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Abstract

Invariant notions of a class of Segre varieti®g,(2) of PG(2" - 1, 2) that
are direct products oh copies of PG(]2), mbeing any positive integer, are
established and studied. We first demonstrate that thesésexihyperbolic
quadric that contain$)(2) and is invariant under its projective stabiliser
groupGs,,(2- By embedding PG(2- 1,2) into PG(2" - 1,4), a basis of
the latter space is constructed that is invariant ui@lgr, 2) as well. Such a
basis can be split into two subsets whose spans are eitHerreamplex-
conjugate subspaces accordingrais even or odd. In the latter case, these
spans can, in addition, be viewed as indicator sets Gfsg,)-invariant
geometric spread of lines of PA(2 1,2). This spread is also related with
aGg,e)-invariant non-singular Hermitian variety.

The casam = 3 is examined in detail to illustrate the theory. Here, the
lines of the invariant spread are found to fall into four itist orbits under
Gs)(2), While the points of PG(2) form five orbits.
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1 Introduction

The present note is concerned witlvariant notionsin the ambient space of cer-
tain Segre varieties over fields of characteristic two andparticular, over the
smallest Galois field,. The attributanvariant always refers to the stabiliser of
the Segre in the projective group of the ambient space.

Our text is organised as follows: In Section 2 we collect sdraekground
results about those Segre varietigs (F) which are products ah projective lines
over a fieldF. The next section presents mvariant quadricof a SegreS ) (F)
for m > 2 and a ground field of characteristic two (Theorem 1). This quadric
is regular, of maximal Witt index, contains the given Segmed its polarity is



the fundamental polarity of this Segre. The following seas deal with Segre
varietiesSm)(2) overF,. By extending the ground field of the ambient space
from F, to F, we find aninvariant basigTheorem 2) and aimvariant Hermitian
variety (Section 5). The theory splits accordingrass even or odd. In the latter
case there is amvariant geometric line spreafCorollary 1) which gives also
rise to a spread of the invariant quadric. We make use of awiqus results in
Section 6, where we describe certain line orbits and alltmoinits of the stabiliser
group of the Segr&3)(2) in terms of the invariant basis. This complements [14,
p. 82], where a completely fllerent description of these point orbits was given
without proof.

There is a widespread literature on closely related tofiles notions ofrank
of multi-dimensional array§3], secant varieties of Segre varietiggainly over
the complex numbers) [1], the very particular propertiexc@aftain Segre vari-
eties oveif, [24], [25], quantum codefl4], andentanglement of quantum bits
physics [10], [15], [19]. The few sources which are citedehewntain a wealth of
further references.

2 Notation and background results

Let F be a commutative field and &, Vs, ...,V bem > 1 two-dimensional
vector spaces ovedf. SoP(Vy) = PG(1 F) are projective lines ovef for k €
{1,2,...,m}. We consider the tensor prodL@)El1 V\ and the projective space
P((X)Ell Vi) = PG(2" - 1,F). The non-zero decomposable tensor$®f<":l Vi
determine th&egre varietysee [7], [17])

S11.1(F)={Fa®a® ®an|a e Vi\{0}}
e
of P(Q),, Vi) This Segre will also be denoted By (F).

We recall some facts which are well known from the classiaakd7, p. 143],
whereF is the field of complex numbers. They can immediately be edrover
to our more general settings. Given a bagf$,€!) for each vector spack,
kel 2,...,m}, the tensors

Eivigoin =60 @62@ - @™ with (i1iz....Im) € Im:= {0, 1" (1)

constitute a basis o@ﬁllvk. For any multi-indexi = (iy,i2,...,im) € In
the oppositemulti-index, in symbolsi’, is characterised by, # i for all

k € {1,2,...,m}. In other words, two multi-indices are opposite if, and only
if, their Hamming distance is maximal.



Let fy € GL(Vy) fork e {1,2,...,m}. Then
m
hefhe o feGL((X) Vi) (2)
k=1

denotes their Kronecker (tensor) product. Each permutatia Sy, gives rise to
linear bijectionsVx — V, sending €, ) to €7, "), Also, the sym-
metric groupSy, acts only, via o (i) = (i1, i2, ..., im) = (io-21), I0-12)s - - -5 lo-2m))-
There is a unique mapping

m
f, € GL(X) Vi) such thatE; - E,q) forall i € I, 3)
k=1

Clearly, thisf, depends on the chosen bases. The subgroup q@ri:_lvk) pre-
serving decomposable tensors is generated by all tranafans of the form (2)
and (3). Itinduces thstabiliser Gs, ) of the SegreSy,(F) within the projective
group PG, , V).

