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Abstract

Invariant notions of a class of Segre varietiesS(m)(2) of PG(2m − 1, 2) that
are direct products ofmcopies of PG(1, 2), mbeing any positive integer, are
established and studied. We first demonstrate that there exists a hyperbolic
quadric that containsS(m)(2) and is invariant under its projective stabiliser
groupGS(m)(2). By embedding PG(2m − 1, 2) into PG(2m − 1, 4), a basis of
the latter space is constructed that is invariant underGS(m)(2) as well. Such a
basis can be split into two subsets whose spans are either real or complex-
conjugate subspaces according asm is even or odd. In the latter case, these
spans can, in addition, be viewed as indicator sets of aGS(m)(2)-invariant
geometric spread of lines of PG(2m − 1, 2). This spread is also related with
aGS(m)(2)-invariant non-singular Hermitian variety.

The casem = 3 is examined in detail to illustrate the theory. Here, the
lines of the invariant spread are found to fall into four distinct orbits under
GS(3)(2), while the points of PG(7, 2) form five orbits.
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1 Introduction

The present note is concerned withinvariant notionsin the ambient space of cer-
tain Segre varieties over fields of characteristic two and, in particular, over the
smallest Galois fieldF2. The attributeinvariant always refers to the stabiliser of
the Segre in the projective group of the ambient space.

Our text is organised as follows: In Section 2 we collect somebackground
results about those Segre varietiesS(m)(F) which are products ofmprojective lines
over a fieldF. The next section presents aninvariant quadricof a SegreS(m)(F)
for m ≥ 2 and a ground fieldF of characteristic two (Theorem 1). This quadric
is regular, of maximal Witt index, contains the given Segre,and its polarity is
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the fundamental polarity of this Segre. The following sections deal with Segre
varietiesS(m)(2) overF2. By extending the ground field of the ambient space
from F2 to F4 we find aninvariant basis(Theorem 2) and aninvariant Hermitian
variety (Section 5). The theory splits according asm is even or odd. In the latter
case there is aninvariant geometric line spread(Corollary 1) which gives also
rise to a spread of the invariant quadric. We make use of our previous results in
Section 6, where we describe certain line orbits and all point orbits of the stabiliser
group of the SegreS(3)(2) in terms of the invariant basis. This complements [14,
p. 82], where a completely different description of these point orbits was given
without proof.

There is a widespread literature on closely related topics,like notions ofrank
of multi-dimensional arrays[8], secant varieties of Segre varieties(mainly over
the complex numbers) [1], the very particular properties ofcertain Segre vari-
eties overF2 [24], [25], quantum codes[14], andentanglement of quantum bitsin
physics [10], [15], [19]. The few sources which are cited here contain a wealth of
further references.

2 Notation and background results

Let F be a commutative field and letV1,V2, . . . ,Vm be m ≥ 1 two-dimensional
vector spaces overF. SoP(Vk) = PG(1, F) are projective lines overF for k ∈
{1, 2, . . . ,m}. We consider the tensor product

⊗m
k=1 Vk and the projective space

P
(⊗m

k=1 Vk
)
= PG(2m − 1, F). The non-zero decomposable tensors of

⊗m
k=1 Vk

determine theSegre variety(see [7], [17])

S 1,1,...,1︸︷︷︸
m

(F) =
{
Fa1 ⊗ a2 ⊗ · · · ⊗ am | ak ∈ Vk \ {0}

}

of P
(⊗m

k=1 Vk
)
. This Segre will also be denoted byS(m)(F).

We recall some facts which are well known from the classical case [7, p. 143],
whereF is the field of complex numbers. They can immediately be carried over
to our more general settings. Given a basis (e(k)

0 , e
(k)
1 ) for each vector spaceVk,

k ∈ {1, 2, . . . ,m}, the tensors

Ei1,i2,...,im := e(1)
i1
⊗ e(2)

i2
⊗ · · · ⊗ e(m)

im
with (i1, i2, . . . , im) ∈ Im := {0, 1}m (1)

constitute a basis of
⊗m

k=1 Vk. For any multi-indexi = (i1, i2, . . . , im) ∈ Im

the oppositemulti-index, in symbolsi′, is characterised byik , i′k for all
k ∈ {1, 2, . . . ,m}. In other words, two multi-indices are opposite if, and only
if, their Hamming distance is maximal.
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Let fk ∈ GL(Vk) for k ∈ {1, 2, . . . ,m}. Then

f1 ⊗ f2 ⊗ · · · ⊗ fm ∈ GL
( m⊗

k=1

Vk

)
(2)

denotes their Kronecker (tensor) product. Each permutationσ ∈ Sm gives rise to
linear bijectionsVk → Vσ(k) sending (e(k)

0 , e
(k)
1 ) to (e(σ(k))

0 , e(σ(k))
1 ). Also, the sym-

metric groupSm acts onIm viaσ(i) = σ(i1, i2, . . . , im) = (iσ−1(1), iσ−1(2), . . . , iσ−1(m)).
There is a unique mapping

fσ ∈ GL
( m⊗

k=1

Vk

)
such thatEi 7→ Eσ(i) for all i ∈ Im. (3)

Clearly, thisfσ depends on the chosen bases. The subgroup of GL
(⊗m

k=1 Vk
)

pre-
serving decomposable tensors is generated by all transformations of the form (2)
and (3). It induces thestabiliser GS(m)(F) of the SegreS(m)(F) within the projective
group PGL

(⊗m
k=1 Vk

)
.

