we carry out a detailed study of this group action
and its kernel, thereby extending previous work of C. Gunn [19], [20], R. Jurk
[32], M. Hagemann and D. Klawitter [36], [35], E. M. Schröder [49] and others.
Since the details are somewhat involved, an alternative point of view is adopted in
Tables 1–3. These tables allow us to read off all those instances, where a kind of
“kinematic mapping” for the projective weak orthogonal group PO′(V,Q) can be
obtained. Next, in Section 6, we return to the problem sketched above by compar-
ing the Clifford algebras Cl(V,Q) and Cl(V, cQ). From a result by M.-A. Knus
[40, Ch. IV, (7.1.1)], we are in a position to identify the underlying vector spaces
of these algebras in such a way that, firstly, their even subalgebras Cl0(V,Q)
and Cl0(V, cQ) coincide (as algebras), secondly, their odd parts Cl1(V,Q) and
Cl1(V, cQ) are the same (as vector subspaces), thirdly, the two multiplications are
related in a manageable way. Using this identification, it turns out that all our re-
sults from Section 5 remain unaltered when going over from Q to cQ. This is due
to the fact that the Clifford algebra Cl(V,Q) just serves as a kind of “container”
for its even and odd part, but we never use any element of Cl(V,Q) from outside
these two subspaces. Finally, Section 7 provides a list of open questions that may
lead to future research.

Let us close by pointing out that our note is not intended to be a critical sur-
vey. We therefore mainly quote such work that will clear the way to previous
contributions. Also, whenever we just refer to other sources without using them,
we usually do not emphasise diverging definitions, differing hypotheses and other
deviations from our approach.
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2 Metric vector spaces
Let V be a vector space with finite dimension n + 1 ≥ 0 over a (commutative) field
F. We suppose that V is equipped with a quadratic form Q : V → F; the zero
form is not excluded. There is a widespread literature about quadratic forms; see,
for example, [8, Ch. 8], [13], [43] or [53]. We adopt the terminology from [50]
by addressing (V,Q) as a metric vector space. A non-zero vector a ∈ V is called
regular if Q(a) , 0 and singular otherwise. Observe that none of these attributes
applies to the zero vector. A subspace of V is said to be totally singular if all its
non-zero vectors are singular.

Let B : V × V → F : (x, y) 7→ Q(x + y) − Q(x) − Q(y) denote the polar form
of Q, which is a symmetric bilinear form. Then, for all x ∈ V, B(x, x) = 2Q(x).
Orthogonality is written as ⊥; that is, for all x, y ∈ V, x ⊥ y means B(x, y) = 0.
Each subset S ⊆ V determines the subspace S⊥ := {x ∈ V | x ⊥ y for all y ∈ S}
of V. In particular, V⊥ is called the radical of B. The form B is said to be non-
degenerate provided that V⊥ = {0}.

Let (Ṽ, Q̃) also be a metric vector space over F. A linear bijection ψ : V → Ṽ
is called a similarity if cQ = Q̃ ◦ ψ for some c ∈ F× := F \ {0}. Provided that
Q(V) , {0}, the scalar c is uniquely determined by ψ and it will be addressed as
the ratio of ψ. Whenever Q(V) = {0} we adopt the convention to consider only
1 ∈ F× as being the ratio of ψ. An isometry is understood to be a similarity of
ratio c = 1.

We recall that the general orthogonal group GO(V,Q) is that subgroup of the
general linear group GL(V) which comprises all similarities of (V,Q) onto itself.
All isometries of (V,Q) onto itself constitute the orthogonal group O(V,Q). The
weak orthogonal group1 O′(V,Q) consists of all isometries of (V,Q) that fix the
radical V⊥ elementwise. Each regular vector r ∈ V determines the mapping

ξr : V → V : x 7→ x − B(r, x)Q(r)−1r. (1)

We call ξr the reflection of (V,Q) in the direction of r and note that ξr ∈ O′(V,Q).
Under ξr all vectors in r⊥ are fixed and r goes over to −r. Also, ξr is the identity
on V if, and only if, r is a regular vector in the radical V⊥; this can only happen
in case of characteristic 2; see [50, 1.6.2]. We are now in a position to write up
a version of the classical Cartan-Dieudonné Theorem as follows. Each isometry
ϕ ∈ O′(V,Q) is a product of reflections, except when F and (V,Q) satisfy one
of the subsequent conditions (2) or (3) for some basis {e0, e1, . . . , en} of V and all

1We follow here the terminology and notation from [9]. In German this group is known under
the name “orthogonale Gruppe im engeren Sinne”. O′(V,Q) must not be confused with the derived
group of O(V,Q); see [8, p. 39].
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x =
∑n

j=0 x je j with x j ∈ F:

|F| = 2, dim V > 2 and Q(x) = x0x1; (2)
|F| = 2, dim V ≥ 4 and Q(x) = x0x1 + x2x3. (3)

We refer to [15], [16], [39] for proofs and to [4], [9], [10], [11], [12], [14], [29],
[37], [43, p. 18], [46], [50, 1.6.3], [53, pp. 156–159] for further details, generali-
sations and additional references. Let us just mention that the reflections of (V,Q)
generate a proper subgroup of its weak orthogonal group whenever F and (V,Q)
meet the requirements of (2) or (3).

3 Clifford algebras
Let (V,Q) be a metric vector space over F (as in Section 2) and let Cl(V,Q)
denote its Clifford algebra; see, among others, [7, pp. 35ff. and 101ff.], [8, 8.4],
[18, Ch. 8, Ch. 13], [31, Ch. 3] [40, Ch. IV] or [43, Ch. 5]. In our study we
shall adopt two widely used conventions. Firstly, we identify 1 ∈ F with the
unit element of the F-algebra Cl(V,Q) and, secondly, we consider V as being a
subspace of Cl(V,Q). So Cl(V,Q) is the universal associative and unital algebra
over F that is generated by V and subject to the relations Q(x) = x2 for all x ∈ V.
Consequently, for all x, y ∈ V, we have B(x, y) = xy + yx. We now write up some
well known properties of Cl(V,Q) in order to fix our notation.

The Clifford algebra Cl(V,Q) is Z/(2Z)-graded and so it is the direct sum
of the even part Cl0(V,Q), which is a subalgebra of Cl(V,Q), and the odd part
Cl1(V,Q). If h ∈ Cli(V,Q), i ∈ {0, 1}, then we say that h is homogeneous of degree
i and write ∂h = i. Given any subset S ⊆ Cl(V,Q) we let Si := S ∩ Cli(V,Q) for
i ∈ {0, 1} and we denote by S× the set of all units (w.r.t. multiplication) in S.

