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Spheres of Quadratic Field Extensions
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By H.!HAVLICEK

1. Introduction
!

The concepts of the geometry of field extensions can be found in the book of

W.!BENZ [2]. There it is shown that the geometry arising from the real quater-

nions and the complex numbers has a point model, namely the 2-spheres on a

euclidian 4-sphere in a real 5-dimensional euclidian space. This representa-

tion of the projective line over the quaternions as a 4-sphere was already

known to E.!STUDY [19]. In part IV of that paper it is shown how to link this

4-sphere with a manifold of lines in a complex projective 3-space by means of
1the KLEIN mapping .

In the present note we take up these ideas by constructing a point

model for the geometry S(K,L) which belongs to a quadratic extension L/K,

where L is a proper skew field and K is a commutative field.

In a first step we represent the projective line over L in terms of a

spread SL/K in a 3-dimensional projective space P over K. Then we transfer

this spread to the KLEIN quadric representing the lines of P. This establishes

immediately a point model of SL/K, say SL/K, in a 5-dimensional projective
^space P over K. (If K would be a skew field too then the spread SL/K, but no

such representation would exist; cf. [7].)

Although our approach is aiming at a point model in a projective space over

K, it also yields a point model over the centre Z of L: There is a unique
^5-dimensional BAER subspace P of P which contains SL/K; the underlying field

of P is Z. The set SL/K is an elliptic quadric of P ("4-sphere") which is

equal to the intersection of P with the KLEIN quadric.

In addition we shall characterize the images of the chains (K-sublines). It

will also be proved that the automorphism group of S(K,L) is represented by a

group of automorphic collineations of SL/K. Both results depend on the embed-
^ding of P in P, but the point model itself also may be seen in terms of P

alone. From this point of view it is a generalization of the classical result.

The skew field L is a 4-dimensional quadratic algebra over Z. H.!HOTJE has

shown how to construct a quadric model for the chain geometries arising from

certain quadratic algebras. See [13], [14] or the survey article [10]. It will

be shown that SL/K equals the HOTJE model belonging to S(Z,L).

----------------------------------------------------------------------------------------------------
1STUDY points out explicitly the fact that this manifold is (in today’s lan-
guage) both a spread and a dual spread [19,IV,177].
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We frequently shall make use of PLÜCKER coordinates and some results of

projective line geometry which can be found e.g. in [4], [11], [12] or [17].

2. Spherical models
!

2.1. Let K be a commutative field and let L be a right quadratic extension
2field of K. The centre of L will be denoted by Z.

If L is a skew field then K is a maximal commutative subfield of L. Hence K

and the centralizer of K in L coincide so that ZtCtK. We infer
!

|L!:!K| t=t|K!:!Z| t=t|K!:!Z| t=t|L!:!K| t=t2left left right right!
from Corrollary 2 in [6,49]. Hence L is a 4-dimensional quadratic Z-algebra,

i.e. L is a quaternion skew field [16,169-171]; cf. also chapter 13 in [20].
3Let {1,a} be a basis of K over Z. There exist l1,m1tetZ, m1t$t0 such that

!2a +al1+m1t=t0. (11,2)
!

In choosing a basis of L over K we have to distinguish three cases:

Case 1. L is a skew field and K is a GALOIS extension of Z. Hence
!

----- ------( )!:!KtLtK, ut=tx+aht9Ltut=tx-(l1+a)h, (x,htetZ) (21)
!

is an automorphism of order 2 which fixes Z elementwise. By the Skolem-Noether
-----theorem (cf. the Corrollary in [6,46]) this automorphism ( ) extends to an

inner automorphism of L. Hence we can choose itetL\K such that
!-1 ------i uit=tu for all utetK. (31)

!
Case 2. L is a skew field and K/Z is not GALOIS. Hence

!

Char!Kt=t2, l1t=t0, (22)
!

since a has to be inseparable over Z. We infer from
!-1 -1 -1(l+a la)at=tla+a lm1t=tla+alt=ta(l+a la) for all ltetL

!-1that l+a latetK. So there exists an itetL\K such that
!