Each of the vector spacesVk admits a symplectic (i. e., non-degenerate and al-
ternating) bilinear form1 [·, ·] : Vk ×Vk → F. Consequently,

⊗m
k=1 Vk is equipped

with a bilinear form, again denoted as [·, ·], which is given by

[
a1 ⊗ a2 ⊗ · · · ⊗ am, b1 ⊗ b2 ⊗ · · · ⊗ bm

]
:=

m∏

k=1

[ak, bk] for ak, bk ∈ Vk, (4)

and extending bilinearly. Like the forms onVk this bilinear form on
⊗m

k=1 Vk is
unique up to a non-zero factor inF. In projective terms the form [·, ·] on

⊗m
k=1 Vk

(or any proportional one) determines thefundamental polarityof S(m)(F), i. e., a
polarity which sendsS(m)(F) to its dual. This polarity is orthogonal whenm is
even and CharF , 2, but null otherwise: Indeed, it suffices to consider the tensors
of our basis (1). Giveni, j ∈ Im we have

[Ei, Ei′ ] =
m∏

k=1

[e(k)
ik
, e(k)

i′k
] = (−1)m[Ei′ , Ei] , 0, (5)

[Ei, E j] = 0 for all j , i′. (6)

Hence [·, ·] is symmetric whenm is even and CharF , 2, and it is alternating
otherwise.

Let m be even and CharF , 2. ThenQ :
⊗m

k=1 Vk → F : X 7→ [X, X] is a
quadratic form having Witt index 2m−1 and rank 2m. So, the fundamental polarity
of the SegreS(m)(F) is the polarity of a regular quadric. The Segre coincides with
this quadric precisely whenm= 2.

1We use the same symbol for all these forms. Note that Sp(Vk, [·, ·]) = SL(Vk), since dimVk =

2 for all k ∈ {1, 2, . . . ,m}. This coincidence of a symplectic group with a special linear group
underpins much of the mathematics used in this article.
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3 The invariant quadric

We now focus on the case whenF has characteristic two. Here [·, ·] is a symplectic
bilinear form on

⊗m
k=1 Vk for anym ≥ 1, whence the fundamental polarity of the

SegreS(m)(F) is always null. Furthermore, (5) simplifies to

[Ei, Ei′ ] =
m∏

k=1

[e(k)
0 , e

(k)
1 ] = [Ei′ , Ei] , 0. (7)

Proposition 1. Let m≥ 2 andCharF = 2. Then there is a unique quadratic form
Q :
⊗m

k=1 Vk → F satisfying the following two properties:

1. Q vanishes for all decomposable tensors.

2. The symplectic bilinear form[·, ·] :
⊗m

k=1 Vk ×
⊗m

k=1 Vk → F is the polar
form of Q.

Proof. (a) We denote byIm,0 the set of all multi-indices (i1, i2, . . . , im) ∈ Im with
i1 = 0. In terms of our basis (1) a quadratic form is given by

Q :
m⊗

k=1

Vk → F : X 7→
∑

i∈ Im,0

[Ei, X][ Ei′ , X]
[Ei, Ei′]

. (8)

Given an arbitrary decomposable tensor we have

Q(a1 ⊗ · · · ⊗ am) =
∑

i∈ Im,0

[Ei, a1 ⊗ · · · ⊗ am][ Ei′ , a1 ⊗ · · · ⊗ am]
[Ei, Ei′]

=
∑

i∈ Im,0

[e(1)
0 , a1][e(1)

1 , a1] · · · [e
(m)
0 , am][e(m)

1 , am]

[e(1)
0 , e

(1)
1 ] · · · [e(m)

0 , e
(m)
1 ]

= 2m−1 [e(1)
0 , a1][e(1)

1 , a1] · · · [e
(m)
0 , am][e(m)

1 , am]

[e(1)
0 , e

(1)
1 ] · · · [e(m)

0 , e
(m)
1 ]

= 0,

where we used (7), #Im,0 = 2m−1, m≥ 2, and CharF = 2. This verifies property 1.
(b) Let j, k ∈ I be arbitrary multi-indices. PolarisingQ gives

Q(E j + Ek) + Q(E j) + Q(Ek) = Q(E j + Ek) + 0+ 0

=
∑

i∈ Im,0

[Ei, E j + Ek][ Ei′ , E j + Ek]

[Ei, Ei′]
.

The numerator of a summand of the above sum can only be different from zero if
i ∈ { j′, k′} andi′ ∈ { j′, k′}. These conditions can only be met fork = j′, whence in
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fact at most one summand, namely forj ∈ Im,0 the one withi = j, and for j′ ∈ Im,0

the one withi = j′, can be non-zero. So

Q(E j + Ek) + Q(E j) + Q(Ek) = 0 = [E j, Ek] for k , j′

and, irrespective of whetheri = j or i = j′, we have

Q(E j + E j′) + Q(E j) + Q(E j′) =
[E j, E j + E j′ ][ E j′ , E j + E j′ ]

[E j, E j′ ]
= [E j, E j′ ].

But this implies that the quadratic formQ polarises to [·, ·], i. e., also the second
property is satisfied.