The main involution σ : Cl(V,Q) → Cl(V,Q) is the only algebra endomor-
phism of Cl(V,Q) such that x 7→ −x for all x ∈ V. Under σ all elements
of Cl0(V,Q) remain fixed, any h ∈ Cl1(V,Q) goes over to −h. The reversal
α : Cl(V,Q) → Cl(V,Q) is the only algebra antiendomorphism of Cl(V,Q) such
that x 7→ x for all x ∈ V. Each of the mappings σ and α is a bijection leaving
invariant Cl0(V,Q) and Cl1(V,Q).

Cl(V,Q) is endowed with an (increasing) canonical filtration by subspaces
Cl≤k(V,Q), k ∈ Z, as follows [31, pp. 108–109]: if k < 0 then Cl≤k(V,Q) = {0};
if k ≥ 0 then Cl≤k(V,Q) is that subspace of Cl(V,Q) which is generated by all
products of at most k vectors from V. Thereby an empty product of vectors is
understood to be 1 ∈ F ⊆ Cl(V,Q). If {e0, e1, . . . , en} is a basis of V, then we
obtain a basis of Cl(V,Q) as{

e j1e j2 · · · e jk | 0 ≤ j1 < j2 < · · · < jk ≤ n
}
. (4)
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Let T be a subspace of V. The restriction Q|T makes T into a metric vector
space. The unital subalgebra of Cl(V,Q) generated by T will be considered as the
Clifford algebra of (T,Q|T).

Suppose that Q(V) = {0}. Then Cl(V,Q) coincides (upon writing “∧” in-
stead of “·”) with the exterior algebra

∧
V. Let m be any element of Cl1(V,Q) =⊕

j∈{1,3,5,...}

∧ j V. From
∧

V being N-graded (see [31, p. 185]), the product of m
and any n ∈ Cl(V,Q) =

∧
V belongs to the subspace

⊕
k∈{1,2,3,...}

∧k V. Therefore
m fails to be invertible and we note, for later use:

Q(V) = {0} implies Cl×1 (V,Q) = ∅. (5)

The following results are taken from [40, Ch. IV, (7.1.1)] in a form tailored
to our needs. Let (V,Q) and (Ṽ, Q̃) denote metric vector spaces and suppose that
ψ : V → Ṽ is a similarity of ratio c ∈ F×. Then there is a unique homomorphism
of algebras Cl0(ψ) : Cl0(V,Q)→ Cl0(Ṽ, Q̃) such that, for all x, y ∈ V,

Cl0(ψ)(xy) = c−1ψ(x)ψ(y). (6)

Furthermore, there is a unique linear mapping Cl1(ψ) : Cl1(V,Q) → Cl1(Ṽ, Q̃)
such that, for all p ∈ Cl0(V,Q) and all x ∈ V,

Cl1(ψ)(px) = Cl0(ψ)(p) · ψ(x),
Cl1(ψ)(xp) = ψ(x) · Cl0(ψ)(p).

(7)

Take notice that, for all x ∈ V, Cl1(ψ)(x) = ψ(x) follows from (7) by letting p = 1.
This motivates our name Clifford extension of ψ for the mapping

Cl0(ψ) ⊕ Cl1(ψ) =: Cl(ψ) : Cl(V,Q)→ Cl(Ṽ, Q̃). (8)

Since ψ−1 is a similarity of ratio c−1, there exists Cl(ψ−1) = Cl(ψ)−1. Thus, by
virtue of Cl0(ψ), the even Clifford algebras Cl0(V,Q) and Cl0(Ṽ, Q̃) are isomor-
phic.

Even though the domain of Cl(ψ) is the entire Clifford algebra Cl(V,Q), we
shall predominantly apply this mapping to homogeneous elements of Cl(V,Q).
In particular, the following formula will turn out crucial, as it describes to which
extent Cl(ψ) “deviates” from an isomorphism of algebras. Given homogeneous
elements m, n ∈ Cl(V,Q) we assert that

Cl(ψ)(mn) = c−∂m∂n Cl(ψ)(m) · Cl(ψ)(n). (9)

By the additivity of Cl(ψ) and the law of distributivity, it suffices to verify (9) when
m = a1a2 · · · ar and n = ar+1ar+2 · · · ar+s with a1, a2, . . . , ar+s ∈ V and r, s ≥ 0.
There are four cases:
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Case 1: r and s are even. Here (9) holds trivially, since Cl0(ψ) is a homomor-
phism of algebras.

Case 2: r is even and s is odd. By the first equation in (7) and Case 1,

Cl1(ψ)(mn) = Cl1(ψ)
(
m(ar+1ar+2 · · · ar+s−1)ar+s

)
= Cl0(ψ)(mar+1ar+2 · · · ar+s−1) · ψ(ar+s)
= Cl0(ψ)(m) · Cl0(ψ)(ar+1ar+2 · · · ar+s−1) · ψ(ar+s)
= Cl0(ψ)(m) · Cl1(ψ)(n).

Case 3: r is odd and s is even. Writing m = a1(a2 · · · ar) allows us to proceed
in analogy to the previous case, thereby using the second equation in (7).

Case 4: r and s are odd. Now m = (a1a2 · · · ar−1)ar and n = ar+1(ar+2 · · · ar+s)
together with (6) and (7) establishes (9).

Next, let m1,m2, . . . ,mk, k ≥ 0, be homogeneous elements of Cl(V,Q) such
that precisely p of them are of degree 1. Then there is a unique integer q ≥ 0 with
2q ≤ p ≤ 2q + 1. From (9), we therefore obtain

Cl(ψ)(m1m2 · · ·mk) = c−q Cl(ψ)(m1) · Cl(ψ)(m2) · · ·Cl(ψ)(mk). (10)

There are two immediate consequences of (10). Given a homogeneous ele-
ment m ∈ Cl(V,Q) we have(

Cl(ψ) ◦ α
)
(m) =

(
α̃ ◦ Cl(ψ)

)
(m), (11)

where α̃ denotes the reversal on Cl(Ṽ, Q̃). If, moreover, m is invertible, then

Cl(ψ)(m) · Cl(ψ)(m−1) = c∂m, (12)

which in turn shows that Cl(ψ)(m) is invertible.

