Spheres of Quadratic Field Extensions

By H. HavLICEK

1. Introduction

The concepts of the geometry of field extensions can be found in the book of
W. BENz [2]. There it is shown that the geometry arising from the real quater-
nions and the complex numbers has a point model, namely the 2-spheres on a
euclidian 4-sphere in a real 5-dimensional euclidian space. This representa-
tion of the projective line over the quaternions as a 4-sphere was already
known to E.Stupy [19]. In part IV of that paper it is shown how to link this
4-sphere with a manifold of lines in a complex projective 3-space by means of
the KLEIN mappingl.

In the present note we take up these ideas by constructing a point
model for the geometry Z(K,L) which belongs to a quadratic extension L/K,
where L is a proper skew field and K is a commutative field.

In a first step we represent the projective line over L in terms of a
spread ¥;,x in a 3-dimensional projective space P over K. Then we transfer
this spread to the KLEIN quadric representing the lines of ?. This establishes
immediately a point model of ¥;,x, say S;,x, in a 5-dimensional projective
space P over K. (If K would be a skew field too then the spread ¥;,k, but no
such representation would exist; cf. [7].)

Although our approach is aiming at a point model in a projective space over
K, it also yields a point model over the centre Z of L: There is a unique
5-dimensional Baer subspace T of #? which contains S;,/k; the underlying field
of T is Z. The set S;,x¢ is an elliptic quadric of T ("4-sphere") which is
equal to the intersection of T with the KLEIN quadric.

In addition we shall characterize the images of the chains (K-sublines). It
will also be proved that the automorphism group of =(K,L) is represented by a
group of automorphic collineations of S;,x. Both results depend on the embed-
ding of T in P, but the point model itself also may be seen in terms of TI
alone. From this point of view it is a generalization of the classical result.

The skew field L is a 4-dimensional quadratic algebra over Z. H. HoTJE has
shown how to construct a quadric model for the chain geometries arising from
certain quadratic algebras. See [13], [14] or the survey article [10]. It will

be shown that S;,x equals the HoTJE model belonging to Z(Z,L).

'Stupy points out explicitly the fact that this manifold is (in today’s lan-
guage) both a spread and a dual spread [19,IV,177].
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We frequently shall make use of PLUCKER coordinates and some results of

projective line geometry which can be found e.g. in [4], [11], [12] or [17].

2. Spherical models

2.1. Let K be a commutative field and let L be a right quadratic extension
field” of K. The centre of L will be denoted by Z.
If L is a skew field then K is a maximal commutative subfield of L. Hence K

and the centralizer of K in L coincide so that Z < K. We infer
|L: K| = |K:Z]| = |K:Z| . = |L:K| . =2
left left right right
from Corrollary 2 in [6,49]. Hence L is a 4-dimensional quadratic Z-algebra,

i.e. L is a quaternion skew field [16,169-171]; cf. also chapter 13 in [20].
Let {1,a} be a basis of K over Z. There exist A{,pu; € Z, pu; # 0 such that®

a2+a7\1+u1 = 0. (11,2)

In choosing a basis of L over K we have to distinguish three cases:

Case 1. L is a skew field and K is a GaLols extension of Z. Hence

():K > K, u=¢€+an > u = €-(xA+a)n, (€ € 2) (21)

is an automorphism of order 2 which fixes Z elementwise. By the Skolem-Noether
theorem (cf. the Corrollary in [6,46]) this automorphism ( ) extends to an

inner automorphism of L. Hence we can choose i € L\K such that
ilui = u for all u € K. (31)

Case 2. L is a skew field and K/Z is not GaLols. Hence

CharK = 2, A; = O, (25)
since a has to be inseparable over Z. We infer from
(1+alla)a = la+aliu; = la+al = a(l+alla) for all | € L

that l+a 'la € K. So there exists an i € L\K such that

atia = i+l. (32)

Case 3. L is commutative. Choose any i € L\K.

2The term field is used for a not necessarily commutative field whereas skew
field always means a non-commutative field. We do not exclude the case that L
is commutative in order to illustrate how things will alter in the non-
commutative case.

*We refer to the three cases described below in the numbering of formulae:
e.g. (4) holds in all cases, but (172) in case 1 and case 2 only.
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In every case there exist Ay,u2 € ZnK, up # O such that
i%+idy+u, = O. (4)

Multiplication in L is subject to the commutation rule

S

ui = ww+u? for all u e K, (5)

where S is an injective endomorphism of K and D is an S-derivation of K; cf.
[5], [6,56]. But L is 4-dimensional over Z and S fixes Z elementwise, whence S
is Z-linear and sur jective.