-1a iat=ti+1. (32)
!

Case 3. L is commutative. Choose any itetL\K.

----------------------------------------------------------------------------------------------------
2The term field is used for a not necessarily commutative field whereas skew
field always means a non-commutative field. We do not exclude the case that L
is commutative in order to illustrate how things will alter in the non-
commutative case.
3We refer to the three cases described below in the numbering of formulae:
e.g. (4) holds in all cases, but (11,2) in case 1 and case 2 only.
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In every case there exist l2,m2tetZnK, m2t$t0 such that
!2i +il2+m2t=t0. (4)

!
Multiplication in L is subject to the commutation rule

!S Duit=tiu +u for all utetK, (5)
!

where S is an injective endomorphism of K and D is an S-derivation of K; cf.

[5], [6,56]. But L is 4-dimensional over Z and S fixes Z elementwise, whence S

is Z-linear and surjective.

Case 1. We claim that
!

-----St=t( ), Dt=t0, l2t=t0. (61)
!-1 S -1 DBy formulae (31) and (5), i uit=tu +i u tetK for all utetK, whence D is a

----- 2 2zero-derivation. Thus idKt$tSt=t( ). We infer from S t=tidK that i tetZ,

whence l2t=t0.

Case 2. We claim that
!

DSt=tidK, (x+ah) t=tah for all x,htetZ, l2t=t1. (62)
! DThe first assertion is obvious. By (32), ait=tia+a so that a t=ta. Now the

second assertion follows, because D is a Z-linear mapping with kernel Z.

Finally, l2t=t1, because of (4), (32) and
!2 2(i+1) +(i+1)l2+m2t=ti +1+il2+l2+m2t=t0.

!
Case 3. Obviously

!
St=tidK, Dt=t0. (63)

22.2. Let P be the projective space on L over K. The points of P are the 1-
2dimensional K-subspaces of L . The set of lines of P is denoted by L. An

2ordered basis of L over K is given by
!

b0t:=t(1,0), b1t:=t(i,0), b2t:=t(0,1), b3t:=t(0,i). (7)
!^ 2 2Write P for the projective space on the vector space L ^L over K. The family

!

(b0^b1,b0^b2,b0^b3,b2^b3,b1^b3,b1^b2) (8)
!2 2is an ordered basis of L ^L . Coordinates always are understood with respect

to bases (7) or (8). The KLEIN mapping
!^s!:!LtLtP, (cK)v(dK)t9Lt(c^d)K

!
is injective. Its image set is the KLEIN quadric, say Q, with equation

!
x01x23-x02x13+x03x12t=t0.

!
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The non-degenerate bilinear form
!( )S xij(bi^bj), S ykl(bk^bl) t9Ltx01y23+x23y01-x02y13-x13y02+x03y12+x12y039 0i <j k < l!

describes the projective polarity 1 which is associated to the KLEIN quadric.

Recall that two lines of L have a common point if, and only if, their s-images

are conjugate with respect to 1.

22.3. A partition of the group (L ,+) is given by
!

{(1,l)L|l!e!L}!u!{(0,1)L}. (9)
!2If L is regarded as a right vector space over L then the projective line over

2L is obtained from (9); cf. [2,320]. If, however, L is regarded as right

vector space over K then (9) yields a spread of lines, say SL/K, in the

projective space P defined in 2.2. We shall adopt this second point of view.

Cf. also [8], [9].
2Every 2-dimensional subspace (1,l)LtCtL is spanned by vectors (1,l),

(i,li). Putting lt=:tu+iv (u,vtetK) gives
!

(1,l)t=tb0+b2u+b3v,
( S D S D ) D S S S D(i,li)t=t i,iu +u +i(iv +v ) t=tb1+b2(u -m2v )+b3(u -l2v +v ).9 0 ! sWrite w for the line arising from (0,1)L; the point w equals (b2^b3)K. We

sobtain the following injective parametric representation of (SL/K\{w}) :
!( )(u,v)t9Lt S pij(bi^bj) K9 0! i <j! 2where the pij’s, as functions of (u,v)tetK , are given by

!S S D D Sp01t=t1, p23t=tuu -l2uv +uv -u v+m2vv ,
D Sp02t=tu -m2v , p13t=t-v, (10)
S S Dp03t=tu -l2v +v , p12t=t-u.