4 Lipschitz groups
The following exposition runs along the lines of the survey [25] and the summary
in [31, 5.10]. Historical remarks and additional results may be retrieved from [26],
[27], [28], [30] and [44, pp. 220–230]. According to [25, Def. 2.1] the Lipschitz
monoid Lip(V,Q) is the multiplicative monoid in Cl(V,Q) generated by the union
of F, V and the set{

1 + st | s, t ∈ V, Q(s) = Q(t) = B(s, t) = 0
}
. (13)

The Lipschitz monoid Lip(V,Q) is already generated by V except when one of the
following applies: (i) Q(V) = {0}; (ii) F and (V,Q) satisfy (2); (iii) F and (V,Q)
satisfy (3); see [23, (7) Thm.], [25, Thm. 2.2].
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Three noteworthy properties of any m ∈ Lip(V,Q) are as follows [23,
(2) Thm.], [25, Thm. 2.7]: (i) α(m) ∈ Lip(V,Q); (ii) mα(m) = α(m)m ∈ F;
(iii) mα(m) , 0 characterises m as being invertible. Therefore all invertible ele-
ments of Lip(V,Q) constitute a group, the so-called Lipschitz group Lip×(V,Q).
Furthermore, for all k ≥ 0 and all z ∈ Cl≤k(V,Q), we have mzα(m) ∈ Cl≤k(V,Q);
see [23, (23) Cor.], [25, Thm. 2.8]. This implies, for any m ∈ Lip×(V,Q) and all
x ∈ V, that mxσ(m)−1 ∈ V and that Q

(
mxσ(m)−1) = Q(x). The mapping

ξ : Lip×(V,Q)→ O′(V,Q) : p 7→
(
ξp : x 7→ pxσ(p)−1) (14)

is a surjective homomorphism of groups [23, (35) Thm.], [25, Thm. 3.2]; we
follow [1] by addressing ξ as the twisted adjoint representation of Lip×(V,Q). For
any regular vector r ∈ V we clearly have r ∈ Lip×(V,Q) and the above definition
reproduces the reflection ξr as in (1).

Remark 4.1. Any element 1 + st appearing in (13) is in the Lipschitz group
Lip×(V,Q), since (1 + st)α(1 + st) = 1. An easy calculation gives, for all x ∈ V,

ξ1+st(x) = x + B(t, x)s − B(s, x)t.

If s, t are linearly dependent, then st = 0 and so ξ1+st = idV. Otherwise, ξ1+st fixes
precisely the vectors of the subspace {s, t}⊥, which has codimension ≤ 2 in V.

In order to describe the kernel of the twisted adjoint representation (14), we
recall the definition of the graded centre of Cl(V,Q). It is defined as

Zg(Cl(V,Q)
)

:= Zg
0
(
Cl(V,Q)

)
⊕ Zg

1
(
Cl(V,Q)

)
,

where Zg
i
(
Cl(V,Q)

)
, i ∈ {0, 1}, comprises precisely those p ∈ Cli(V,Q) which

satisfy pq = (−1)∂p∂qqp for all homogeneous q ∈ Cl(V,Q); see [31, (3.5.2)] or
[40, p. 152]. By (14), for all p ∈ Lip×(V,Q) and all vectors x ∈ V, we have

ξp(x) = pxσ(p)−1 = (−1)∂p pxp−1 = (−1)∂p∂x pxp−1.

Therefore, using that V generates Cl(V,Q) as an algebra, we readily arrive at the
intermediate result

F× ⊆ ker ξ = Lip×(V,Q) ∩ Zg(Cl(V,Q)
)
.

From [31, (5.8.7) Lemma], the graded centre of Cl(V,Q) equals the subalgebra
generated by V⊥, which in turn may be viewed as Cl(V⊥,Q|V⊥). We therefore
have

F× ⊆ ker ξ = Lip×(V,Q) ∩ Cl(V⊥,Q|V⊥). (15)

The above description of the graded centre Zg(Cl(V,Q)
)

as the subalgebra
of Cl(V,Q) generated by V⊥ can also be read off from [32, (1.8) a), (1.9) a)].
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Likewise, the result about ker ξ may easily be derived from [23, (22) Cor.] or [32,
(2.2) Satz]. However, the author of [32] states some essential results without proof
(just quoting his thesis). The corresponding proofs, despite their announcement
in [32], never got published.

Below we collect a few more results, which are to be used later on.

Lemma 4.2. Let (V,Q) be a metric vector space. Then the kernel of the twisted
adjoint representation ξ of the Lipschitz group Lip×(V,Q) satisfies the following
properties.

(a) If Q(V⊥) = {0}, then ker ξ = ker0 ξ and so ker ξ is a subgroup of Lip×0 (V,Q).

(b) Given any regular vector r ∈ V⊥ we have r · (ker0 ξ) = ker1 ξ. Therefore,
whenever Q(V⊥) , {0}, ker ξ is not a subgroup of Lip×0 (V,Q).

(c) If dim V⊥ ≤ 1, then ker0 ξ = F×.

(d) If dim V⊥ ≥ 2, then for any two-dimensional subspace L ⊆ V⊥ there are
linearly independent vectors a, b ∈ L such that{

x + yab | x ∈ F×, y ∈ F
}
⊆ ker0 ξ. (16)

Proof. (a) This is an immediate consequence of (5), applied to Cl(V⊥,Q|V⊥), and
(15).

(b) By (15), r ∈ V⊥ implies r ∈ ker ξ, which proves the assertions.
(c) We infer from dim V⊥ ≤ 1 that Cl0(V⊥,Q|V⊥) = F. Hence (15) gives

F× ⊆ ker0 ξ ⊆ Cl×0 (V⊥,Q|V⊥) = F×.
(d) We distinguish three cases: (i) L is totally singular; (ii) L contains no

singular vectors; (iii) L contains a regular and a singular vector. In the first two
cases we choose any linearly independent vectors a, b ∈ L. If (iii) applies, we
choose a ∈ L regular and b ∈ L singular. Now pick any element x + yab as
appearing in (16). In view of (15), it suffices to verify that x + yab ∈ Lip×0 (V,Q).
In case (i), this follows from

x + yab = x
(
1 + (x−1ya)b

)
,

x ∈ F× and Q(x−1ya) = Q(b) = B(x−1ya, b) = 0. Otherwise, a is regular and so
Char F = 2. By writing

x + yab = a(xa−1 + yb),

it remains to verify that xa−1 + yb is regular. In case (ii), this turns out trivial. In
case (iii), we have Q(xa−1 + yb) = x2Q(a−1) + 0 , 0. �
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5 Projective metric geometry
Let V be a vector space over F as described at the beginning of Section 2. By the
projective space P(V) we mean here the set of all subspaces of V with incidence
being symmetrised inclusion [6, p. 30]. The dimension2 of P(V) is one less than
the dimension of V; that is, P(V) has projective dimension n. We adopt the usual
geometric terms: points, lines and planes are the subspaces of V with (vector)
dimension one, two, and three, respectively. Likewise, any subspace T of V gives
rise to a projective space P(T), which is a substructure of P(V). The general linear
group GL(V) acts in a canonical way on P(V): any κ ∈ GL(V) determines a
projective collineation on P(V), which is given by X 7→ κ(X) for all X ∈ P(V).
The kernel of this action of GL(V) equals F× idV.