Each of the vector spac®g admits a symplectid.(e., non-degenerate and al-
ternating) bilinear form[-, ] : Vicx Vi — F. Consequentl;@)[(":1 V is equipped
with a bilinear form, again denoted as-], which is given by

m
[a1®a2®---®am,b1® b2®"'®bm] = n[ak,bk] for ay, by € Vi, (4)
k=1

and extending bilinearly. Like the forms & this bilinear form on®km: Vi is
unique up to a non-zero factor f In projective terms the form,[] on ), _, Vi
(or any proportional one) determines tlumdamental polarityf S (F), i. e, a
polarity which sendsS.,(F) to its dual. This polarity is orthogonal when is
even and Chaf # 2, but null otherwise: Indeed, it flices to consider the tensors
of our basis (1). Given j € I, we have

[E.Ei] = ]m[[e.‘f%e.‘{)]=(—1)m[Ei/,Ei]¢o, (5)
k=1
[Ei,E;] = O forall j=#i". (6)

Hence [, -] is symmetric whemm is even and Chdf # 2, and it is alternating
otherwise.

Let mbe even and Ch& # 2. ThenQ : ®Ell Vi - F: X [X, X]isa
quadratic form having Witt index"™2* and rank 2. So, the fundamental polarity
of the SegreS(F) is the polarity of a regular quadric. The Segre coincides wi
this quadric precisely whem = 2.

We use the same symbol for all these forms. Note tha¥,Sp(-]) = SL(Vi), since dimvy =
2forallk € {1,2,..., m}. This coincidence of a symplectic group with a special ling@up
underpins much of the mathematics used in this article.
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3 Theinvariant quadric

We now focus on the case whEras characteristic two. Here | is a symplectic
bilinear form on(X)El1 V| for anym > 1, whence the fundamental polarity of the
SegreS)(F) is always null. Furthermore, (5) simplifies to

m
(BBl = | |1, &1 = [Ei. B % 0 (7)
k=1
Proposition 1. Let m> 2 andCharF = 2. Then there is a unique quadratic form
Q: (X)L":l Vi — F satisfying the following two properties:
1. Q vanishes for all decomposable tensors.

2. The symplectic bilinear form, ] : ®Ell Vi X (X)L":l V¢ — F is the polar

form of Q.
Proof. (a) We denote by the set of all multi-indicesi{, iy, ...,in) € Iy with
i1 = 0. In terms of our basis (1) a quadratic form is given by
[Ei, XI[Ei, X]
Vv F: X .
® k™ .;‘o [Ei, Ei] ®

Given an arbitrary decomposable tensor we have

Z [E,a1® - ®an][Ei,a1® - ® an|
[Ei, Ei]

[€, al[el, ag] -+ [€]”, anl[€]”, an]
[ (1 e(l)] [ (m) e(lm)]

Qa1 ®---® am)

iElmo

i€lmo

o (6 anllel, ar] - [6, anl[el”, an]
2 [egl) e(l)] [eém) e(m)]

- 0,

where we used (7),l#o = 2™?1, m> 2, and ChaF = 2. This verifies property 1.
(b) Let j, k € | be arbitrary multi-indices. Polarising gives

Q(E; + Ex) + Q(Ej) + Q(Ex) Q(E; +Ex)+0+0
_ Z [Ei,Ej-i-Ek][Ei/,Ej-i-Ek]

[Ei, Ei]

ielmo

The numerator of a summand of the above sum can onlyfbereint from zero if
e {}J’, k'}andi’ € {}’, k’}. These conditions can only be met foe j’, whence in
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fact at most one summand, namely fog |,,,o the one withi = j, and forj” € I
the one withi = j’, can be non-zero. So

Q(Ej + Ex) + Q(Ej) + Q(Ex) = 0=[Ej, E(] for k=# ]
and, irrespective of whether= jori = j’, we have

[Ej, Ej + EyI[Ej. Ej + Ej]
[Ej, Ej]

Q(E; + Ej) + Q(Ej) + Q(Ej) = = [Ej. Ey].
But this implies that the quadratic for@ polarises to -], i. e., also the second
property is satisfied.