(c) Let Q̃ be a quadratic form satisfying properties 1 and 2. Hence the polar
form of Q−Q̃ = Q+Q̃ is zero. We considerF as a vector space over its subfieldF�

comprising all squares inF. So (Q+ Q̃) :
⊗m

k=1 Vk → F is a semilinear mapping
with respect to the field isomorphismF → F� : x 7→ x2; see,e. g., [9, p. 33].
The kernel ofQ + Q̃ is a subspace of

⊗m
k=1 Vk which contains all decomposable

tensors and, in particular, our basis (1). HenceQ + Q̃ vanishes on
⊗m

k=1 Vk, and
Q = Q̃ as required. �

From (8) and (7), the quadratic formQ can be written in terms of tensor coor-
dinatesxj ∈ F as

Q
( ∑

j∈ Im

xjE j

)
=
∑

i∈ Im,0

[Ei, Ei′]xixi′ =

m∏

k=1

[e(k)
0 , e

(k)
1 ] ·

∑

i∈ Im,0

xixi′ . (9)

The previous results may be slightly simplified by taking symplectic bases,
i. e., [e(k)

0 , e
(k)
1 ] = 1 for all k ∈ {1, 2, . . . ,m}, whence also [Ei, Ei′] = 1 for all i ∈ Im.

Observe also that Proposition 1 fails to hold form = 1. A quadratic form
Q vanishing for all decomposable tensors ofV1 is necessarily zero, since any
element ofV1 is decomposable. Hence the polar form of such aQ cannot be
non-degenerate.

Theorem 1. Let m≥ 2 andCharF = 2. There exists in the ambient space of the
SegreS(m)(F) a regular quadricQ(F) with the following properties:

1. The projective index ofQ(F) is 2m−1 − 1.

2. Q(F) is invariant under the group of projective collineations stabilising the
SegreS(m)(F).

Proof. Any fk ∈ GL(Vk), k ∈ {1, 2, . . . ,m}, preserves the symplectic form [·, ·] on
Vk to within a non-zero factor. Any linear bijectionfσ as in (3) is a symplectic
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transformation of
⊗m

k=1 Vk. Hence any transformation from the groupGS(m)(F)

preserves the symplectic form (4) up to a non-zero factor. Consequently, alsoQ is
invariant up to a non-zero factor under the action ofGS(m)(F).

From (9) the linear span of the tensorsE j with j ranging inIm,0 is a singular
subspace with respect toQ. So the Witt index ofQ equals 2m−1, because [·, ·]
being non-degenerate implies that a greater value is impossible.

We conclude that the quadric with equationQ(X) = 0 has all the required
properties. �

We henceforth callQ(F) the invariant quadricof the SegreS(m)(F). The case
m = 2 deserves special mention, as the SegreS1,1(F) coincides with its invariant
quadricQ(F) given byQ(

∑
j∈I2

xjE j) = x00x11 + x01x10 = 0. This result parallels
the situation for CharF , 2.

4 The invariant basis

In what followsFq will denote the Galois field withq elements. We adopt the
notation and terminology from Section 2, but we restrict ourselves to the caseF =
F2. Indeed, we shall always identifyF2 with the prime field ofF4 = {0, 1, ω, ω2},
whereω2 + ω + 1 = 0. For eachk ∈ {1, 2, . . . ,m} we fix a basis (e(k)

0 , e
(k)
1 ) so that

we obtain the tensor basis (1).
Let V be any vector space overF2. ThenV can be embedded inW := F4⊗F2 V,

which is a vector space overF4, by a 7→ 1 ⊗ a; see, for example, [18, p. 263].
We shall not distinguish betweena and 1⊗ a. Likewise, if f denotes a linear
mapping between vector spaces overF2, then the uniquelinear extension off to
the corresponding vector spaces overF4 will also be written asf rather than 1⊗ f .
Similarly, we use the same symbol for a bilinear form onV and its extension
to a bilinear form onW. After similar identifications, we haveP(V) ⊂ P(W),
PGL(V) ⊂ PGL(W), and so on. We make use of the usual terminology for real
and complex spaces also in our setting. We address the vectors of V to bereal,
we speak ofcomplex-conjugatevectors, points, and subspaces. In particular, a
subspace is said to bereal if it coincides with its complex-conjugate subspace.

Applying this extension to our vector spacesVk and their tensor product⊗m
k=1 Vk gives vector spacesWk andF4 ⊗F2

(⊗m
k=1 Vk

)
. The last vector space

can be identified with
⊗m

k=1 Wk in a natural way, so that the SegreS(m)(F2) =:
S(m)(2) can be viewed as as subset ofS(m)(F4) =: S(m)(4). Likewise, we have
Q(2) := Q(F2) ⊂ Q(F4) =: Q(4).

From now on we shall make use of the following observation: When the pro-
jective lineP(Vk) is embedded inP(Wk) advantage can be taken from the fact
that there is auniqueprojective basis consisting of the complex-conjugate pairof
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points, while there is a choice of three different pairs of points for a projective
basis ofP(Vk).

Theorem 2. For each k∈ {1, 2, . . . ,m} let F4u(k)
0 andF4u(k)

1 be the only two points
of the projective lineP(Wk) = PG(1, 4) that are not contained inP(Vk) = PG(1, 2).
Then

Bm :=
{
F4u(1)

i1
⊗ u(2)

i2
⊗ · · · ⊗ u(m)

im
| (i1, i2, . . . , im) ∈ Im

}

is a basis ofP
(⊗m

k=1 Wk
)
= PG(2m − 1, 4) which is invariant, as a set, under the

stabiliser GS(m)(F2) =: GS(m)(2) of the SegreS(m)(2).