2.4. If L is commutative (case 3) then formula (10) simplifies to
!2 2p01t=t1, p23t=tu -l2uv+m2v ,

p02t=t-m2v, p13t=t-v, (103)

p03t=tu-l2v, p12t=t-u.
!

It is well known that now SL/K is an elliptic linear congruence of lines
s(regular spread) and that SL/K is an elliptic quadric which equals the inter-

^section of the KLEIN quadric with a 3-dimensional subspace, say T, of P. Cf.

e.g. chapter 18.6.2 in [10]. By abuse of language we shall refer to

SL/Kt:=tTnQ as a 2-sphere. The subspace T is given by equations
!

x03-l2x13+x12t=t0, x02-m2x13t=t0
!
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1and the line T is spanned by points with coordinates
!( )T ( )T0,l2,1,0,0,1 , 0,m2,0,0,-1,0 .9 0 9 0!1Intersection of T with the KLEIN quadric yields an equation

!2 2X +l2XY+m2Y t=t0 (113)
!

and putting Yt=t1 in (113) brings back the minimal equation (4) of i.
^If the ground field of P and P is extended from K to L then we get

^ 2projective spaces P(L) and P(L) on the vector spaces L !tK!L over L and
2 2 2 2(L ^L )!tK!L over L, respectively. But (L ^L )!tK!L is easily seen to be

2 2canonically isomorphic to (L !tK!L)^(L !tK!L) so that the extended KLEIN

quadric Q(L) may be identified with the KLEIN quadric representing the lines

of P(L). The solutions of equation (113) over L yield the common points of the
1extended line (T )(L) with Q(L). These points correspond to those lines in

P(L) which intersect all extended lines of the spread SL/K. Hence, by (113)

and (4), the number of such lines is two or one if L/K is GALOIS or not,

respectively. Cf. [3], [10] for different proofs of this. But it is also easy

to see if L/K is GALOIS or not without extending the ground field:
!!

Lemma 1. Let L/K be a quadratic field extension, where both L and K are

commutative, and let SL/K be the image of the spread SL/K under the Klein

mapping. The following assertions are equivalent:

(a) L/K is Galois.

(b) The intersection over all tangent planes of the 2-sphere SL/K is empty.
!1Proof. The intersection over all tangent planes of SL/K equals TnT , since

1SL/K is spanning T. Calculating TnT is equivalent to solving the linear homo-

geneous system
!

2X+l2Yt=t0, l2X+2m2Yt=t0 (123)
!2with determinant Dt=t4m2-l2 . If CharKt$t2, then both (a) and (b) hold true.

However, when CharKt=t2 then (123) has only the trivial solution if, and only

if, l2t$t0, i.e. L/K is GALOIS. P
!1If L/K is not GALOIS then T tCtT, whence the knot of the sphere SL/K is a

line. Cf. chapter 23.2.C in [18].

2.5. Now cases 1 and 2 will be discussed. We shall use the following concept:

Let V be a vector space over K and let a0,...,artetV be linearly independent

vectors. Then an r-dimensional Z-subspace of the projective space on V is

given as the set of all points pK, where ptetV\{o} is a linear combination of

a0,...,ar with coefficients in Z. Such an r-dimensional Z-subspace is uniquely
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determined by r+2 of its points which are in general position.
!!

Theorem 1. Let L/K be a quadratic field extension, where L is non-commutative

and K is commutative. The image of the spread SL/K under the Klein map
^s!:!LtLtP equals the intersection of the Klein quadric with a 5-dimensional

^Z-subspace of P, say P. This intersection is an elliptic quadric with respect

to P.
!

Proof. We substitute in formula (10) by putting
! 4ut=:ta+ab, vt=:tg+ad with (a,b,g,d)tetZ .