(c) Let Q be a quadratic form satisfying properties 1 and 2. Hence ofer p
form of Q—Q = Q+Qis zero. We conside¥ as a vector space over its subfielel
comprising all squares iR. So Q + Q) : ®,., Vk — F is a semilinear mapping
with respect to the field isomorphisfh — F° : x — x%; see,e. g, [9, p. 33].
The kernel ofQ + Q is a subspace Q@L V which contains all decomposable
tensors and, in particular, our basis (1). Hefe Q vanishes 0'@211 Vi, and
Q = Qas required. O

From (8) and (7), the quadratic for@can be written in terms of tensor coor-
dinatesx; € F as

Q( Z XJEJ) = Z [Ei, Eir]Xixi = l_[[egk),e(lk)] : Z Xi X/ . (9)
kel :

j€lm ielmo i€lmo

The previous results may be slightly simplified by taking gyaetic bases,
i.e, [l el = 1forallk e {1,2,...,m}, whence alsof;, E;] = 1 for alli € Iy,

Observe also that Proposition 1 fails to hold far= 1. A quadratic form
Q vanishing for all decomposable tensors\f is necessarily zero, since any
element ofV; is decomposable. Hence the polar form of suc) aannot be
non-degenerate.

Theorem 1. Let m> 2 andCharF = 2. There exists in the ambient space of the
SegreSm(F) a regular quadricQ(F) with the following properties:

1. The projective index @@(F) is 2™ — 1.

2. Q(F) is invariant under the group of projective collineationalsilising the
SegreSm)(F).

Proof. Any fy € GL(Vk), ke {1,2,...,m}, preserves the symplectic forr)-] on
V\ to within a non-zero factor. Any linear bijectiofy as in (3) is a symplectic
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transformation 0f®?:1 Vk. Hence any transformation from the grog,,)
preserves the symplectic form (4) up to a non-zero factons€quently, als@ is
invariant up to a non-zero factor under the actiogf, ).

From (9) the linear span of the tensdtgwith j ranging inly is a singular
subspace with respect Q. So the Witt index ofQ equals 21, because-|-]
being non-degenerate implies that a greater value is intgess

We conclude that the quadric with equati@QX) = 0 has all the required
properties. O

We henceforth cal(F) theinvariant quadricof the SegreS,(F). The case
m = 2 deserves special mention, as the S&gyrgF) coincides with its invariant
quadricQ(F) given by Q(3 jc1, X;Ej) = XooX11 + Xo1X10 = 0. This result parallels
the situation for ChaF # 2.

4 Theinvariant basis

In what followsF, will denote the Galois field witly elements. We adopt the
notation and terminology from Section 2, but we restrictselwves to the cade =
F,. Indeed, we shall always identif§y with the prime field off, = {0, 1, w, w?},
wherew? + w + 1 = 0. For eactk € {1,2,...,m} we fix a basis€Y, &V) so that
we obtain the tensor basis (1).

LetV be any vector space oves. ThenV can be embedded W := F;®z, V,
which is a vector space ovéy, by a —» 1® a; see, for example, [18, p. 263].
We shall not distinguish betweemand 1® a. Likewise, if f denotes a linear
mapping between vector spaces ovgrthen the uniqudéinear extension off to
the corresponding vector spaces avgwill also be written ad rather than ® f.
Similarly, we use the same symbol for a bilinear form érand its extension
to a bilinear form onW. After similar identifications, we have(V) c P(W),
PGL(V) c PGL(W), and so on. We make use of the usual terminology for real
and complex spaces also in our setting. We address the seaftarto bereal,
we speak oftomplex-conjugat&ectors, points, and subspaces. In particular, a
subspace is said to beal if it coincides with its complex-conjugate subspace.

Applying this extension to our vector spac¥g and their tensor product
(X)Ell Vi gives vector spaced/y andF, ®g, ((X)Ell Vy). The last vector space
can be identified withg)?:l W in a natural way, so that the Seglg)(F2) =:
Sm)(2) can be viewed as as subset®f;)(Fs) =1 Sm)(4). Likewise, we have
Q(Z) = Q(Fz) C Q(F4) =: Q(4)

From now on we shall make use of the following observation:ewthe pro-
jective lineP(Vy) is embedded iP(Wy) advantage can be taken from the fact
that there is ainiqueprojective basis consisting of the complex-conjugate pfir



points, while there is a choice of threefdrent pairs of points for a projective
basis ofP(Vy).

Theorem 2. For each ke {1,2,...,m} let F,ul’ andF,ul be the only two points
of the projective liné@(Wy) = PG(], 4) that are not contained i#(Vy) = PG(], 2).
Then

B = {Fu @uP @ @u™ | (iiz....im) € Im}

is a basis oﬁP(@L W) = PG(2" - 1,4) which is invariant, as a set, under the
stabiliser Gy, =: Gs,(2) Of the SegreS,(2).