Proof. We may assume that

u(k)
0 = e(k)

0 + ωe(k)
1 and u(k)

1 = e(k)
0 + ω

2e(k)
1 = (e(k)

0 + e(k)
1 ) + ωe(k)

1 . (10)

As u(k)
0 andu(k)

1 are linearly independent, the 2m tensors

Ui1,i2,...,im := u(1)
i1
⊗ u(2)

i2
⊗ · · · ⊗ u(m)

im
with (i1, i2, . . . , im) ∈ Im (11)

constitute a basis of
⊗m

k=1 Wk, whenceBm is a projective basis. The invariance
of Bm underGS(m)(2) follows from the fact that the pointsF4u(k)

0 andF4u(k)
1 are

determined uniquely up to relabelling. �

We shall refer toBm as theinvariant basisof the SegreS(m)(2). In order
to describe the action of the stabiliser groupGS(m)(2) of the SegreS(m)(2) on the
invariant basis we need a few technical preparations:

First, from now on the setIm = {0, 1}m of multi-indices will be identified with
the vector spaceFm

2 . Secondly, for any 2-dimensional vector spaceV overF2 we
can define theF2-valued sign functionsgn2 : GL(V) → F2 to be 0 if f induces an
even permutation ofV \ {0} and 1 otherwise.

Proposition 2. The stabiliser group GS(m)(2) of the SegreS(m)(2) has the following
properties:

1. Let fk ∈ GL(Vk) for k ∈ {1, 2, . . . ,m} and write

s := (sgn2 f1, sgn2 f2, . . . , sgn2 fm) ∈ Fm
2 . (12)

The collineation given by f1 ⊗ f2 ⊗ · · · ⊗ fm sends any pointF4Ui ∈ Bm to
the pointF4Ui+s ∈ Bm.

2. GS(m)(2) acts transitively on the invariant basisBm.

3. Letσ ∈ Sm be a permutation and define fσ as in (3). Then fσ sends any
pointF4Ui ∈ Bm to F4Uσ(i) ∈ Bm.
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Proof. (a) Each mappingfk ∈ GL(Vk) ⊂ GL(Wk) induces a projectivity of the
projective lineP(Wk) = PG(1, 4) which stabilisesP(Vk) = PG(1, 2).

If sgn2 fk = 0 then the restriction toP(Vk) is an even permutation, namely
either a permutation without fixed points or the identity onP(Vk). In the first case
the characteristic polynomial offk has two distinct zeros overF4, whence each
of the two pointsF4u(k)

0 andF4u(k)
1 remains fixed. In the second case all points of

P(Vk) are fixed.
If sgn2 fk = 1 then fk gives a permutation ofP(Vk) with precisely one fixed

point. Such anfk is an involution, whence the pointsF4u(k)
0 andF4u(k)

1 are inter-
changed.

We infer from the above results thatf1 ⊗ f2 ⊗ · · · ⊗ fm sends the point ofBm

with multi-index i ∈ Fm
2 to the point ofBm with multi-index (i + s) ∈ Fm

2 .
(b) Giveni, j ∈ Fm

2 we let s := i + j. In order find a collineation fromGS(m)(2)

takingF4Ui toF4U j, it suffices to choose for allk ∈ {1, 2, . . . ,m} somefk ∈ GL(Vk)
with sgn2 fk = sk. This can clearly be done, so thatf1 ⊗ f2 ⊗ · · · ⊗ fm yields a
collineation with the required properties.

(c) According to the (basis-dependent) definition offσ in (3), we have to con-
sider the linear bijectionsVk → Vσ(k) sending (e(k)

0 , e
(k)
1 ) to (e(σ(k))

0 , e(σ(k))
1 ). By (10),

any such map sends (u(k)
0 , u

(k)
1 ) to (u(σ(k))

0 , u(σ(k))
1 ). Now fσ(Ui) = Uσ(i) follows im-

mediately. �

Theparity of a pointF4Ui ∈ Bm can be defined as the parity of the multi-index
i (i. e., it is even or odd according to the number of 1s among the entries ofi). We
writeB+m andB−m for the set of base points with even and odd parity, respectively.
Even though we can distinguish points of even and odd parity due to our fixed
bases (e(k)

0 , e
(k)
1 ), a change of bases in the vector spacesVk may alter the parity of

a point. Buthaving the same parityis an equivalence relation onBm with two
equivalence classes, namelyB+m andB−m, each of cardinality 2m−1.

We define the Hamming distance betweenF4Ui andF4U j as the Hamming
distance of their multi-indicesi and j. In particular, we speak ofoppositepoints
if i and j are opposite. For each point ofBm there is a unique opposite point.
By (10) and (11) opposite points ofBm are complex-conjugate with respect to the
Baer subspaceP

(⊗m
k=1 Vk

)
of P
(⊗m

k=1 Wk
)
. The opposite point toF4Ui can also

be characterised as the only pointF4U j ∈ Bm such that [Ui,U j] , 0. We remark
that the Hamming distance onBm admits another description due toBm ⊂ S(m)(4).
The Hamming distance ofp, q ∈ Bm equals the number of lines on a shortest
polygonal path inS(m)(4) from p to q.