!S ----- 2Case 1. By a t=tat=t-(l1+a) and a t=t-(al1+m1) formula (10) becomes
!2 2 2 2p01t=t1, p23t=ta -l1ab+m1b +m2(g -l1gd+m1d ),

-----p02t=t-m2(g+ad), p13t=t-g-ad, (101)
-----p03t=ta+ab, p12t=t-a-ab.

!^ ^We apply the collineation k!:!PtLtP given by the regular matrix
!!-----& a-a 0 0 0 0 0 *-----| 0 0 a 0 0 a |-1 ---------- -1 | 0 -am2 0 0 a 0 |(a-a) ! !! !!! -----!! !!| 0 0 0 a-a 0 0 |

| 0 0 -1 0 0 -1 |-17 0 m2 0 0 -1 0 8!! skand obtain as parametric representation of (SL/K\{w})
2 2 2 2p01t=t1, p23t=ta -l1ab+m1b +m2(g -l1gd+m1d ),

p02t=ta, p13t=tb, (131)

p03t=tg, p12t=td.
!2Case 2. Here a t=tm1 turns (10) into

! 2 2 2 2p01t=t1, p23t=ta +ag+m1b +m1bd+m2(g +m1d ),

p02t=tm2g+a(b+m2d), p13t=tg+ad, (102)

p03t=ta+g+ab, p12t=ta+ab
! ^ ^and the collineation k!:!PtLtP given by the regular matrix

!!& a 0 0 0 0 0 *
| 0 a 0 0 am2 a |

-1 | 0 0 a 0 0 a |a ! ! ! ! !| 0 0 0 a 0 0 |
| 0 1 0 0 m2 0 |
7 0 0 1 0 1 1 8!! skyields a parametric representation of (SL/K\{w})

2 2 2 2p01t=t1, p23t=ta +ag+m1b +m1bd+m2(g +m1d ),

p02t=ta, p13t=tb, (132)

p03t=tg, p12t=td.
!
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^ kThere exists a unique 5-dimensional Z-subspace P of P such that P is deter-

mined by the basis (8). It is immediate from the stereographic parametrization
sk k(131) or (132) that (SL/K\{w}) is a paraboloid of P when p01t=t0 is re-

garded as equation of an hyperplane at infinity. This paraboloid is elliptic,

since SL/K is a spread. By means of (131) and (132) we extend this paraboloid
kto a regular projective quadric of P with equation

!2 2 2 2x02 -x02x13l1+x13 m1+m2(x12 m1-x12x03l1+x03 )-x01x23t=t0 (141)

and

2 2 2 2x02 +x02x03+x13 m1+x13x12m1+x12 m1m2+x03 m2+x01x23t=t0, (142)
!-1respectively; the image of this projective quadric under k will be written

k kas SL/K. The quadric SL/K tCtP is elliptic, its affine points are given by
sk(131) and (132), respectively, and w is its only point at infinity. There-

sfore SL/Kt=tSL/K . Obviously SL/KtCtQnP. On the other hand equations (141) and
^(142) describe, respectively, a quadric of P. A lengthy, but straightforward

kcalculation shows that this is equal to Q . Thus SL/Kt=tQnP, as required. P
!

The centre of the skew field L is infinite, since |L!:!Z|t=t4. Therefore SL/K
^contains 7 points in general position and P, being a BAER subspace of P, is

uniquely determined. By abuse of language we shall refer to SL/K as a 4-sphere

of P. The polar system which is determined by the 4-sphere SL/K is always

regular, since it is the restriction of 1 to the lattice of subspaces of P.

This is a major difference to the case when L is commutative; cf. Lemma 1.

3. Chains and Traces
!

3.1. The field extension L/K gives rise to an incidence structure S(K,L) which
2is formed by the points of the projective line on L (over L) and whose

blocks, called chains, are the K-sublines. Moreover we shall be concerned with

traces, i.e. Z-sublines, if L is a skew field. See [2,326]. However, in con-
2trast to [2], L will again be regarded as vector space over K, so that the

spread SL/K is endowed with subsets called chains and traces, respectively.

3.2. If L is commutative then the chains are exactly those reguli which are

contained in SL/K. Hence the s-images of the chains are precisely the non-

degenerate conics (circles, 1-spheres) contained in SL/K. This is well known;

see e.g. [10].