Proof. We may assume that
u=el+we and ul¥ =6l + 02 =+ el +wed.  (20)
As u¥ andul are linearly independent, th& ensors

,,,,,, w=UPeuPe - eu™ with (iniz....im) € In (11)

constitute a basis qg):‘zl W, whence8B,, is a projective basis. The invariance

of B underGs,, () follows from the fact that the poinB,ul andF,ul are
determined uniquely up to relabelling. ]

We shall refer toB,, as theinvariant basisof the SegreS(2). In order
to describe the action of the stabiliser gra@p,, 2 of the SegreS)(2) on the
invariant basis we need a few technical preparations:

First, from now on the sdt, = {0, 1}™ of multi-indices will be identified with
the vector spacg?. Secondly, for any 2-dimensional vector spateverF, we
can define th&,-valued sign functiosgn, : GL(V) — F, to be 0 if f induces an
even permutation o¥ \ {0} and 1 otherwise.

Proposition 2. The stabiliser group &,,2) of the SegreS(y)(2) has the following
properties:

1. Let § € GL(Vy) forke {1,2,...,m} and write
s:=(sgn, f1,sgn fo, ..., sgn fy) € Fo. (12)

The collineation given by; ® f, ® - - - ® f,, sends any poinf;U; € B, to
the pointF4Ui,s € B

2. Gs,(2) acts transitively on the invariant bas,

3. Leto € Sy, be a permutation and defing &s in(3). Then § sends any
pointF4Ui € Bnhto F4U0-(i) € B



Proof. (a) Each mappind, € GL(Vx) c GL(W) induces a projectivity of the
projective lineP(Wy) = PG(J, 4) which stabilise®(Vy) = PG(], 2).

If sgn, fx = O then the restriction t®(Vy) is an even permutation, namely
either a permutation without fixed points or the identityR§N'y). In the first case
the characteristic polynomial df has two distinct zeros ovét,;, whence each
of the two pointsF,ul’ andF,ul remains fixed. In the second case all points of
P(Vy) are fixed.

If sgn, fx = 1 then fy gives a permutation dP(V) with precisely one fixed
point. Such anfy is an involution, whence the pointsul’ andF,ul are inter-
changed.

We infer from the above results thét® f, ® - - - ® f,, sends the point af,,
with multi-indexi € FJ' to the point of8,, with multi-index ( + s) € F7..

(b) Giveni, j € F}' we lets ;=i + ]. In order find a collineation frors,,, )
takingF,U; toF,4Uj, it suffices to choose forall € {1, 2, ..., m} somef, € GL(Vy)
with sgn, fx = s. This can clearly be done, so that® f, ® --- ® fy, yields a
collineation with the required properties.

(c) According to the (basis-dependent) definitionfofn (3), we have to con-
sider the linear bijectiongy — V4 sending €, €9) to (€™, "4y, By (10),
any such map senda{, u¥) to @Y™, u"!). Now f,(U;) = U, follows im-
mediately. O

Theparity of a pointF,U; € B, can be defined as the parity of the multi-index
i (i. e, itis even or odd according to the number of 1s among theesnrii). We
write B;, and B, for the set of base points with even and odd parity, respagtiv
Even though we can distinguish points of even and odd patigytd our fixed
basesd?, €¥), a change of bases in the vector spa¢esay alter the parity of
a point. Buthaving the same paritis an equivalence relation df,, with two
equivalence classes, namédy, and38;,, each of cardinality 21,

We define the Hamming distance betweét); andF,U; as the Hamming
distance of their multi-indicesand j. In particular, we speak adppositepoints
if i and ] are opposite. For each point &, there is a unique opposite point.
By (10) and (11) opposite points &, are complex-conjugate with respect to the
Baer subspack(®),., Vi) of (X, Wi). The opposite point t&,U; can also
be characterised as the only pait); € B, such thatJ;, U;] # 0. We remark
that the Hamming distance @), admits another description duef, ¢ Sm)(4).
The Hamming distance gb,q € 8, equals the number of lines on a shortest
polygonal path inSy)(4) from p to q.

From the proof of Proposition 2 and the above remarks we inmelgt obtain:

Theorem 3. The stabiliser group &,,«2) of the SegreS)(2) acts on the invari-
ant basisB, (via the multi-indices of its points) as the group of afftirse trans-
formations of FJ' having the formi — o(i) + s, whereo € S, ands € FJ\.
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Hence, Hamming distances @, are preserved under &, ), and the partition
Bm = By U B, is a Gg,, zy-invariant notion.