Case 1. We claim that

S=(),D=0, A, = 0. (61)

By formulae (3;) and (5), ilui = u’+i'u? € K for all u € K, whence D is a

zero-derivation. Thus idy # S = (). We infer from s? = idgy that i ez,
whence A, = 0.
Case 2. We claim that

S = idg, (§+an)D = amn for all €n € Z, A, = 1. (62)

The first assertion is obvious. By (33), ai = ia+a so that aP = a. Now the
second assertion follows, because D is a Z-linear mapping with kernel Z.

Finally, A, = 1, because of (4), (33) and
(i+1)%4(i+1)Az+uy = i%+1+idp+Ap+up = O.
Case 3. Obviously

S = idg, D = 0. (63)

2.2. Let P be the projective space on L? over K. The points of P are the 1-
dimensional K-subspaces of L?. The set of lines of P is denoted by £. An

ordered basis of L? over K is given by
by := (1,0), by := ({,0), bz := (0,1), bg := (0,1). (7)

Write # for the projective space on the vector space L?AL? over K. The family

(b()/\b1,b()/\bz,b()/\bg,bz/\bg,bl/\bg,bl/\bz) (8)

is an ordered basis of L?AL?. Coordinates always are understood with respect

to bases (7) or (8). The KLEIN mapping
c:2 > P, (cK)V(dK) — (cAd)K
is injective. Its image set is the KLEIN quadric, say Q, with equation

X01X23-X02X13+X03X12 = O.
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The non-degenerate bilinear form

(¥ xij(biAbj), ¥ yulbiAb))) > X01¥23+X23701-X02Y13-X13Y02+X03Y 12+X 12503

i<j k<l
describes the projective polarity 1 which is associated to the KLEIN quadric.
Recall that two lines of £ have a common point if, and only if, their ¢-images

are conjugate with respect to L.

2.3. A partition of the group (L%,+) is given by
{(1,1)L1t e L} u{(0,1)L}. (9)

If L? is regarded as a right vector space over L then the projective line over
L is obtained from (9); cf. [2,320]. If, however, L? is regarded as right
vector space over K then (9) yields a spread of lines, say ¥.,x, in the
projective space P defined in 2.2. We shall adopt this second point of view.
Cf. also [8], [9].

Every 2-dimensional subspace (1,1)L ¢ L? is spanned by vectors (1,l),

(i,li). Putting I =: u+iv (u,v € K) gives

(l,l) = bg+byu+bgv,

(1,10) = (LiuS+uP+i(iv5 ) = bi+ba(ul-pzv®)+bg(u®-av%+P).

Write w for the line arising from (0,1)L; the point w® equals (byAbz)K. We
obtain the following injective parametric representation of (¥,x\{us})’:
(u,v) > (Z pij(bi/\bj))K
i<j
where the p;;’s, as functions of (u,v) € K?, are given by

po1 = 1, DP23 = uuS—Azuvs+uvD—uDv+u2vvs,

poz = ul-pvS, pPiz = -V, (10)

_ s S..D _
Po3z = U -AvTHVY, P12z = —U.

2.4. If L is commutative (case 3) then formula (10) simplifies to

po1 = 1, P23 = Uf-Apuv+upv?,
Poz = —M2V, piz = -V, (103)
Po3z = U-Av, P12z = —U.

It is well known that now ¥;,x is an elliptic linear congruence of lines
(regular spread) and that ¥;,x° is an elliptic quadric which equals the inter-
section of the KLEIN quadric with a 3-dimensional subspace, say J, of P. Cf.
e.g. chapter 18.6.2 in [10]. By abuse of language we shall refer to

Si/k = InQ as a 2-sphere. The subspace J is given by equations

X03-A2X13+tXx12 = 0, Xo2-M2X13 = O
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and the line ﬁl is spanned by points with coordinates
(0,22,1,0,0,1) 7, (0,u2,0,0,-1,0) .
Intersection of ﬁl with the KLEIN quadric yields an equation
X240, XY +upY?% = 0 (113)

and putting Y = 1 in (113) brings back the minimal equation (4) of i.