From the proof of Proposition 2 and the above remarks we immediately obtain:

Theorem 3. The stabiliser group GS(m)(2) of the SegreS(m)(2) acts on the invari-
ant basisBm (via the multi-indices of its points) as the group of all affine trans-
formations ofFm

2 having the formi 7→ σ(i) + s, whereσ ∈ Sm and s ∈ Fm
2 .
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Hence, Hamming distances onBm are preserved under GS(m)(2), and the partition
Bm = B

+
m ∪̇ B

−
m is a GS(m)(2)-invariant notion.

We now use the invariant basis for describing some otherGS(m)(2)-invariant
subsets. In the following theorem we also make use of a particular property of
Segre varieties overF2. Recall that (for an arbitrary ground fieldF) there are
preciselym generators through any pointp of the SegreS(m)(F). They span the
(m-dimensional)tangent spaceof S(m)(F) at p. Thetangentlines atp are the lines
throughp which lie in its tangent space. ForF = F2 there are 2m − 1 tangents at
p. Precisely one of them does not lie in any of the (m− 1)-dimensional subspaces
which are spanned bym− 1 generators throughp. This line will be called the
distinguished tangentat p.

Theorem 4. The stabiliser group GS(m)(2) of the SegreS(m)(2) has the following
properties:

1. The union of the skew subspacesspanB+m andspanB−m is a GS(m)(2)-invariant
subset ofP

(⊗m
k=1 Wk

)
.

2. The union of the2m−1 mutually skew real lines2

F4Ui ∨ F4Ui′ with i ∈ Im,0 (13)

is a GS(m)(2)-invariant subset. The3·2m−1 real points on these lines comprise
an orbit of GS(m)(2).

3. If m is even thenspanB+m andspanB−m are real subspaces. Each of the lines
from (13) is contained in precisely one of them.

4. If m is odd thenspanB+m and spanB−m are complex-conjugate subspaces.
All lines from (13) meetspanB+m and spanB−m at precisely one point, re-
spectively.

5. All distinguished tangents of the SegreS(m)(2) meetspanB+m andspanB−m at
precisely one point, respectively.

Proof. Ad 1 and 2: The assertions on the invariance of spanB+m ∪̇ spanB−m and
on the invariance of the union of all lines from (13) are a direct consequence of
Theorem 3.

We denote the set of all real points on the lines from (13) byR. Let j ∈ Im,0

and letp be an arbitrary real point on the lineF4U j∨F4U j′ . Any collineation from

2Any line joining complex-conjugate points is real (cf. the beginning of Section 4). It carries
three real points. We use the symbol∨ for the join of points.
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GS(m)(2) takesp to some real point on a line from (13), whence the orbit ofp is
contained inR.

Conversely, letq ∈ R. So there is ak ∈ Im,0 with q ∈ F4Uk ∨ F4Uk′ . By
Theorem 3, there exists a collineation inGS(m)(2) which mapsF4U j to F4Uk and,
consequently, alsoF4U j′ to F4Uk′ . Furthermore,p is mapped to some real point ˜p
on the lineF4Uk ∨ F4Uk′ . There existsf1 ∈ GL(V1) with sgn2 f1 = 0. Thenu(1)

0

andu(1)
1 are eigenvectors off1 with eigenvaluesλ andλ2, whereλ ∈ {ω,ω2}. (See

the proof of Proposition 2.) The linear bijectionf := f1 ⊗ idV2 ⊗ · · · ⊗ idVm has
Uk andUk′ as eigenvectors with eigenvaluesλ andλ2, respectively, due tok1 = 0.
Thus the collineation arising fromf induces a non-identical even permutation on
the three real points of the lineF4Uk ∨ F4Uk′ . Such a permutation has only one
cycle. So one off , f 2 or f 3 yields a collineation fromGS(m)(2) which maps ˜p to q.

Ad 3 and 4: Opposite points ofBm are complex-conjugate and vice versa.
Such points share the same parity form even, but have different parity form odd.

Ad 5: First, we exhibit the distinguished tangentT of the SegreS(m)(2) at
the pointF2E1,1,...,1. On each of them generators of the Segre through this point
we select one more real point, namelyF2E0,1,1,...,1, F2E1,0,1,...,1, . . . ,F2E1,1,...,1,0 for
facilitating our subsequent reasoning. So, the distinguished tangentT contains the
real point

F2(E0,1,1,...,1 + E1,0,1,...,1 + · · · + E1,1,...,1,0). (14)

By (10), we havee(k)
0 = ω

2u(k)
0 +ωu(k)

1 ande(k)
1 = u(k)

0 + u(k)
1 for all k ∈ {1, 2, . . . ,m}.

So E1,1,...,1 =
∑

i∈ Im
Ui and

E0,1,...,1 =
∑

i∈ Im

x(1)
i Ui with x(1)

i =

{
ω2 for i1 = 0,
ω for i1 = 1.

Mutatis mutandis, we obtain linear combinations forE1,0,1,...,1, . . . , E1,1,...,1,0 with
coefficientsx(2)

i , . . . , x
(m)
i ∈ {ω

2, ω}. Summing up gives

E0,1,1,...,1 + E1,0,1,...,1 + · · · + E1,1,...,1,0 =
∑

i∈ Im

yiUi, (15)

where
yi = ω

2 + ω2 + · · · + ω2
︸                  ︷︷                  ︸

# of zeros ini

+ω + ω + · · · + ω︸              ︷︷              ︸
# of ones ini

.

There are two cases:
m even:Due to CharF4 = 2 we haveyi = 0 for all i with even parity and

yi = ω
2 + ω = 1 for all i with odd parity. SoT meets spanB−m at the point (14).