Next, assume (V,Q) to be a metric vector space. Then Q can been used to
furnish the projective space with “additional structure”, thus making it into a
projective metric space P(V,Q). Thereby, for all c ∈ F×, the spaces P(V,Q)
and P(V, cQ) are considered as being equal. We refer to [50] for a detailed de-
scription under the assumption Q(V) , {0}; otherwise any “additional structure”
arising from Q is trivial. Let us recall a few notions derived from (V,Q) that re-
main unchanged if Q is replaced by cQ. The orthogonality relations of (V,Q)
and of (V, cQ) coincide. All points Fs with s ∈ V being singular constitute the
absolute quadric F(V,Q) of P(V,Q).3 This quadric does not alter when going
over to cQ. Also, we have GO(V,Q) = GO(V, cQ), O(V,Q) = O(V, cQ) and
O′(V,Q) = O′(V, cQ).

In contrast, the Clifford algebras Cl(V,Q) and Cl(V, cQ), c ∈ F×, need not be
isomorphic; see Example 6.1, where it is also shown that an analogous statement
holds for the associated Lipschitz groups. Nevertheless, for the remaining part of
this section, we shall make extensive use of the Clifford algebra Cl(V,Q). The
problem of how things change when going over to Cl(V, cQ) will be addressed in
Section 6.

By the above, any isometry ϕ ∈ O′(V,Q) determines a projective collineation
of P(V,Q). This action of O′(V,Q) on P(V,Q) has the kernel

I′(V,Q) := O′(V,Q) ∩ {idV,− idV}. (17)

The quotient of O′(V,Q) by I′(V,Q) is the projective weak orthogonal group, in
symbols PO′(V,Q). Then

|I′(V,Q)| = 1 ⇔
(
V = {0} or V⊥ , {0} or Char F = 2

)
. (18)

2In order to avoid ambiguity, we shall frequently add the attribute “projective” when speaking
about the dimension of a projective space.

3Since we allow Q to be the zero form, F(V,Q) may coincide with the point set of P(V).
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On the other hand, |I′(V,Q)| , 1 implies |I′(V,Q)| = 2.
Now we change over to the projective space on the Clifford algebra Cl(V,Q),

where we introduce several point sets. Given such a set, say S, we define Si,
i ∈ {0, 1}, to be the subset of S comprising all points that are contained in Cli(V,Q).
We start by defining

H(V,Q) :=
{
F p | p ∈ Cl×0 (V,Q) ∪ Cl×1 (V,Q)

}
(19)

and proceed by making H(V,Q) into a (multiplicative) group as follows:
(F p)(Fq) := F(pq) for all F p, Fq ∈ H(V,Q). Clearly, there is a canonical iso-
morphism of groups(

Cl×0 (V,Q) ∪ Cl×1 (V,Q)
)
/F× → H(V,Q) : F×p 7→ F p. (20)

So, essentially, the two groups from above are the same. The Lipschitz monoid
Lip(V,Q) gives rise to the point set

M(V,Q) :=
{
F p | 0 , p ∈ Lip(V,Q)

}
. (21)

By the definition of Lip(V,Q), the point set M(V,Q) is the disjoint union of
M0(V,Q) and M1(V,Q).
Remark 5.1. The sets M0(V,Q) and M1(V,Q) are algebraic varieties of the pro-
jective spaces on Cl0(V,Q) and Cl1(V,Q), respectively. See [25, p. 673] and
[24], where a wealth of further properties of these varieties can be found. In
particular, all subspaces of P

(
Cl(V,Q)

)
whose point set is contained in M(V,Q)

have been determined there. Let us just mention the following particular case. If
dim V ≤ 3, then M0(V,Q) resp. M1(V,Q) comprises all points of P

(
Cl0(V,Q)

)
resp. P

(
Cl1(V,Q)

)
[23, (31) Lemma].

Remark 5.2. In general, the point set M(V,Q) cannot be made into a monoid
by following the path taken above. This is because the product of two non-zero
elements of Lip(V,Q) may be the zero vector, which fails to span a point.

Our third point set is

G(V,Q) := H(V,Q) ∩M(V,Q) =
{
F p | p ∈ Lip×(V,Q)

}
, (22)

which is a subgroup of H(V,Q). The canonical isomorphism from (20) deter-
mines (by restriction) the isomorphism of groups

Lip×(V,Q)/F× → G(V,Q). (23)

The Lipschitz group Lip×(V,Q) contains F× as a normal subgroup. The
representation (14) factors through the canonical homomorphism Lip×(V,Q) →
Lip×(V,Q)/F×. We therefore have a surjective homomorphism of groups

Lip×(V,Q)/F× → O′(V,Q) : F×p 7→ ξp, (24)
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the twisted adjoint representation of the quotient group Lip×(V,Q)/F×. By virtue
of the inverse of (23), the twisted adjoint representation (24) and the canonical
action of O′(V,Q) on P(V,Q), the group G(V,Q) as in (22) acts on the projective
space P(V,Q). Explicitly, for all F p ∈ G(V,Q) and all X ∈ P(V,Q), this action of
G(V,Q) takes the form

F p 7→
(
X 7→ ξp(X) = pXσ(p)−1). (25)

Furthermore, the action of G(V,Q) on P(V,Q) yields a surjective homomorphism
of groups

θ : G(V,Q)→ PO′(V,Q) = O′(V,Q)/ I′(V,Q) : F p 7→ I′(V,Q) ◦ ξp; (26)

see (17). By our construction, ker θ is just the kernel of the group action described
in (25). This means

ker θ =
{
F p ∈ G(V,Q) | ξp ∈ I′(V,Q)

}
. (27)

Remark 5.3. Let any Fm ∈ H(V,Q) be given. The (group theoretic) left transla-
tion by Fm, that is the mapping Fq 7→ (Fm)(Fq) for all Fq ∈ H(V,Q), extends
to a projective collineation of the ambient projective space. Obviously, the left
translation λm ∈ GL

(
Cl(V,Q)

)
, which is given by z 7→ mz for all z ∈ Cl(V,Q),

provides a solution. The same properties hold, mutatis mutandis, for the right
translation by Fm and its counterpart ρm : z 7→ zm on the Clifford algebra.