We now use the invariant basis for describing some o@&} »-invariant
subsets. In the following theorem we also make use of a patiproperty of
Segre varieties ovdfr,. Recall that (for an arbitrary ground fiel€) there are
preciselym generators through any poiptof the SegreS.,(F). They span the
(m-dimensionalyangent spacef S (F) at p. Thetangentines atp are the lines
throughp which lie in its tangent space. Fér = F, there are 2 — 1 tangents at
p. Precisely one of them does not lie in any of the{1)-dimensional subspaces
which are spanned by — 1 generators through. This line will be called the
distinguished tangerst p.

Theorem 4. The stabiliser group @,z of the SegreSy)(2) has the following
properties:

1. The union of the skew subspaspanB; andspans is a Gs,,-invariant
subset ofP(X), , Wh).

2. The union of the™! mutually skew real linés
F,U; v F U5 with i€ |m0 (13)

is a Gg,,2-invariant subset. Tha- 2™ real points on these lines comprise
an orbit of Gs,,(2)-

3. If mis even thespanB; andspanB,, are real subspaces. Each of the lines
from (13) is contained in precisely one of them.

4. If m is odd therspanB;, and spans,, are complex-conjugate subspaces.
All lines from (13) meetspanB;, and spanB;, at precisely one point, re-
spectively.

5. All distinguished tangents of the Sedig,(2) meetspanB;, andspans,, at
precisely one point, respectively.

Proof. Ad 1 and 2: The assertions on the invariance of spamn spans;, and
on the invariance of the union of all lines from (13) are a clirmnsequence of
Theorem 3.

We denote the set of all real points on the lines from (13Rby et j € Ino
and letp be an arbitrary real point on the lifigU; v F,U;. Any collineation from

2Any line joining complex-conjugate points is real (cf. theginning of Section 4). It carries
three real points. We use the symbolor the join of points.



Gs(2) takesp to some real point on a line from (13), whence the orbipaé
contained inRk.

Conversely, legg € R. So there is & € Iy with g € F4Uy Vv F4Uy. By
Theorem 3, there exists a coIIineationCBg(m)(z) which mapsF,U; to F,Uy and,
consequently, alsB,U; to F,Uy.. Furthermorep is mapped to some real poipt ~
on the lineF,Uy Vv F,Uy.. There exists; € GL(V1) with sgn, f; = 0. Thenu(l)
andu'” are eigenvectors df with eigenvaluest andA?, whered € {w, w? (See
the proof of Proposition 2.) The linear bijectidn:= f; ® idy,®--- ® idy,, has
Uy andUy as eigenvectors with eigenvalueanda?, respectively, due tky = 0.
Thus the collineation arising frorhinduces a non-identical even permutation on
the three real points of the lirig,U, v F4U,.. Such a permutation has only one
cycle. So one of, f2 or f3yields a collineation fronGs, 2 which mapspto g.

Ad 3 and 4: Opposite points @, are complex-conjugate and vice versa.
Such points share the same parity fioeven, but have dierent parity form odd.

Ad 5' First, we exhibit the distinguished tangentof the SegreS(m)(Z) at
we select One more real pOInt, nam@on’l’]_’m’l, F, El,O,l,...,l; oL B El,l,...,l,O for
facilitating our subsequent reasoning. So, the distingadsangent contains the
real point

Fa(Eo11..10+ E1o1.1+ -+ E1110) (14)

By (10), we havel) = w?ul + wul? andeld = u¥d + u¥ forallk e {1,2,..., m).
SO0E1s1..1= e, Uiand

Eoa1

.....

, 2 for i;=0
1= ) XU with XY :{Z Y

i€ln
Mutatis mutandiswe obtain linear combinations f&10;. 1,..., E11..10 With
codficientsx?, ..., X" € {w? w}. Summing up gives

Eo11.1+E101. 1+ -+ E11 10= Z yiUi, (15)

where
V=l + 0+ 0Pttt tw.
# of zeros ini # of ones ini

There are two cases:
m even:Due to Chaif, = 2 we havey; = 0 for all i with even parity and
yi = w? + w = 1 for all i with odd parity. Sor meets spa,, at the point (14)

.....

of T with spanB;.

10



m odd: Due to ChafF, = 2 we havey, = ? for all i with even parity and
yi = w for all i with odd parity. SOT meets spass;, at the point

F4(Za)2u]') = F4(Z Uj), (16)
J J

wherej ranges over all elements bf with even parity, and the subspace sggn
at the pointF4 (2 wUy) = F4(3« Uk), wherek ranges over all elements Qf with
odd parity.

In either case the two points of intersection are uniqueabse spa#; and
spanB,, are skew.