The sum of the tensor from (15) andE1,1,...,1 determines the point of intersection
of T with spanB+m.
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m odd: Due to CharF4 = 2 we haveyi = ω
2 for all i with even parity and

yi = ω for all i with odd parity. SoT meets spanB+m at the point

F4

(∑

j

ω2U j

)
= F4

(∑

j

U j

)
, (16)

where j ranges over all elements ofIm with even parity, and the subspace spanB−m
at the pointF4(

∑
k ωUk) = F4(

∑
k Uk), wherek ranges over all elements ofIm with

odd parity.
In either case the two points of intersection are unique, because spanB+m and

spanB−m are skew.
Next, we consider an arbitrary distinguished tangent of theSegre. As all points

of the Segre comprise a point orbit ofGS(m)(2), also all distinguished tangents are
in one line orbit ofGS(m)(2). So, all distinguished tangents share the properties of
the tangentT. �

Any pair of skew and complex-conjugate subspaces ofP
(⊗m

k=1 Wk
)

deter-
mines ageometric line spreadof P

(⊗m
k=1 Vk

)
. This spread comprises all real lines

which meet one of the subspaces (and hence both of them in complex-conjugate
points). Any of these subspaces is called anindicator setof the spread. See [2,
p. 74] and [23, p. 29]. So, part of Theorem 4 can be reformulated as follows:

Corollary 1. If m is odd then the complex-conjugate subspacesspanB+m and
spanB−m are indicator sets of a GS(m)(2)-invariant geometric line spreadL of
P
(⊗m

k=1 Vk
)
= PG(2m − 1, 2). All distinguished tangents of the SegreS(m)(2) and

all lines given by(13)belong to this spread.

It is now a straightforward task to establish connections between the funda-
mental polarity of the SegreS(m)(4) and the quadricQ(4) which arises according
to Theorem 1. The reader will easily verify the following: The fundamental po-
larity maps each of the lines from (13) to the span of the remaining ones. For any
evenm the subspaces spanB+m and spanB−m are interchanged under the fundamen-
tal polarity, whereas form odd each of them is invariant (totally isotropic). The
subspaces spanB+m and spanB−m are contained inQ(4) precisely whenm ≥ 2 is
odd.

Example 1. Let m= 2. The SegreS1,1(2) is a hyperbolic quadric ofP(V1⊗V2) =
PG(3, 2). The 15 points of this projective space fall into two orbits under the action
of G1,1(2): The first orbit isS1,1(2) (nine points), the remaining six points form the
second orbit. It comprises the real points of the lines spanB+m and spanB−m. There
are nine distinguished tangents of the quadric. Together they form the hyperbolic
linear congruence of lines which arises by joining every real point of spanB+m with
every real point of spanB−m.

11



The previous example is clearly just an easy exercise, and itcould be mastered
without our results about the general case.

5 The invariant Hermitian variety

The symplectic form [·, ·] on
⊗m

k=1 Vk can be extended in exactly two ways to a
non-degenerate sesquilinear form3 on

⊗m
k=1 Wk. The bilinear extension is sym-

plectic. In accordance with the notation used elsewhere, itis also denoted by [·, ·].
The only other extension is sesquilinear with respect to theFrobenius automor-
phism z 7→ z2 of F4. Such Hermitian extension will be written as [·, ·]H. We
have

[X,Y]H = [X,Y] (17)

for all tensorsX,Y ∈
⊗m

k=1 Wk, whereX denote the complex-conjugate tensor
of X. While [·, ·] describes the fundamental polarity of the SegreS(m)(4), the
Hermitian sesquilinear form [·, ·]H yields a unitary polarity ofP(

⊗m
k=1 Wk) and,

moreover, the Hermitian varietyH comprising all its absolute points. By its defi-
nition,H is aGS(m)(2)-invariant notion, whence we call it theinvariant Hermitian
varietyof the SegreS(m)(2). Note thatH , like the invariant basis and the invariant
line spread, is an invariant notion only forS(m)(2), but not forS(m)(4).

We remark that the invariant basisBm is self-polar with respect to the unitary
polarity given by [·, ·]H. Indeed, giveni, j ∈ Fm

2 we have

[Ui,Ui]H =

m∏

k=1

[u(k)
ik
, u(k)

ik
] = (ω + ω2)

m∏

k=1

[e(k)
0 , e

(k)
1 ] = 1, (18)

[Ui,U j]H =

m∏

k=1

[u(k)
ik
, u(k)

jk
] = 0 for all i , j, (19)

since, for example,i1 , j1 impliesu(1)
i1
= u(1)

j1
, whence [u(1)

i1
, u(1)

j1
] = 0.

The following Proposition establishes a link among the invariant line spread
from Corollary 1, the invariant quadricQ(2), and the invariant Hermitian variety
H .

Proposition 3. Let m≥ 2 be odd. A line L of the invariant geometric line spread
L is a generator of the invariant quadricQ(4) if, and only if, the intersection point
L ∩ spanB+m belongs to the invariant Hermitian varietyH . Otherwise that line L
is a bisecant ofQ(4), whence it has no points in common withQ(2).