If the ground field of # and P is extended from K to L then we get
projective spaces Pgy and 75(“ on the vector spaces L%egL over L and
(L?AL?)®x L over L, respectively. But (L?AL?)egL is easily seen to be
canonically isomorphic to (LZexL)A(L?exL) so that the extended KLEIN
quadric Qgy may be identified with the KLEIN quadric representing the lines
of Py). The solutions of equation (113) over L yield the common points of the
extended line (ﬁl)(L) with Q). These points correspond to those lines in
Py which intersect all extended lines of the spread ¥;,x. Hence, by (113)
and (4), the number of such lines is two or one if L/K is GaLoIs or not,
respectively. Cf. [3], [10] for different proofs of this. But it is also easy

to see if L/K is GaLois or not without extending the ground field:

Lemma 1. Let L/K be a quadratic field extension, where both L and K are
commutative, and let S;,x be the image of the spread ¥;,x under the Klein
mapping. The following assertions are equivalent:

(a) L/K is Galois.

(b) The intersection over all tangent planes of the 2-sphere S;,x is empty.

. . 1 .
Proof. The intersection over all tangent planes of S;,x equals InJ~, since
S,k is spanning J. Calculating InJ~ is equivalent to solving the linear homo-

geneous system

2X+A,Y = 0, AX+2uY = 0 (123)

with determinant A = 4uz-A2%. If CharK # 2, then both (a) and (b) hold true.
However, when CharK = 2 then (123) has only the trivial solution if, and only

if, A2 # 0, i.e. L/K is GaLoIs. [

If L/K is not GaLois then ﬁl < J, whence the knot of the sphere S;,x is a

line. Cf. chapter 23.2.C in [18].

2.5. Now cases 1 and 2 will be discussed. We shall use the following concept:
Let V be a vector space over K and let ag,...,a, € V be linearly independent
vectors. Then an r-dimensional Z-subspace of the projective space on V is
given as the set of all points pK, where p € V\{o} is a linear combination of

ag,...,ar with coefficients in Z. Such an r-dimensional Z-subspace is uniquely
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determined by r+2 of its points which are in general position.

Theorem 1. Let L/K be a quadratic field extension, where L is non-commutative
and K is commutative. The image of the spread ¥;,x under the Klein map
c: ¢ > P equals the intersection of the Klein quadric with a 5-dimensional
Z-subspace of P, say Il. This intersection is an elliptic quadric with respect

to TI.
Proof. We substitute in formula (10) by putting

u = o+aB, v = y+ad with (a,B,7,8) € Z*.

Case 1. By a° = a = -(A1+a) and a® = -(aAr;+u;) formula (10) becomes
po1 = 1, P23 = @A joB+Hu1 B+ (y 2 Ay 8+u182),
Poz = -Hz(y+ad), P13 = -¥-as, (104)
Poz = o+ap, P12 = -—a-ap.

PN

We apply the collineation k: % - P given by the regular matrix

a-a 0] 0] 0] 0] 9
0] 0] a 0] 0] a
_1 —_
-1 0 -auy 0] 0 a 0]
(a-2) 0O 0 0 aa 0 O
0] 0] -1 0] 0] -1
0 uzl o 0o -1 0
and obtain as parametric representation of (¥r, g\{us})
po1 = 1, P23 = @A joB+Hu1 B+ (y 2 Ay 8+u182),
Poz = «, riz = B, (134)
Po3 = 7, P12z = 4.
Case 2. Here a? = p; turns (10) into
po1r = 1, P23 = aP+ay+ui BB+ (¥ 1 87),
poz = M2y+a(B+uzd), P13 = y+ag, (102)
Po3z = oa+y+af, P12 = a+af

PN PN

and the collineation k: % - P given by the regular matrix

a 0O O O 0 ©O
0O a 0 0 aup a
o1 O 0 a O O a
0O 0 0 a O O
0O 1 0 O pup O
0O 0 1 0 1 1

yields a parametric representation of (¥ ,g\{us})®

a+oy+ BAH L1 BS+u (y P+, 87),

po1 = 1, P23
Poz = «, priz = B, (133)
po3z = 7, P12 = O.
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There exists a unique 5-dimensional Z-subspace T of P such that T is deter-
mined by the basis (8). It is immediate from the stereographic parametrization
(131) or (133) that (¥r,x\{w})’ is a paraboloid of M when pg; = 0 is re-
garded as equation of an hyperplane at infinity. This paraboloid is elliptic,
since ¥,k is a spread. By means of (13;) and (13;) we extend this paraboloid