Next, we consider an arbitrary distinguished tangent oSibgre. As all points
of the Segre comprise a point orbit G, (), also all distinguished tangents are
in one line orbit ofGs,,2). So, all distinguished tangents share the properties of
the tangent. ]

Any pair of skew and complex- conjugate subspace@(@)k 1 W) deter-
mines ageometric line spreadf P((X)k 1 V). This spread comprises all real lines
which meet one of the subspaces (and hence both of them inlexopnjugate
points). Any of these subspaces is calledradicator setof the spread. See [2,
p. 74] and [23, p. 29]. So, part of Theorem 4 can be reformdlagefollows:

Corollary 1. If m is odd then the complex-conjugate subspasesB,, and
spanB are indicator sets of a &, -invariant geometric line spread” of
P((X)k 1Vk) = PG(2" - 1, 2). All distinguished tangents of the Sed¥g,(2) and
all lines given by(13) belong to this spread.

It is now a straightforward task to establish connectiortsvben the funda-
mental polarity of the Segr§(4) and the quadriQ(4) which arises according
to Theorem 1. The reader will easily verify the following: & fundamental po-
larity maps each of the lines from (13) to the span of the ramgiones. For any
evenmthe subspaces sp#, and spar$, are interchanged under the fundamen-
tal polarity, whereas fom odd each of them is invariant (totally isotropic). The
subspaces sp#f, and spai$3;, are contained irQ(4) precisely whem > 2 is
odd.

Examplel. Letm = 2. The Segre;1(2) is a hyperbolic quadric df(V,®V,) =
PG(3 2). The 15 points of this projective space fall into two oshihder the action
of G1.1(2): The first orbitisS;1(2) (nine points), the remaining six points form the
second orbit. It comprises the real points of the lines $jaand sparB,,,. There
are nine distinguished tangents of the quadric. Togetlesrfiirm the hyperbolic
linear congruence of lines which arises by joining everypeant of sparB;, with
every real point of spafi....
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The previous example is clearly just an easy exercise, aadiitl be mastered
without our results about the general case.

5 Theinvariant Hermitian variety

The symplectic form-[-] on (X)L":l V\ can be extended in exactly two ways to a
non-degenerate sesquilinear féron (), , Wi. The bilinear extension is sym-
plectic. In accordance with the notation used elsewheigaiso denoted by,[-].
The only other extension is sesquilinear with respect toRitmdenius automor-
phismz — 7 of F,. Such Hermitian extension will be written as-Jy. We
have B

[X,YIn = [X,Y] (17)

for all tensorsX,Y € ),., Wk, whereX denote the complex-conjugate tensor
of X. While [-,-] describes the fundamental polarity of the Seg(4), the
Hermitian sesquilinear form,[]y yields a unitary polarity otP((X)?:l W,) and,
moreover, the Hermitian varietyf comprising all its absolute points. By its defi-
nition, H is aGg,z-invariant notion, whence we call it thevariant Hermitian
varietyof the SegreS,(2). Note thatH, like the invariant basis and the invariant
line spread, is an invariant notion only 8y (2), but not forSy)(4).

We remark that the invariant bas#, is self-polar with respect to the unitary
polarity given by [, -]4. Indeed, given, j € F}' we have

m m

(U, Uln = | |ul8¥] = @+ ] [0, 8¥ =1, (18)
k=1 k=1
m

[U,UTw = []u®¥=0 forall i=j, (19)
k=1

since, for exampley # j; impliesu(’ = T, whence ¢, ] = 0.

The following Proposition establishes a link among the iirar line spread
from Corollary 1, the invariant quadri@(2), and the invariant Hermitian variety
H.

Proposition 3. Let m> 2 be odd. A line L of the invariant geometric line spread
L is a generator of the invariant quadr@(4) if, and only if, the intersection point
L N spanB;, belongs to the invariant Hermitian variet{. Otherwise that line L
is a bisecant 08(4), whence it has no points in common wi{R).

3We assume such forms to be linear in the right and semilimetei left argument.
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Proof. Suppose that N spanB}, = F,X. By a remark at the end of Section 4,
we haveF,X e spanB: c Q(4) andF,X € spanB;, c Q(4). So the lineL =
F4X Vv F4X is either a generator or a bisecant@#). The first possibility occurs
precisely wherF,X lies in the tangent hyperplane @(4) atF,X. Employing
(17), this in turn is equivalent to & [X, X] = [X, X]y which characteriseB,X
as a point ofH. ]

The above Proposition is a special case of [11, Theorem 1padrigs which
admit a spread of lines. In our context the invariant spreaa Corollary 1 yields
a spread of lines 0Q(2), since oveir, each line of the invariant spread is either
external to or contained in that quadric.