3We assume such forms to be linear in the right and semilinear in the left argument.
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Proof. Suppose thatL ∩ spanB+m = F4X. By a remark at the end of Section 4,
we haveF4X ∈ spanB+m ⊂ Q(4) andF4X ∈ spanB−m ⊂ Q(4). So the lineL =
F4X ∨ F4X is either a generator or a bisecant ofQ(4). The first possibility occurs
precisely whenF4X lies in the tangent hyperplane ofQ(4) at F4X. Employing
(17), this in turn is equivalent to 0= [X, X] = [X, X]H which characterisesF4X
as a point ofH . �

The above Proposition is a special case of [11, Theorem 1] on quadrics which
admit a spread of lines. In our context the invariant spread from Corollary 1 yields
a spread of lines onQ(2), since overF2 each line of the invariant spread is either
external to or contained in that quadric.

6 The Segre variety S1,1,1(2)

In this section we exhibit the ambient spaceP(V1 ⊗ V2 ⊗ V3) = PG(7, 2) of the
SegreS1,1,1(2). This space has 28 − 1 = 255 points. Furthermore, we have the
cardinalities #S1,1,1(2) = 33 = 27, #Q(2) = (23 + 1)(24 − 1) = 135 (see [16,
Theorem 5.21]), and #L = 255/3 = 85.

Proposition 4. Under the action of the stabiliser group GS1,1,1(2) of the Segre
S1,1,1(2) the lines of the invariant spreadL of P(V1 ⊗ V2 ⊗ V3) = PG(7, 2) fall
into four orbitsL1,L2,L3,L4. In terms of the invariant basisB3 the following
characterisation holds: A line fromL is in orbit Lr if, and only if, its (imagi-
nary) point of intersection with the subspacespanB+3 lies in 4 − r planes of the
tetrahedronB+3 .

Proof. (a) Throughout this proof the pointwise stabiliser and the stabiliser ofB+3
in the groupGS1,1,1(2) are abbreviated byG+pw andG+, respectively. We observe
that G+pw acts transitively on the points of the SegreS1,1,1(2): We fix the point
F2E111 = F2(e

(1)
1 ⊗ e(2)

1 ⊗ e(3)
1 ). Given any point of the Segre, sayF2 A, where

A = a1 ⊗ a2 ⊗ a3, there are linear bijectionsfk ∈ GL(Vk) satisfying sgn2 fk = 0
ande(k)

1 7→ ak for k = {1, 2, 3}. So f1 ⊗ f2 ⊗ f3 induces a collineation which sends
F2E111 to F2A and belongs toG+pw by (12).

We writeMr , r ∈ {1, 2, 3, 4}, for the subset of spanB+3 = PG(3, 4) comprising
all points which lie in precisely 4− r planes of the tetrahedronB+3 . So we have
#M1 = 4 vertices, #M2 = 3 · 6 = 18 edge points, #M3 = 4 · 9 = 36 face points,
and #M4 = 27 general points. Clearly, theG+-orbit of any point from spanB+3 is
contained in one of the setsMr .

(b) We show thatM4 is an orbit underG+pw: By (16), the distinguished tangent
of the Segre atF2E111 meets spanB+3 at the pointp := F4(U000 + U011 + U101 +

U110) ∈ M4. We infer from the transitive action ofG+pw on the SegreS1,1,1(2) that
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all distinguished tangents meet spanB+3 in points ofM4. Since #S1,1,1(2) = 27 =
#M4, the groupG+pw acts transitively onM4.

(c) Any edge ofB+3 contains precisely three points ofM2. We obtain all of
them by projectingM4 from the opposite edge, whenceG+pw acts transitively on
the set of these three points. Likewise,G+pw acts transitively on the nine points of
M3 in any face ofB+3 .

(d) We know from Proposition 2 thatG+ acts transitively on the set of vertices
ofB+3 via translationsi 7→ i+s on multi-indices. From Theorem 3 theG+-stabiliser
of F4U000 acts transitively on the remaining vertices ofB+3 via permutationsi 7→
σ(i) on multi-indices. Together with our previous results thismeans that each of
the four subsetsMr is aG+-orbit. Consequently, each of the setsLr is contained
in an orbit under the action ofGS1,1,1(2) on the line spreadL.

Any collineation fromGS1,1,1(2) \ G+ also preserves each of the setsLr , as it
commutes with the Baer involution of PG(7, 4) fixing P(V1 ⊗V2 ⊗ V3) = PG(7, 2)
pointwise. This completes the proof. �

From (18) and (19) the equation of the Hermitian varietyH ∩ spanB+3 with
respect to the basis (U000,U011,U101,U110) reads

x3
000+ x3

011+ x3
101+ x3

110 = 0.

Because ofz3 = 1 for all z ∈ F4 \ {0}, we getH ∩ spanB+3 = M2 ∪ M4. By
Proposition 3, the lines fromL2 ∪ L4 are on the invariant quadricQ(4). More
precisely, the lines fromL2 are those generators ofQ(4) which do not contain
any point of the SegreS1,1,1(2), whereas the lines fromL4 are the distinguished
tangents ofS1,1,1(2). Figure 1, left4, displays the polar space (point-line incidence

Figure 1: The Hermitian varietyM2 ∪M4 (left) and the SegreS1,1,1(2) (right).

4The style of our figure is taken from [21, p. 61].
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structure) onH . This Hermitian variety consists of 45 points and carries 27lines
(represented by segments and curves), with five points on anyline and three lines
on any point. The 27 points represented by small circles are those fromM4, the
remaining 18 points are represented by bullets and belong toM2. The 27 points
ofM4 can be viewed as askew projectionof the SegreS1,1,1(2) (Figure 1, right)
intoH along the invariant line spread. Under this projection collinearity of points
is being preserved.