to a regular projective quadric of T* with equation

2 2 2 2 _
X02°=X02X 13A1+X 13“M1+M2(X 12" M1-X 12X03A 1+X037)-X01X23 = O (144)

and

2 2 2 2 _
X02°+X02X03+X 13 M1+ X 13X 1201+ X 12 M1+ X 03 M2+ X01X23 = O, (14,)

respectively; the image of this projective quadric under k! will be written
as Srsg. The quadric S;,x° < TI* is elliptic, its affine points are given by
(13;) and (133), respectively, and w’ is its only point at infinity. There-
fore S;,x = $1,k°. Obviously S;,k € Qnll. On the other hand equations (14;) and
(14,) describe, respectively, a quadric of P. A lengthy, but straightforward

calculation shows that this is equal to Q. Thus S;,x = Qnll, as required. [

The centre of the skew field L 1is infinite, since |L:Z| = 4. Therefore S;,/x
contains 7 points in general position and T, being a BAER subspace of P, is
uniquely determined. By abuse of language we shall refer to S;,x as a 4-sphere
of T. The polar system which is determined by the 4-sphere S;,x is always
regular, since it is the restriction of L to the lattice of subspaces of TI.

This is a major difference to the case when L is commutative; cf. Lemma 1.

3. Chains and Traces

3.1. The field extension L/K gives rise to an incidence structure Z(K,L) which
is formed by the points of the projective line on L? (over L) and whose
blocks, called chains, are the K-sublines. Moreover we shall be concerned with
traces, i.e. Z-sublines, if L is a skew field. See [2,326]. However, in con-
trast to [2], L? will again be regarded as vector space over K, so that the

spread ¥#;,x is endowed with subsets called chains and traces, respectively.

3.2. If L is commutative then the chains are exactly those reguli which are
contained in ¥;,x. Hence the o¢-images of the chains are precisely the non-
degenerate conics (circles, 1-spheres) contained in S;,x. This is well known;

see e.g. [10].

3.3. For every chain € in ¥;,x there is at least one transversal line t of ©

even if L is a skew field. This means that the mapping
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L (e €) > int (et)

is a bijection of & onto %; cf. [8]. On the other hand, given a line t ¢ ¥;,x
then the set of all lines of ¥;,x which have a point in common with £ is a
chain with £ being one of its transversal lines. All chains are in one orbit
with respect to the group of automorphic projective collineations of the
spread ¥;,x. So it is sufficient to discuss the standard chain K, say, which

is given by the transversal line bgKvbsK.

Theorem 2. Let L/K be a quadratic field extension, where L is non-commutative
and K is commutative, and let € be a chain of ¥;,x. There exists a unique
linear congruence of lines, say M, such that € = $;,xnM. This congruence of
lines is either hyperbolic or parabolic. The field K is a Galois extension of

the centre of L if, and only if, M is hyperbolic.

Proof. Let 6 = K be the standard chain. We obtain a parametric representation
of (K\{ws})° by putting ¥y = 8 = 0 in formulae (10;) and (10;), respectively.
Case 1. We read off from formula (10;) that K° is contained in the 3-

dimensional subspace X < P given by the system
Xoz = 0, x13 = 0O

and we infer from formula (13;) that K°¢ is spanning a three dimensional sub-
space of P. Hence there is a unique linear congruence of lines, say M, given
by M° = AnQ, such that € ¢ M. The congruence M is hyperbolic, since 1t is a

secant of @ which is spanned by points with coordinates
T T
(0,0,0,0,1,0) " and (0,1,0,0,0,0) ',

respectively. These two points are the o-images of the axes of the congruence
M. These axes coincide with the only two transversal lines of K (cf. [8]).
Note that X¥nQ is a hyperbolic (doubly ruled) quadric of X.

Case 2. Repeat the argumentation of case 1: However now the subspace X is

given by the system
Xo3*tx12 = 0, x13 = O

and the congruence M is parabolic, since 1t s a tangent line of Q which is

spanned by points with coordinates
T T
(0,0,1,0,0,1) " and (0,1,0,0,0,0) ",

respectively. The second point is the o-image of the axis of the congruence M.
This axis is the only transversal line of K (cf. [8]). Note that 1t ¢ X and
that XnQ is a quadratic cone of X whose tangent planes belong to the pencil of

planes in X with axis a1t ]
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Theorem 3. Let L/K be a quadratic field extension, where L is non-commutative

and K is commutative, and let S;,x be the image of the spread ¥;,x under the

Klein mapping o. A subset C of S;,x is the oc-image of a chain 6 < ¥;,x if, and

only if, there exists a 3-dimensional subspace X of P with the following

properties:

1. Xnll is a 3-dimensional subspace of T and C = XnS;,x is an elliptic quadric
of the subspace Xnll (over Z).

2. XnQ contains a line of P (over K).

Proof. (a) Let K be the standard chain and define X as in Theorem 2. Then, by
(101) and (10;), putting ¥ = 8 = 0, and application of k!