6 TheSegrevariety S111(2)

In this section we exhibit the ambient spa@/; ® V., ® V3) = PG(7, 2) of the
SegreS;111(2). This space has’2- 1 = 255 points. Furthermore, we have the
cardinalities #111(2) = 3% = 27, #2(2) = (22 + 1)(2* - 1) = 135 (see [16,
Theorem 5.21]), and £ = 255/3 = 85.

Proposition 4. Under the action of the stabiliser groupsG,) of the Segre
S111(2) the lines of the invariant spread of P(V, ® V, ® V3) = PG(7,2) fall
into four orbits L1, £,, L3, L4. In terms of the invariant basi®; the following
characterisation holds: A line fronL is in orbit £, if, and only if, its (imagi-
nary) point of intersection with the subspaggans; lies in 4 - r planes of the
tetrahedrons;.

Proof. (a) Throughout this proof the pointwise stabiliser and tadbiiser of 53

in the groupGg, ,,(2) are abbreviated b/, andG*, respectively. We observe
that G, acts transitively on the points of the Segse;:(2): We fix the point
FoE1 = Fao(éD © €2 © €¥). Given any point of the Segre, s@A, where
A = a; ® &, ® ag, there are linear bijectionf € GL(V() satisfying sgaf, = 0
andel¥ - a, fork = {1,2,3}. Sof; ® f, ® s induces a collineation which sends
F2E111t0 F2 A and belongs t&,, by (12).

We write M;, r € {1, 2,3, 4}, for the subset of spas; = PG(3 4) comprising
all points which lie in precisely 4 r planes of the tetrahedraf}. So we have
#M, = 4 vertices, M, = 3- 6 = 18 edge points, ¥z = 4- 9 = 36 face points,
and #M, = 27 general points. Clearly, th&"-orbit of any point from spa; is
contained in one of the sef¥,.

(b) We show thaiM, is an orbit undeG/,: By (16), the distinguished tangent
of the Segre ar,Eq 11 meets Spaﬁg at the p0|ntp = F4(U000 + Ug11 + Uqo1 +
U110) € Ms. We infer from the transitive action @;W on the Segres; 11(2) that
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all distinguished tangents meet si#inin points of M,. Since #5111(2) = 27 =
#M.,, the groupG;,, acts transitively on\,.

(c) Any edge of8B] contains precisely three points #fl,. We obtain all of
them by projecting\, from the opposite edge, when&,, acts transitively on
the set of these three points. Likewi§,, acts transitively on the nine points of
Mz in any face of53.

(d) We know from Proposition 2 th&* acts transitively on the set of vertices
of 83 via translations — i+son multi-indices. From Theorem 3 tl& -stabiliser
of F4Uoqo acts transitively on the remaining vertices®f via permutations
o (i) on multi-indices. Together with our previous results tlmsans that each of
the four subsetd; is aG*-orbit. Consequently, each of the sdisis contained
in an orbit under the action @s, ,,(2) on the line spread.

Any collineation fromGg,,,2) \ G also preserves each of the sdis as it
commutes with the Baer involution of PG@) fixing P(V, ® V, ® V3) = PG(7, 2)
pointwise. This completes the proof. O

From (18) and (19) the equation of the Hermitian varigfyn spanB; with
respect to the basis)foo, Uo11, U101, U110) reads

X(3)00 + Xgll + XiOI + Xilo =0.

Because of® = 1 for allz € F, \ {0}, we getH N spanB; = M, U M,. By
Proposition 3, the lines frond, U £, are on the invariant quadri@(4). More
precisely, the lines from, are those generators @i(4) which do not contain
any point of the Segré&;;1(2), whereas the lines from, are the distinguished
tangents ofS; 1 1(2). Figure 1, left, displays the polar space (point-line incidence

)

7
/i)
A\ n
REA
A

Figure 1: The Hermitian varietypl, U M, (left) and the Segré&; 11(2) (right).

4The style of our figure is taken from [21, p. 61].
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structure) orH{. This Hermitian variety consists of 45 points and carriesir2gs
(represented by segments and curves), with five points ofiremgnd three lines
on any point. The 27 points represented by small circleshareet fromM,, the
remaining 18 points are represented by bullets and belongtoThe 27 points
of M, can be viewed as skew projectiorof the SegreS; 1,(2) (Figure 1, right)
into H along the invariant line spread. Under this projectioninebrity of points
is being preserved.

The lines fromZ£; are the four lines from (13). Like the remaining 36 lines
from L3 they are exterior lines (ovéh) of the invariant quadri@(2).