The lines fromL1 are the four lines from (13). Like the remaining 36 lines
fromL3 they are exterior lines (overF2) of the invariant quadricQ(2).

Proposition 5. Under the action of the stabiliser group GS1,1,1(2) of the Segre
S1,1,1(2) the points ofP(V1⊗V2⊗V3) = PG(7, 2) fall into five orbitsO1,O2, . . . ,O5.
For r ∈ {1, 2, 3} the points ofOr are precisely the real points on the lines ofLr .
The orbitO4 comprises those real points on the lines fromL4 which are off the
SegreS1,1,1(2), whereasO5 equals the SegreS1,1,1(2).

Proof. It is clear thatO5 is an orbit underGS1,1,1(2). The points ofO1 form an orbit
according to Theorem 4. In order to show thatO2 andO3 are orbits, we shall select
one line ofL2 andL3, respectively. By Proposition 4, it suffices then to show that
all real points of this line are in one orbit. This task will beaccomplished with
mappingsfk ∈ GL(Vk), k ∈ {1, 2, 3}, given bye(k)

0 7→ e(k)
1 , e(k)

1 7→ e(k)
0 + e(k)

1 . From
(10), we havefk(u

(k)
0 ) = ωu(k)

0 and fk(u
(k)
1 ) = ω2u(k)

1 .
Let L2 ∈ L2 be the line joiningF4(U000 + U011) ∈ M2 with its complex-

conjugate pointF4(U111 + U100). The mappingf1 ⊗ idV2 ⊗ idV3 hasU000 + U011

as eigentensor with eigenvalueω. Its complex-conjugate tensor is therefore an
eigentensor with eigenvalueω2. From the proof of Proposition 2, this implies that
f1 ⊗ idV2 ⊗ idV3 induces a non-trivial even permutation on the set of real points
of L2. So, under the powers of this permutation the three real points of L2 are
permuted in one cycle.

Let L3 ∈ L3 be the line joiningF4(U011+U101+U110) ∈ M3 with its complex-
conjugate point. Heref1⊗ f2⊗ f3 possessesU011+U101+U110 as eigentensor with
eigenvalueω5 = ω2. Its complex-conjugate tensor is therefore an eigentensorwith
eigenvalueω. Now the assertion follows as above.

The distinguished tangent of the SegreS1,1,1(2) at the pointF2E111 contains
two precisely two points ofO4. From (14), these points areF2(E011+ E101+ E110)
andF2(E111+E011+E101+E110). Let g1 ∈ GL(V1) be defined bye(1)

0 7→ e(1)
0 + e(1)

1 ,
e(1)

1 7→ e(1)
1 . Theng1 ⊗ idV2 ⊗ idV3 will interchange these two points, whence we

may argue as before. �

Let us close this section with a few remarks: The orbits of thestabiliser group
GS1,1,1(2) are described (without proof) in a completely different way in [14, p. 82].
Thea, b, c, d, e-orbits from there are in our terminology the setsO5 (27 points),O2
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(54 points),O3 (108 points),O4 (54 points), andO1 (12 points), respectively. The
unionO2 ∪ O4 ∪ O5 is the invariant quadricQ(2). With respect to the tensor basis
(1) the equation ofQ(2) reads

x000x111+ x001x110+ x010x101+ x011x100 = 0. (20)

The square of the left hand side of (20) isCayley’s hyperdeterminantof the 3×3×3
array (xi)i∈ I3; see [14, Theorem 5.45] and compare with [12] and [13].

By virtue of the fundamental polarity ofS1,1,1(2), Proposition 5 provides a
classification of the hyperplanes ofP(V1 ⊗ V2 ⊗ V3) under the action of the group
GS1,1,1(2). Moreover, it gives a classification of thegeometric hyperplanes(or
primes) of S1,1,1(2), since any geometric hyperplane of this Segre arises as in-
tersection with a unique hyperplane of the ambient space [22]. This is a rather
particular property of Segre varietiesS(m)(2) which is not shared by Segre vari-
etiesS(m)(F) in general [4].

The SegreS1,1,1(2) (as a point-line geometry) appears in the literature in var-
ious guises, namely as the (273, 273) Gray configuration[20] or as thesmallest
slim dense near hexagon[6]. It is also a point model of thechain geometrybased
on theF2-algebraF2×F2×F2, the chains being the twisted cubics onS1,1,1(2) (i. e.
triads of points with mutual Hamming distance 3); see [3, (5.4)] or [5, p. 272].
We add in passing that the tangent lines of these twisted cubics are just our distin-
guished tangents ofS1,1,1(2).

7 Conclusion

We established several invariant notions for Segre varietiesS(m)(2) over the field
F2. Form≤ 3 these invariants provide sufficient information for the classification
of the points and hyperplanes of the ambient space ofS(m)(2). For larger values
of m the situation seems to be much more intricate. For example, whenm is odd
then the lines of the invariant spread will fall into at least2m−1 orbits, as follows
from a straightforward generalisation of Proposition 4. However, this gives only a
lower bound for the number of orbits. Indeed, form≥ 3 there are 3m distinguished
tangents ofS(m)(2), but 32m−1−1 points of spanB+m which belong to no face of the
simplexB+m. These two cardinalities coincide only whenm = 3, whence for
all odd m > 3 we no longer have a one-one correspondence between the set of
distinguished tangents and the set of all points of spanB+m which belong to no face
of B+m.
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