3.3. For every chain C in SL/K there is at least one transversal line t of C

even if L is a skew field. This means that the mapping
!
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lt(etC)t9Ltlntt(ett)
!

is a bijection of C onto t; cf. [8]. On the other hand, given a line ttmtSL/K

then the set of all lines of SL/K which have a point in common with t is a

chain with t being one of its transversal lines. All chains are in one orbit

with respect to the group of automorphic projective collineations of the

spread SL/K. So it is sufficient to discuss the standard chain K, say, which

is given by the transversal line b0Kvb2K.

Theorem 2. Let L/K be a quadratic field extension, where L is non-commutative

and K is commutative, and let C be a chain of SL/K. There exists a unique

linear congruence of lines, say M, such that Ct=tSL/KnM. This congruence of

lines is either hyperbolic or parabolic. The field K is a Galois extension of

the centre of L if, and only if, M is hyperbolic.
!

Proof. Let Ct=tK be the standard chain. We obtain a parametric representation
sof (K\{w}) by putting gt=tdt=t0 in formulae (101) and (102), respectively.

sCase 1. We read off from formula (101) that K is contained in the 3-
^dimensional subspace XtCtP given by the system

!
x02t=t0, x13t=t0

!skand we infer from formula (131) that K is spanning a three dimensional sub-
^space of P. Hence there is a unique linear congruence of lines, say M, given

s 1by M t=tXnQ, such that CtCtM. The congruence M is hyperbolic, since X is a

secant of Q which is spanned by points with coordinates
!( )T ( )T0,0,0,0,1,0 and 0,1,0,0,0,0 ,9 0 9 0!

respectively. These two points are the s-images of the axes of the congruence

M. These axes coincide with the only two transversal lines of K (cf. [8]).

Note that XnQ is a hyperbolic (doubly ruled) quadric of X.

Case 2. Repeat the argumentation of case 1: However now the subspace X is

given by the system
!

x03+x12t=t0, x13t=t0
! 1and the congruence M is parabolic, since X is a tangent line of Q which is

spanned by points with coordinates
!( )T ( )T0,0,1,0,0,1 and 0,1,0,0,0,0 ,9 0 9 0!

respectively. The second point is the s-image of the axis of the congruence M.
1This axis is the only transversal line of K (cf. [8]). Note that X tCtX and

that XnQ is a quadratic cone of X whose tangent planes belong to the pencil of
1planes in X with axis X . P

!
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Theorem 3. Let L/K be a quadratic field extension, where L is non-commutative

and K is commutative, and let SL/K be the image of the spread SL/K under the

Klein mapping s. A subset C of SL/K is the s-image of a chain CtCtSL/K if, and
^only if, there exists a 3-dimensional subspace X of P with the following

properties:

1. XnP is a 3-dimensional subspace of P and Ct=tXnSL/K is an elliptic quadric

of the subspace XnP (over Z).
^2. XnQ contains a line of P (over K).

!
Proof. (a) Let K be the standard chain and define X as in Theorem 2. Then, by

-1(101) and (102), putting gt=tdt=t0, and application of k
!sK t=t(XnP)nSL/Kt=tXnSL/Kt=t(XnP)nQ

!
is an elliptic quadric of a 3-dimensional subspace of the Z-subspace P. It was

shown in Theorem 2 that XnQ is either a hyperbolic quadric (case 1) or a
^quadratic cone (case 2), whence XnQ contains a line of P.

(b) Suppose that X is satisfying conditions 1 and 2. Then define
!s sCtCtSL/K by C t=tXnSL/Kt=tC and MtCtL by M t=tXnQ.

!
Hence XnQ is a ruled quadric in X. However XnSL/K contains at least 5 points

in general position with respect to PnX and these points are also in general

position with respect to X. Thus XnQ is either a hyperbolic quadric or a quad-

ratic cone and M is either a hyperbolic or parabolic linear congruence of

lines, respectively. Denote by ttetL an axis of this congruence, whence
!s 1Tt:=tt tetX nQ.