Given any Fm ∈ G(V,Q) the above observations clearly remain true when
replacing H(V,Q) with G(V,Q). However, G(V,Q) satisfies yet another property,
which appears to be more substantial. The mapping that sends any Fq ∈ G(V,Q)
to its inverse (Fq)−1 also extends to a projective collineation of the ambient projec-
tive space. Such a collineation is determined by the reversal α, since qα(q) ∈ F×

for all q ∈ Lip×(V,Q); see the noteworthy properties (i)–(iii) of the Lipschitz
monoid mentioned at the beginning of Section 4.

We proceed by examining in detail the kernel of the surjective homomor-
phism θ appearing in (26). We also investigate whether or not the subgroup
θ
(
G0(V,Q)

)
coincides with its ambient group PO′(V,Q). Clearly, whenever

G0(V,Q) = G(V,Q), the answer to the latter question is affirmative. The large
number of cases makes us split our findings into three theorems, according to the
dimension of the radical V⊥.

Theorem 5.4. Let (V,Q) be a metric vector space with dim V⊥ = 0. Then the
surjective homomorphism θ : G(V,Q)→ PO′(V,Q) has the following properties.

(a) If dim V = 0, then ker θ = {F1} and G0(V,Q) = G(V,Q).
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(b) If dim V > 0 and Char F = 2, then ker θ = {F1} and θ
(
G0(V,Q)

)
,

PO′(V,Q).

(c) If dim V is odd and Char F , 2, then ker θ comprises precisely two points,
namely F1 ∈ G0(V,Q) and one more point in G1(V,Q). Furthermore,
θ
(
G0(V,Q)

)
= PO′(V,Q).

(d) If dim V > 0 is even and Char F , 2, then ker θ comprises precisely two
points, both of which in G0(V,Q). Furthermore, θ

(
G0(V,Q)

)
, PO′(V,Q).

Proof. To begin with, we note that

dim V⊥ = 0 implies ker ξ = ker0 ξ = F×, (28)

as follows readily from Lemma 4.2 (a) and (c).
(a) The assertions hold, since G(V,Q) = G0(V,Q) = {F1}.
(b) Due to Char F = 2 and (18), we have I′(V,Q) = {idV}. Therefore (27)

and (28) give ker θ = {F1}. As V⊥ = {0} and dim V > 0, there exists a regular
vector r ∈ V and so Fr ∈ G(V,Q) \ G0(V,Q). Since ker θ = {F1} means that θ is
injective, we obtain θ(Fr) ∈ PO′(V,Q) \ θ

(
G0(V,Q)

)
.

(c) Now (18) implies |I′(V,Q)| = 2. There exists an orthogonal basis
{e0, e1, . . . , en} of (V,Q) and we put

e := e0e1 · · · en. (29)

From V⊥ = {0} we obtain e ∈ Lip×(V,Q). Together with dim V ≥ 1 and Char F ,
2 this shows ξe = − idV , idV. So, from (27) and (28), ker θ = {F1, Fe} is a group
of order two. Clearly, F1 ∈ ker0 θ.

As dim V is odd, Fe ∈ ker1 θ. We have

θ
(
G0(V,Q)

)
= θ

(
Fe · G0(V,Q)

)
= θ

(
G1(V,Q)

)
, (30)

whence θ
(
G0(V,Q)

)
= θ

(
G(V,Q)

)
= PO′(V,Q).

(d) We may repeat the reasoning from (c) up to the end of the first paragraph.
By contrast, now dim V > 0 is even, whence Fe ∈ ker0 θ. In analogy with (b),
there is a regular vector r ∈ V and so Fr ∈ G(V,Q)\G0(V,Q). Taking into account
that ker θ is contained in G0(V,Q), we obtain θ(Fr) ∈ PO′(V,Q)\θ

(
G0(V,Q)

)
. �

Note that under the hypotheses of Theorem 5.4 (b) the bilinear form B is non-
degenerate and alternating. Therefore, dim V is necessarily even.

Theorem 5.5. Let (V,Q) be a metric vector space with dim V⊥ = 1. Then the
surjective homomorphism θ : G(V,Q)→ PO′(V,Q) has the following properties.

(a) If Q(V⊥) = {0}, then ker θ = {F1}.
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(b) If Q(V⊥) = {0} and dim V = 1, then G0(V,Q) = G(V,Q).

(c) If Q(V⊥) = {0} and dim V > 1, then θ
(
G0(V,Q)

)
, PO′(V,Q).

(d) If Q(V⊥) , {0}, then ker θ comprises precisely two points, namely F1 ∈
G0(V,Q) and one more point in G1(V,Q). Furthermore, θ

(
G0(V,Q)

)
=

PO′(V,Q).

Proof. First of all, from (18), we have that

dim V⊥ = 1 implies I′(V,Q) = {idV}. (31)

(a) From Lemma 4.2 (a) and (c), we have ker ξ = ker0 ξ = F×. Thus, using
(27) and (31), we arrive at ker θ = {F1}.

(b) By our hypotheses, we have Q(V) = Q(V⊥) = {0}. So (5) yields that
Cl1(V,Q) contains no regular vector. Therefore G0(V,Q) = G(V,Q), as required.

(c) Due to V⊥ , V, there exists a regular vector in r ∈ V and so Fr ∈ G(V,Q)\
G0(V,Q). From (a), θ is injective, whence θ(Fr) ∈ PO′(V,Q) \ θ

(
G0(V,Q)

)
.

(d) There is a regular vector r ∈ V⊥. Using Lemma 4.2 (b) and (c), we obtain4

ker ξ = F× ∪ F×r. Together with (27) and (31) this implies ker θ = {F1, Fr} and
Fr · G0(V,Q) = G1(V,Q). Thus θ

(
G0(V,Q)

)
= θ

(
G(V,Q)

)
= PO′(V,Q) follows

(by replacing e with r) in analogy to (30) . �

Regarding Theorem 5.5 (d), it seems worth pointing out that Q(V) , {0} im-
plies Char F = 2. Together with dim V⊥ = 1 this forces dim V to be odd, since B
induces a non-degenerate alternating bilinear form on the quotient space V/V⊥.

Theorem 5.6. Let (V,Q) be a metric vector space with dim V⊥ ≥ 2. Then the
surjective homomorphism θ : G(V,Q)→ PO′(V,Q) has the following properties.

(a) If Q(V⊥) = {0}, then ker θ contains at least |F| points from G0(V,Q) but no
points from G1(V,Q).

(b) If Q(V⊥) = {0} and dim V = dim V⊥, then G0(V,Q) = G(V,Q).