K = (IHH)HSL/K = IHSL/K = (AnNQ

is an elliptic quadric of a 3-dimensional subspace of the Z-subspace II. It was
shown in Theorem 2 that XnQ is either a hyperbolic quadric (case 1) or a
quadratic cone (case 2), whence XnQ contains a line of P.

(b) Suppose that X is satisfying conditions 1 and 2. Then define
G c y)L/K by 6° = IHSL/K =Cand M c £ by M = InQ.

Hence XnQ is a ruled quadric in X. However XnS;,x contains at least 5 points
in general position with respect to IInX and these points are also in general
position with respect to X. Thus XnQ is either a hyperbolic quadric or a quad-
ratic cone and M is either a hyperbolic or parabolic linear congruence of

lines, respectively. Denote by ¢t € £ an axis of this congruence, whence
T :=1° € QCJ'nQ.

Moreover t ¢ ¥;,k, since no line of € is skew to %, but all lines of ¥,,x are
mutually skew. We deduce from T ¢ S;,x = Onll and T € Q that T ¢ T.
The set of all lines of the spread ¥;,x which are intersecting ¢ is a chain
G’ and
€'° = T 1S, x = T ATINQ.
Clearly Tlnl'[ is a subspace of T. If Tlnl'[ would be a hyperplane relative to Tl
then T would also be in T, since the polarity determined by S;,x is induced by

1 and it would take Tlnl'[ back to TJ'J' = T € T, an absurdity. On the other hand

Tlnl'[ contains C so that XnIl = Tlnl'[. To sum up we have shown that
6° = C = AnlNQ = T ATINQ = 6’°
which establishes that € is a chain. ]

There may be 3-dimensional subspaces Y c #? such that both YnS;,x and YnQ are



Spheres of Quadratic Field Extensions 10

elliptic quadrics4.

3.4. Let L be a skew field. The incidence structure which is formed by a fixed
chain 6 and the set of all traces which are a part of & is isomorphic to the
chain geometry Z(Z,K). So it is natural to ask if there is a 3-dimensional
Z-subspace of ? such that the chain & and the traces within &, when restricted

to this Z-subspace, represent - up to a collineation - the spread ¥x,r and its

chains (Z-sublines), respectively. The answer is that such a Z-subspace
exists, but it is by no means uniquely determined.
We illustrate this for the standard chain K < ¥;,xk. Denote by ¥ the

Z-subspace of P determined by the basis (7). We shall show that there exists a
collineation p € PGL(?) such that K and ! have the required propertyS:

Define p as the projective collineation of ? given in cases 1 and 2 by the

matrices

-a-a 0 O a a 0 0

1 1.0 0 and 1 0 0 O

0 0 -a -a 0 0 a a |’

0 0 1 1 0O 01 O
respectively. Then the corresponding automorphic collineation of the KLEIN
quadric is described by one of the 6x6 matrices written down below and

KP\{w°} has the parametric representations

a=a 0 0 0 0 O 1 1
0] 32 aa 0 a° aa 0] 1B
O -a -a 0 -a -a a-A13-af3 _ = a-A1f3
0 0 0aao0 0 Py fe| = B | o2on a2 (151)
o 1 1 0o 1 1 0 -B
O -a -a 0 -a - -o—af3 -
and
a 0 O O O O 1 1
O mr m1 O p1 M1 aB m1B
0O a O 0O O a atafl | _ o« (15,)
0O 0 0 a 0 O o?+u1p? o+ 82| 2
o 1 0O 0O 0 O 0] B
O a a O 0 O ap+o o
respectively, with «,8 € Z. Both (15;) and (152) are in accordance with (103)

when replacing «,B,A1,M41 by u,v,Az,M2 and ruling

out the non-zero factors

(a-a) and a, respectively. Applying p_1 establishes the result.