Proposition 5. Under the action of the stabiliser groupsG,;) of the Segre
S11.1(2) the points ofP(V1®V,®V3) = PG(7, 2) fall into five orbitsO1, O,, . . ., Os.
For r € {1, 2, 3} the points ofO, are precisely the real points on the lines_gf.
The orbitO, comprises those real points on the lines frginwhich are gf the
SegreS;11(2), wherea0s equals the Segr8;.11(2).

Proof. Itis clear thas is an orbit undeGg, , ,(2). The points ofD; form an orbit
according to Theorem 4. In order to show tBatandO; are orbits, we shall select
one line of£, and L3, respectively. By Proposition 4, it fices then to show that
all real points of this line are in one orbit. This task will kecomplished with
mappingsfx € GL(Vi), k € {1,2, 3}, given byel? s &9, &9 s &9 + el From
(10), we havef (uY) = wul and f(UY) = w2ul.

Let L, € £, be the line joiningF4(Uggo + Uo11) € My with its complex-
conjugate pointfy(Us1; + Uigg). The mappingf; ® idy, ® idy, hasUgg + Uoi1
as eigentensor with eigenvalue Its complex-conjugate tensor is therefore an
eigentensor with eigenvalue?. From the proof of Proposition 2, this implies that
f; ® idy, ®idy, induces a non-trivial even permutation on the set of reahsoi
of L,. So, under the powers of this permutation the three realtpahlL, are
permuted in one cycle.

Letl; € L3 be the line jOiningF4(U011+ Uior+ UllO) € Ms with its CompIeX-
conjugate point. Heré ® f, ® f3 possessedg;; + Ui+ Uiip @s eigentensor with
eigenvaluev® = w?. Its complex-conjugate tensor is therefore an eigentemior
eigenvaluev. Now the assertion follows as above.

The distinguished tangent of the Sed¥e; 1(2) at the pointF,E,;; contains
two precisely two points af4. From (14), these points af®(Eo11 + E101 + E110)
ansz(E111+ Eo11+ E101+ EllO)- Let 01 € GL(V]_) be defined bpél) = eél) + egl),
e s &Y. Theng, ® idy, ®idy, will interchange these two points, whence we
may argue as before. O

Let us close this section with a few remarks: The orbits ofstladiliser group
Gs, ,,(2) are described (without proof) in a completelytdrent way in [14, p. 82].
Thea, b, ¢, d, e-orbits from there are in our terminology the séts(27 points) 0,
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(54 points) 03 (108 points)0,4 (54 points), ana); (12 points), respectively. The
unionO, U O4 U Os is the invariant quadri@(2). With respect to the tensor basis
(1) the equation of(2) reads

Xo00X111 + X001X110 + X010X101 + X011X%100 = O. (20)

The square of the left hand side of (2000ayley’s hyperdeterminawnf the 3x3x3
array (i)ici,; see [14, Theorem 5.45] and compare with [12] and [13].

By virtue of the fundamental polarity o%,,1(2), Proposition 5 provides a
classification of the hyperplanes®fV; ® V, ® V3) under the action of the group
Gs,..2- Moreover, it gives a classification of trgeometric hyperplanegor
primeg of S;111(2), since any geometric hyperplane of this Segre arises-as i
tersection with a unique hyperplane of the ambient spack [BRis is a rather
particular property of Segre varieti€t,(2) which is not shared by Segre vari-
etiesSm(F) in general [4].

The SegreS;11(2) (as a point-line geometry) appears in the literatureain v
ious guises, namely as the §27;) Gray configuration20] or as thesmallest
slim dense near hexag@@]. It is also a point model of thehain geometrpased
on theF,-algebraF, x F, xF,, the chains being the twisted cubics811(2) (i. e.
triads of points with mutual Hamming distance 3); see [34)5or [5, p. 272].
We add in passing that the tangent lines of these twisteasale just our distin-
guished tangents @&, 11(2).

7 Conclusion

We established several invariant notions for Segre vas&l,(2) over the field
F,. Form < 3 these invariants provide ficient information for the classification
of the points and hyperplanes of the ambient spacggf2). For larger values
of mthe situation seems to be much more intricate. For examgienwm is odd
then the lines of the invariant spread will fall into at least* orbits, as follows
from a straightforward generalisation of Proposition 4wduer, this gives only a
lower bound for the number of orbits. Indeed, foe= 3 there are Bdistinguished
tangents ofS)(2), but 3" 1 points of sparB;, which belong to no face of the
simplex 8. These two cardinalities coincide only whem = 3, whence for
all oddm > 3 we no longer have a one-one correspondence between the set o
distinguished tangents and the set of all points of $jawhich belong to no face
of B;.
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