(c) If Q(V⊥) = {0} and dim V > dim V⊥, then θ
(
G0(V,Q)

)
, PO′(V,Q).

(d) If Q(V⊥) , {0}, then ker θ contains at least |F| points from G0(V,Q) and at
least |F| points from G1(V,Q). Furthermore, θ

(
G0(V,Q)

)
= PO′(V,Q).

4We note that F1 ⊕ Fr is a subalgebra of Cl(V⊥,Q|V⊥) and as such an inseparable quadratic
extension field of F.
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Proof. (a) Lemma 4.2 (a) gives ker ξ = ker0 ξ and, from (18), we have I′(V,Q) =

{idV}. Thus (27) shows ker θ = ker0 θ ⊆ G0(V,Q). Let L be any two-dimensional
subspace of V⊥. By adopting the terminology from Lemma 4.2 (d) and by substi-
tuting x := 1 in (16), we arrive at

{F(1 + yab) | y ∈ F} ⊆ ker0 θ and
∣∣∣{F(1 + yab) | y ∈ F}

∣∣∣ = |F|. (32)

(b) The assertion follows from (5).
(c) From dim V > dim V⊥, there exists a regular vector r ∈ V and so Fr ∈

G(V,Q) \ G0(V,Q). In view of (a), ker θ is contained in G0(V,Q). This in turn
establishes θ(Fr) ∈ PO′(V,Q) \ θ

(
G0(V,Q)

)
.

(d) There exists a two-dimensional subspace L of V⊥ that contains a regular
vector a, say. We pick any vector b ∈ L such that a, b are linearly independent.
According to the proof of Lemma 4.2 (d) we now use these vectors to obtain (16)
and, as in (a), we substitute there x := 1. In this way we get a point set as in (32).
This implies that ker1 θ contains at least |F| points, namely all points of the form
F
(
a + yQ(a)b

)
with y varying in F. �

Our description of ker θ in Theorems 5.4, 5.5 and 5.6 improves [32, (2.3) Satz]
in two ways: The result b) from there describes an analogue of our surjective ho-
momorphism θ onto the group PO′(V,Q); however, it is based upon a subgroup
of H(V,Q) that in general is larger than our G(V,Q). The result c) from there co-
incides with our findings whenever Lip×(V,Q) is generated by all regular vectors
of (V,Q), but provides no information about the exceptional cases (2) and (3).

Clearly, the surjective homomorphism θ as in (26) turns out to be an isomor-
phism of G(V,Q) onto PO′(V,Q) if, and only if, ker θ contains no point other than
F1. There are few possibilities for this to happen. All of them can be read off from
Table 1. The first entry in each row (other than the header) provides a reference to
the corresponding theorem, the remaining entries summarise the conditions that
have to be met. Entries in braces are redundant and could be omitted.

Likewise, there is a rather small number of instances such that θ|G0(V,Q) es-
tablishes an isomorphism of G0(V,Q) onto PO′(V,Q). An exhaustive summary is
given in Table 2. Note that there is a single overlap between Table 1 and Table 2.
It pertains the trivial case dim V = 0, where G(V,Q) = G0(V,Q).

There is one more noteworthy situation, where θ fails to be injective, but ker θ
is a group of order two; the details are displayed in Table 3. Here the group
G0(V,Q) is equipped with the distinguished point Fe, which does not depend on
the choice of the orthogonal basis {e0, e1, . . . , en} of V that has been used in (29)
when defining e. The left translation λe (right translation ρe) acts on P

(
Cl(V,Q)

)
as a projective collineation; see Remark 5.3. It is easy to verify that, for all j ∈
{0, 1, . . . , n}, we have ee j = −e je. Using the basis (4) of Cl(V,Q), we therefore
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obtain

λe|Cl0(V,Q) = ρe|Cl0(V,Q) and λe|Cl1(V,Q) = −ρe|Cl1(V,Q).

Thus, even though λe and ρe act differently on P
(
Cl(V,Q)

)
, their actions on

P
(
Cl0(V,Q)

)
and P

(
Cl1(V,Q)

)
coincide.

Theorem dim V⊥ Q(V⊥) dim V Char F
5.4 (a) (= 0) (= {0}) = 0
5.4 (b) = 0 (= {0}) > 0 (and even) = 2
5.5 (a) = 1 = {0}

Table 1: G(V,Q) � PO′(V,Q) (via θ)

Theorem dim V⊥ Q(V⊥) dim V Char F
5.4 (a) (= 0) (= {0}) = 0
5.4 (c) = 0 (= {0}) odd , 2
5.5 (b) = 1 = {0} = 1
5.5 (d) = 1 , {0} (odd) (= 2)

Table 2: G0(V,Q) � PO′(V,Q) (via θ|G0(V,Q))

Theorem dim V⊥ Q(V⊥) dim V Char F
5.4 (d) = 0 (= {0}) > 0 and even , 2

Table 3: G(V,Q)/{F1, Fe} � PO′(V,Q)

To conclude this section, let us point out the following. If one of the situations
from Table 1 occurs, then we may consider θ−1 as being a bijective “kinematic
mapping” for the group PO′(V,Q). Note that this just a name for a series of
examples rather than a general definition of such a mapping. Also, if one of the
situations from Table 2 occurs, we have a bijective “kinematic mapping” for the
group PO′(V,Q) given by

(
θ|G0(V,Q)

)−1. Under the restrictions of Table 3 we
still have a kind of “kinematic mapping”, but here one element of PO′(V,Q) is
represented by an unordered pair of points from G(V,Q). Some of the examples
in [35, 3.4] and [36, Sect. 6] fit into the above concepts. However, the quoted
works should be read with caution due to several misprints.

6 A comparison of Clifford algebras
We now switch back to a problem that we encountered in Section 5. Given a
metric vector space (V,Q) and a constant c ∈ F× what is the relationship between
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the Clifford algebras Cl(V,Q) and Cl(V, cQ)? For a closer look, we take into
account that the identity idV is a similarity of ratio c from (V,Q) onto (V, cQ).
(Recall our convention that c = 1 whenever Q(V) = {0}.) Therefore, according to
(8), we obtain a linear bijection

Cl(idV) : Cl(V,Q)→ Cl(V, cQ). (33)

This linear bijection allows us pulling back the algebra structure from Cl(V, cQ)
to Cl(V,Q), which amounts to introducing a “new” multiplication �c on the vector
space Cl(V,Q). The algebra obtained in this way is isomorphic to Cl(V, cQ) and
will be abbreviated as Cl(V,Q,�c). A bridge between the initial and the new
multiplication is provided by (6) and (7). We read off from there, for all x, y ∈ V
and all p ∈ Cl0(V,Q):

xy = c−1x �c y, px = p�c x, xp = x �c p. (34)

Similarly, one may write up analogues of (9), (10), (11) and (12). In what follows
right now, we shall adopt a slightly different point of view. We investigate the
Clifford algebras of metric vector spaces (V,Q) and (Ṽ, Q̃) admitting a similarity
ψ of ratio c ∈ F× with Cl(ψ) playing the role of the linear bijection (33). We shall
return to Cl(V,Q,�c) only at the end of this section.