In order to see that ¥ ' is not uniquely determined by K, we may transform

the standard chain under any of the collineations k.

(¢ € K\{0}) which, de-

*There need not be a chain 2(K,L) which contains a given trace and a given
point off that trace; cf. however condition (%) in [2,334].

°K yields a spread of ¥ which belongs to Z(Z,Z(i)) rather than Z(Z,K).
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pending on the two cases, are given by the matrices
0 1

and

oNeoNoNe]
ol eoNe)
e NoNe)
oNeoNoNe]
ol N eoNe)
O~ OO0

1 c
0 0
0 0
respectively. It is easily seen that XK, but not \I/p_l, is left invariant under
all collineations k., since K is infinite.

Now it is immediate that the o-images of traces within ¥#;,x are exactly the
l1-spheres on S;,x and that Lemma 1 can be applied on the o-image of every
chain. This gives a geometric characterization of case 1 and case 2 in terms
of the o-image of any chain.

We infer from (13y), (133), (14;) and (14,) that S;,x is identical with the
HoTJE model of the chain geometry Z(Z,L), because the quadratic form appearing

at the coordinate p;3 is just the norm of (a+aB)+i(y+ad) € L; cf. [13], [14].

4. Automorphisms

4.1. We restrict our attention to cases 1 and 2, i.e. L is a skew field. Every
automorphic collineation of the KLEIN quadric which leaves S;,¢ invariant maps

2-spheres onto 2-spheres. This may be reversed as follows® (cf. also [21]):

Theorem 4. Let ¢:S;,x > Sk be a bijection such that both ¢ and <p_1 map
2-spheres onto Z2-spheres. Then ¢ extends to a collineation l[l:i) > P which

leaves the Klein quadric invariant.

Proof. We can go back from S;,r to the projective line over L via the KLEIN
map and the spread ¥;,x. Hence ¢ gives rise to an automorphism of X=(K,L).
By [1], [2,343] and [15], every automorphism of Z(K,L) is induced by a product
of bijections f:L? > L? of the following three types:

1. f is an L-linear mapping.
2. (g, = (1o7,117), J € Aut(L) and K/ = K.
3. (g,l1) ((ll_l)J,(lo_l)J), J an antiautomorphism of L and K/ = K.

Mappings of first and second type are semilinear bijections of the vector
space L? over K, whence we obtain corresponding automorphic collineations of

the spread ¥;,¢. When f is of third type then define
T:L%L% > L, ((lo,ll),(mo,ml)) = —11Jm0+lojm1.

This T is a non-degenerate sesquilinear form on L? (over L or K). Moreover

®The assumptions of Theorem 4 may be weakened by virtue of "Satz 2" in [15].
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((lo,ll),(mo,ml))r =0 (mo,ml) (S ((ll_l)J,(lo_l)J)L.

Thus T gives rise to a duality of ? which leaves ¥;,x invariant and transforms
the lines of the spread in the required way. But every automorphic colline-
ation or automorphic duality of ¥;,¢ induces an automorphic collineation of
the KLEIN quadric which leaves S;,x invariant. So there exists a collineation

¥ with the required properties. ]

4.2. We did not assert the uniqueness of Y in Theorem 4. On the other hand y|TI
is uniquely determined by ¢, since the identity mapping of T is the only

collineation extending the identity of S;,x. In case 1, by (31), the mapping
h:L? > L% (lo,l;) = (loi,l i)

is a semilinear bijection of L? over K with respect to (7) € Aut(K). This h
yields a non-trivial collineation of # which fixes every line of the spread
f1,k, but no other line, no point and no plane of ?. The co-transform of this
collineation is a BaEr involution of P fixing T elementwise; cf. also

[19,1V,177]. In case 2, y is unique, since K/Z is not GALOIS.

4.3. Suppose that L is arbitrary. We close with the following

Corrollary. Let L/K be a quadratic field extension, where K is commutative.
The spread ¥;,x admits a symplectic polarity fixing every line of this spread

if, and only if, L is commutative.

Proof. The o-transforms of symplectic polarities of P (regarded as transform-
ations on the set of lines) are exactly the involutory automorphic perspective
collineations of the KLEIN quadric. When L is commutative then S;,x spans a
3-dimensional subspace of ¥ and therefore admits such a perspective collinea-

tion fixing S;,¢ pointwise. When L is non-commutative then S;,x is spanning %

and no such perspective collineation exists. ]
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