!
Moreover ttmtSL/K, since no line of C is skew to t, but all lines of SL/K are

mutually skew. We deduce from TtmtSL/Kt=tQnP and TtetQ that TtmtP.

The set of all lines of the spread SL/K which are intersecting t is a chain

C’ and
! s 1 1C’ t=tT nSL/Kt=tT nPnQ.

!1 1Clearly T nP is a subspace of P. If T nP would be a hyperplane relative to P

then T would also be in P, since the polarity determined by SL/K is induced by
1 111 and it would take T nP back to T t=tTtetP, an absurdity. On the other hand

1 1T nP contains C so that XnPt=tT nP. To sum up we have shown that
!s 1 sC t=tCt=tXnPnQt=tT nPnQt=tC’

!
which establishes that C is a chain. P

!^There may be 3-dimensional subspaces YtCtP such that both YnSL/K and YnQ are
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4elliptic quadrics .

3.4. Let L be a skew field. The incidence structure which is formed by a fixed

chain C and the set of all traces which are a part of C is isomorphic to the

chain geometry S(Z,K). So it is natural to ask if there is a 3-dimensional

Z-subspace of P such that the chain C and the traces within C, when restricted

to this Z-subspace, represent - up to a collineation - the spread SK/Z and its

chains (Z-sublines), respectively. The answer is that such a Z-subspace

exists, but it is by no means uniquely determined.

We illustrate this for the standard chain KtCtSL/K. Denote by J the

Z-subspace of P determined by the basis (7). We shall show that there exists a
r-1 5collineation rtetPGL(P) such that K and J have the required property :

Define r as the projective collineation of P given in cases 1 and 2 by the

matrices
! -----&-a -a 0 0 * & a a 0 0 *

| 1 1 0 0 | | 1 0 0 0 |----- and ,| 0 0 -a -a | | 0 0 a a |
7 0 0 1 1 8 7 0 0 1 0 8

! !
respectively. Then the corresponding automorphic collineation of the KLEIN

quadric is described by one of the 6*6 matrices written down below and
rs sK \{w } has the parametric representations

!-----& a-a 0 0 0 0 0 * & 1 * & 1 *-----2 ----- 2 -----| 0 a aa 0 a aa | | 0 | | -m1b |----- -----| 0 -a -a 0 -a -a | | a-l1b-ab | ----- | a-l1b |! ! -----! 2 2 t=t(a-a)! 2 2 (151)| 0 0 0 a-a 0 0 | |a -l1ab+m1b | |a -l1ab+m1b |
| 0 1 1 0 1 1 | | 0 | | -b |----- -----7 0 -a -a 0 -a -a 8 7 -a-ab 8 7 -a 8

! !
and

& a 0 0 0 0 0 * & 1 * & 1 *
| 0 m1 m1 0 m1 m1 | | ab | | m1b |
| 0 a 0 0 0 a | | a+ab | | a |! ! 2 2 t=ta! 2 2 , (152)| 0 0 0 a 0 0 | |a +m1b | |a +m1b |
| 0 1 0 0 0 0 | | 0 | | b |
7 0 a a 0 0 0 8 7 ab+a 8 7 a 8

!
respectively, with a,btetZ. Both (151) and (152) are in accordance with (103)

when replacing a,b,l1,m1 by u,v,l2,m2 and ruling out the non-zero factors
----- -1(a-a) and a, respectively. Applying r establishes the result.

r-1In order to see that J is not uniquely determined by K, we may transform

the standard chain under any of the collineations kc (ctetK\{0}) which, de-

----------------------------------------------------------------------------------------------------
4There need not be a chain S(K,L) which contains a given trace and a given
point off that trace; cf. however condition (1) in [2,334].
5K yields a spread of J which belongs to S(Z,Z(i)) rather than S(Z,K).
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pending on the two cases, are given by the matrices
!& c 0 0 0 * & c 1 0 0 *

| 0 1 0 0 | | 0 c 0 0 |and ,| 0 0 c 0 | | 0 0 c 1 |
7 0 0 0 1 8 7 0 0 0 c 8!

r-1respectively. It is easily seen that K, but not J , is left invariant under

all collineations kc, since K is infinite.