Example 6.1. Let V be a one-dimensional vector space over the field R of real
numbers and let i ∈ V be non-zero. We define a quadratic form Q : V → R
by Q(i) = −1. Then Cl(V,Q) and the field C of complex numbers are isomor-
phic as R-algebras, as follows from i2 = −1. Furthermore, let (Ṽ, Q̃) be iso-
metric to (V,−Q), whence there is a similarity ψ : V → Ṽ of ratio −1. From
Q̃
(
ψ(i)

)
= ψ(i)2 = 1, the Clifford algebra Cl(Ṽ, Q̃) contains zero divisors5, whence

the algebras Cl(Ṽ, Q̃) and Cl(V,Q) � C cannot be isomorphic; see also [43,
Ex. 1.5, pp. 104–105] or the table of real Clifford algebras [43, p. 123].

The Lipschitz group Lip×(V,Q) reads R× ∪ R×i. In Lip×(V,Q) we have i2 =

−1, whereas no element of Lip×(Ṽ, Q̃) = R× ∪ R×ψ(i) squares to −1. So the
Lipschitz groups of (V,Q) and (Ṽ, Q̃) cannot be isomorphic either. In contrast,
the quotient groups Lip×(V,Q)/R× and Lip×(Ṽ, Q̃)/R× both have order two and
so they are isomorphic; see Theorem 6.3.

Theorem 6.2. Let ψ : V → Ṽ be a similarity of ratio c ∈ F× of metric vector
spaces (V,Q) and (Ṽ, Q̃). Then the Clifford extension Cl(ψ) has the following
properties.

(a) Cl(ψ) maps the canonical filtration of Cl(V,Q) onto the canonical filtration
of Cl(Ṽ, Q̃).

5For example,
(
1 + ψ(i)

)(
1 − ψ(i)

)
= 0.
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(b) Cl(ψ) maps the group Cl×0 (V,Q)∪Cl×1 (V,Q) onto Cl×0 (Ṽ, Q̃)∪Cl×1 (Ṽ, Q̃), the
Lipschitz monoid Lip(V,Q) onto Lip(Ṽ, Q̃) and, consequently, the Lipschitz
group Lip×(V,Q) onto Lip×(Ṽ, Q̃).

(c) For any m ∈ Lip×(V,Q), the isometries ξm ∈ O′(V,Q) and ξ̃Cl(ψ)(m) ∈

O′(Ṽ, Q̃) satisfy ψ ◦ ξm = ξ̃Cl(ψ)(m) ◦ ψ.

Proof. (a) Pick any integer k ≥ 0. According to (10), Cl(ψ) takes any product of
k vectors from V to a product of k vectors from Ṽ, and an analogous statement
holds for Cl(ψ−1) = Cl(ψ)−1. Thus the image of Cl≤k(V,Q) under Cl(ψ) equals
Cl≤k(Ṽ, Q̃), as required.

(b) To begin with, choose any m ∈ Cl×0 (V,Q) ∪ Cl×1 (V,Q). From (12), the
element Cl(ψ)(m) is in Cl×0 (Ṽ, Q̃) ∪ Cl×1 (Ṽ, Q̃).

We now show that Cl(ψ) sends any generator of Lip(V,Q), that is to mean
any element g from F, V or the set (13), to a generator of Lip(Ṽ, Q̃) of the same
kind. If g is in F ∪ V, then this is obvious. If g belongs to the set (13) or, more
explicitly, if g = 1 + st with s, t ∈ V subject to Q(s) = Q(t) = B(s, t) = 0,
then (9) implies Cl(ψ)(1 + st) = 1 + c−1ψ(s)ψ(t). As ψ is a similarity, we obtain
Q̃
(
c−1ψ(s)

)
= Q̃

(
ψ(t)

)
= B̃

(
c−1ψ(s), ψ(t)

)
= 0, whence Cl(ψ)(g) has the required

property.
Next, let any m ∈ Lip(V,Q) be given. By definition, m is a product of k ≥ 0

generators g1, g2, . . . , gk that come from F, V or the set (13). From (10), there is
an integer q ≥ 0 such that

Cl(ψ)(m) = c−q Cl(ψ)(g1) · Cl(ψ)(g2) · · ·Cl(ψ)(gk).

Thus, by the above, Cl(ψ)(m) ∈ Lip(Ṽ, Q̃).
Finally, (b) follows by repeating the above considerations with the similarity

ψ−1 instead of ψ.
(c) Choose any x ∈ V. Let p be the number of factors with degree 1 in the

product mxσ(m)−1 and denote by q the integer satisfying 2q ≤ p ≤ 2q + 1. As
∂
(
σ(m)−1) = ∂m, we may argue as follows. If ∂m = 0, then p = 1 and q = 0. If

∂m = 1, then p = 3 and q = 1. Therefore, we always have q = ∂m. Now, from
(10), (12) and Cl(ψ) ◦ σ = σ̃ ◦ Cl(ψ), we get

ψ
(
ξm(x)

)
= Cl(ψ)

(
mxσ(m)−1)

= c−q Cl(ψ)(m) · Cl(ψ)(x) · Cl(ψ)
(
σ(m)−1)

= c−q+∂m Cl(ψ)(m) · ψ(x) · σ̃
(
Cl(ψ)(m)

)−1

= ξ̃Cl(ψ)(m)
(
ψ(x)

)
,

which completes the proof. �
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Theorem 6.3. Under the hypotheses of Theorem 6.2 the following hold.

(a) For any homogeneous element m ∈ Cl(V,Q) and all subspaces H ⊆

Cl0(V,Q) ∪ Cl1(V,Q), we have

Cl(ψ)(mH) = Cl(ψ)(m) · Cl(ψ)(H),
Cl(ψ)(Hm) = Cl(ψ)(H) · Cl(ψ)(m).

(35)

(b) The assignment F×p 7→ F×
(
Cl(ψ)(p)

)
= Cl(ψ)(F×p) defines an isomor-

phism of groups(
Cl×0 (V,Q) ∪ Cl×1 (V,Q)

)
/F× →

(
Cl×0 (Ṽ, Q̃) ∪ Cl×1 (Ṽ, Q̃)

)
/F×,

an isomorphism of monoids Lip(V,Q)/F× → Lip(Ṽ, Q̃)/F× and, conse-
quently, also an isomorphism of groups

Lip×(V,Q)/F× → Lip×(Ṽ, Q̃)/F×. (36)

(c) The twisted adjoint representations of the quotient groups Lip×(V,Q)/F×

and Lip×(Ṽ, Q̃)/F× are equivalent by virtue of the isomorphism (36) and
the given similarity ψ : V → Ṽ.

Proof. The assertions are immediate from (9), (12) and Theorem 6.2. �

Remark 6.4. Let us briefly sketch how to rephrase Theorem 6.3 (b) and (c) in
terms of the projective spaces P

(
Cl(V,Q)

)
and P

(
Cl(Ṽ, Q̃)

)
. The Clifford exten-

sion Cl(ψ) of the given similarity ψ gives rise to a bijection M(V,Q) →M(Ṽ, Q̃)
and it also yields an isomorphism linking the groups H(V,Q) and H(Ṽ, Q̃). Con-
sequently, it determines an isomorphism of the groups G(V,Q) and G(Ṽ, Q̃) as
well as their actions on P(V,Q) and P(Ṽ, Q̃), respectively. Therefore, Cl(ψ) estab-
lishes also an isomorphism between the kernels of these group actions.

Remark 6.5. We still adhere to the hypotheses of Theorem 6.2. Moreover, we
require c to be a square in F. Upon choosing any square root of c−1, say

√
c−1, the

following applies. The mapping ω :=
√

c−1 ψ is an isometry of (V,Q) onto (Ṽ, Q̃).
By the universal property of Clifford algebras, ω extends to a unique isomorphism
of algebras Cl(V,Q) → Cl(Ṽ, Q̃), which is easily seen to coincide with Cl(ω).
Also, we have Cl(ω) = Cl0(ψ) ⊕

√
c−1 Cl1(ψ), whence the isomorphism Cl(ω)

allows for alternative proofs of our previous results.6

6If c fails to be a square in F, then this can be carried out by going over to metric vector spaces
over an appropriate quadratic extension of F.
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We now switch back to our earlier point of view. Given (V,Q) and c ∈ F×

we consider Cl(V,Q,�c) as Clifford algebra of (V, cQ) with �c being subject to
(34). From (8), the even subalgebras of Cl(V,Q) and Cl(V,Q,�c) coincide (as
algebras), as do their odd parts (as vector spaces). Our quest for going over to the
projective space on Cl(V,Q) comes from an observation resulting from (35): for
all homogeneous elements p, q ∈ Cl(V,Q), we have F(pq) = F(p�c q) despite the
fact that their products pq and p�c q need not coincide. From (11), Theorem 6.2,
Theorem 6.3 and Remark 6.4 we readily obtain:

Corollary 6.6. Let (V,Q) be a metric vector space and let c ∈ F×. The following
notions arising from the Clifford algebra Cl(V,Q) do not alter when going over
to the algebra Cl(V,Q,�c):

(a) The canonical filtration of Cl(V,Q);

(b) for any homogeneous m ∈ Cl×(V,Q), the canonical action of the left
translation λm (right translation ρm) on the union of the projective spaces
P
(
Cl0(V,Q)

)
and P

(
Cl1(V,Q)

)
;

(c) the canonical action of the reversal α on the union of the projective spaces
P
(
Cl0(V,Q)

)
and P

(
Cl1(V,Q)

)
;

(d) the group H(V,Q) �
(
Cl×0 (V,Q) ∪ Cl×1 (V,Q)

)
/F× as in (19);

(e) the point set M(V,Q) arising from the Lipschitz monoid Lip(V,Q) accord-
ing to (21) and the group G(V,Q) � Lip×(V,Q)/F× as in (22);

(f) the action of the group G(V,Q) on the projective space P(V,Q) as in (25).

7 Future research
We are of the opinion that a closer look at low-dimensional examples should prove
worthwhile. The first interesting class of examples are projective metric planes
(dim V = 3), since they appear in the theory of absolute planes; see [2], [3], [34,
Ch. III], [35, 3.4.1], [36, 6.1], [38], [45], [50, 4.6] and the references therein; fur-
thermore also finite Bolyai-Lobachevsky planes show up here [41], [42]. In all
these examples, the corresponding even Clifford algebra is a quaternion algebra
[17], [54]. In particular, an elliptic plane gives rise to a quaternion division alge-
bra. Ultimately, one is lead to the following question: to which extent does the
general theory of kinematic spaces (including the theory of Clifford parallelism)
overlap with our findings as sketched in Remark 5.3. We refer, among others, to
[5], [22], [33] and [47]. Going up one dimension (dim V = 4), one finds M0(V,Q)
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and M1(V,Q) as siblings of the classical Study quadric (see [52]) in a projective
space of dimension 7; also here there are many results scattered over the literature;
see [24, p. 463], [35, 3.4.2], [36, 6.2] and [51, Ch. 11].

Another step, still to be taken in a general context, is the inclusion of affine
metric geometry. Over the real numbers this task has been accomplished quite a
while ago and leads to what is called a homogeneous model. Related work can
be read off from [35, 3.4.2], [36, 6.2], [20] and [21]. However, the approach used
there relies on the signature of a real quadratic form, a notion which is no longer
available over an arbitrary field.

Last, but not least, also the general theory should allow for amplification. The
results in [48], where points and planes of a three-dimensional projective space
are used to represent motions of metric planes, suggest to investigate under which
conditions the subspaces Cl0(V,Q) and Cl1(V,Q) of the Clifford algebra Cl(V,Q)
can be made into a dual pair of vector spaces in some meaningful way.
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[14] R. Frank, H. Mäurer, Generators for the motion group of metric vector spaces.
Geom. Dedicata 22 (1987), 225–233.
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[42] G. Korchmáros, A. Sonnino, Old and recent results on finite Bolyai-Lobachevsky
planes. Mathematica 56(79) (2014), 59–73.

[43] T. Y. Lam, Introduction to Quadratic Forms over Fields, volume 67 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI 2005.

22



[44] P. Lounesto, Clifford Algebras and Spinors, volume 286 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge 2001.

[45] E. Molnár, Absolute circle (sphere) geometry by reflection. South Bohemia Math.
Letters 26 (2018), 45–61.

[46] W. Nolte, Relationen zwischen einfachen Isometrien in orthogonalen Gruppen. In:
H. J. Arnold, W. Benz, H. Wefelscheid, editors, Beiträge zur geometrischen Algebra
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