Now it is immediate that the s-images of traces within SL/K are exactly the

1-spheres on SL/K and that Lemma 1 can be applied on the s-image of every

chain. This gives a geometric characterization of case 1 and case 2 in terms

of the s-image of any chain.

We infer from (131), (132), (141) and (142) that SL/K is identical with the

HOTJE model of the chain geometry S(Z,L), because the quadratic form appearing

at the coordinate p23 is just the norm of (a+ab)+i(g+ad)tetL; cf. [13], [14].

4. Automorphisms
!

4.1. We restrict our attention to cases 1 and 2, i.e. L is a skew field. Every

automorphic collineation of the KLEIN quadric which leaves SL/K invariant maps
62-spheres onto 2-spheres. This may be reversed as follows (cf. also [21]):

!!-1Theorem 4. Let v!:!SL/KtLtSL/K be a bijection such that both v and v map
^ ^2-spheres onto 2-spheres. Then v extends to a collineation j!:!PtLtP which

leaves the Klein quadric invariant.
!

Proof. We can go back from SL/K to the projective line over L via the KLEIN

map and the spread SL/K. Hence v gives rise to an automorphism of S(K,L).

By [1], [2,343] and [15], every automorphism of S(K,L) is induced by a product
2 2of bijections f!:!L tLtL of the following three types:

!
1. f is an L-linear mapping.

f J J J2. (l0,l1) t=t(l0 ,l1 ), JtetAut(L) and K t=tK.
f ( -1 J -1 J) J3. (l0,l1) t=t (l1 ) ,(l0 ) , J an antiautomorphism of L and K t=tK.9 0 !

Mappings of first and second type are semilinear bijections of the vector
2space L over K, whence we obtain corresponding automorphic collineations of

the spread SL/K. When f is of third type then define
!2 2 ( ) J Jt!:!L *L tLtL, (l0,l1),(m0,m1) t9Lt-l1 m0+l0 m1.9 0 ! 2This t is a non-degenerate sesquilinear form on L (over L or K). Moreover

!

----------------------------------------------------------------------------------------------------
6The assumptions of Theorem 4 may be weakened by virtue of "Satz 2" in [15].
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( )t ( -1 J -1 J)(l0,l1),(m0,m1) t=t0 46 (m0,m1)tet (l1 ) ,(l0 ) L.9 0 9 0!
Thus t gives rise to a duality of P which leaves SL/K invariant and transforms

the lines of the spread in the required way. But every automorphic colline-

ation or automorphic duality of SL/K induces an automorphic collineation of

the KLEIN quadric which leaves SL/K invariant. So there exists a collineation

j with the required properties. P
!

4.2. We did not assert the uniqueness of j in Theorem 4. On the other hand j|P

is uniquely determined by v, since the identity mapping of P is the only

collineation extending the identity of SL/K. In case 1, by (31), the mapping
!2 2h!:!L tLtL , (l0,l1)t9Lt(l0i,l1i)

! !2 -----is a semilinear bijection of L over K with respect to ( )tetAut(K). This h

yields a non-trivial collineation of P which fixes every line of the spread

SL/K, but no other line, no point and no plane of P. The s-transform of this
^collineation is a BAER involution of P fixing P elementwise; cf. also

[19,IV,177]. In case 2, j is unique, since K/Z is not GALOIS.

4.3. Suppose that L is arbitrary. We close with the following
!!

Corrollary. Let L/K be a quadratic field extension, where K is commutative.

The spread SL/K admits a symplectic polarity fixing every line of this spread

if, and only if, L is commutative.
!

Proof. The s-transforms of symplectic polarities of P (regarded as transform-

ations on the set of lines) are exactly the involutory automorphic perspective

collineations of the KLEIN quadric. When L is commutative then SL/K spans a

3-dimensional subspace of T and therefore admits such a perspective collinea-
^tion fixing SL/K pointwise. When L is non-commutative then SL/K is spanning P

and no such perspective collineation exists. P
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