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SPREADS OF RIGHT QUADRATIC SKEW FIELD EXTENSIONS

~ABSTRACT. Let L/K be a right quadratic (skew) field extension and let P
be a 3-dimensional projective space over K which is embedded in a 3-
dimensional projective space P over L. Moreover let I be a line of P which~carries no point of P. The main result is that - even when L or K is a skew~field - the following holds true: A desarguesian spread of P is given by the~ ~set of all lines of P which are indicated by the points of I. A spread of P
arises in this way if, and only if, there exists an isomorphism of L onto the
kernel of the spread such that K is elementwise invariant. Furthermore a geo-
metric characterization of right quadratic extensions with a left degree other
than two and of quadratic Galois extensions is given.

1. INTRODUCTION
!

The complex numbers C and the real numbers R form the classical example of a

quadratic field extension. There are various geometric interpretations, but we

shall only be concerned with the following ones:

Firstly, we may think of C as being a euclidian plane over R. Here multi-

plication in C gives rise to the group of dilative rotations fixing 0.

Secondly, we may take the projective line over C, viz. the projective space
2 2 4 2P(C ). Putting C t=tR results in a map of P(C ) (as a set of points) into the

4set of lines of the 3-dimensional projective space P(R ). The image set of

this map is an elliptic linear congruence of lines or, in other words, a regu-

lar spread.

But there is one more feature, namely complexification of real spaces: This

turns the euclidian plane C (over R) into a minkowskian plane (over C) with

two isotropic directions which are invariant under all dilative rotations and

pointing to the absolute circular points on the line at infinity. Every ellip-
4tic linear congruence of lines in P(R ) extends to a subset of a hyperbolic

4linear congruence in P(C ) with two skew conjugate imaginary focal lines. On
4the other hand the set of all real lines of P(C ) which intersect a fixed line

I, without any real point, determines an elliptic linear congruence of lines
4in P(R ).

These interpretations are well known. Cf. e.g. [20,205!f], [24,119!ff],

[24,281!ff], [25]. For further references and historical remarks see [2],

[10], [25].
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1In this paper L/K is an arbitrary field extension of right degree two.

Firstly, we investigate the affine plane given by the right vector space L

over K. Left multiplication in L (xt9Ltax) is described via 2 by 2 matrices

with entries in K. The crucial result is a characterization of these matrices
2 2in terms of a common eigenvector in L tBtK .

Secondly, the points of the projective line over L [3,320!ff], i.e. the
21-dimensional subspaces of the right vector space L over L, yield the lines

2of a spread in the 3-dimensional projective space on the right vector space L

over K. (Cf. also [12]). As is known from the theory of translation planes,
2the kernel of this spread is isomorphic to L [19,6].

We establish a geometric construction of such spreads. Every 3-dimensional
~projective space P over K can be embedded in a 3-dimensional projective space

P over L. It is easily seen that there exists at least one line I of P such
~ ~that InPt=to. Every line ItCtP with this property determines a spread S(I) of

~ ~ ~P as follows: The spread is formed by all lines l of P which are indicated by

some point X of I; this means that X belongs to the extended line l which is
~ ~ ~spanned by ltCtP within P. It turns out that a spread of P arises in this way

if, and only if, there exists an isomorphism of L onto the kernel of the

spread with the property that, after a natural identification, every element

of K is left fixed. However, in contrast to the classical case, only the
^ ~points of some subline I of I actually indicate lines of S(I). It is shown

~that the left degree of L/K is greater than two if, and only if, S(I) is not a
~ ^dual spread of P. This in turn is equivalent to It$tI. As a corollary to an

algebraic result (existence of field extensions with right degree two but

different left degree) we obtain the existence of desarguesian spreads which

are not dual spreads. Finally, we prove that there are at least two different
~lines which indicate, respectively, the same spread S(I) if, and only if, L/K

is a Galois extension.

Similar results on spreads arising from field extensions L/K, where L is a

commutative or even finite field and L/K is a finite or even Galois extension,

have been established by various authors. Cf. [2], [4], [5], [6], [15], [16],

[17], [18], [21], [22], [23].

2. THE PLANE GIVEN BY L/K
!

Let K be a field and L an extension field of K. We assume throughout this

----------------------------------------------------------------------------------------------------
1The term field is to mean a not necessarily commutative field.
2Some authors use reverse multiplication and obtain an antiisomorphic field.
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paper that L is right quadratic over K, i.e.
!

|L!:!K| t=t2.right !
The left degree of L over K may be different from 2; cf. section 4.

Take a!n!y element itetL\K. Then {1,i} is a basis of the right vector space

L over K. Every element of L can be written uniquely in the form a+ib with

a,btetK. Hence there are l,mtetK such that
!2i +il+mt=t0, mt$t0, (1)

!
and there exist mappings S!:!KtLtK and D!:!KtLtK such that

!S Dait=tia +a for all atetK.
!

This S is an injective endomorphism of K and D is an S-derivation of K, i.e.
!D D D D D S D(a+b) t=ta +b and (ab) t=ta b +ab for all a,btetK.

! ( )T 2Cf. [8], [9,56]. We may identify elements a+ibtetL with columns a,b tetK9 02 2thus turning K into field (K ,+,q). Defining matrices
!D S& a a -mb *M t:=t ! S S D! (a,btetK) (2)ab 7 b a -lb +b 8

!
yields

! & a * & x * & x *! ! q ! ! t=tM W ! ! for all a,b,x,htetK. (3)7 b 8 7 h 8 ab 7 h 8!!
This generalizes the elementary concept of dilative rotations.

THEOREM 1. The matrices M , given by (2), are characterized within the set ofab ( )T 22*2 matrices over K by the property that the column -i,1 tetL is an eigen-9 0
vector. !!!!!!! !!!!! !!! !!!!!! ! !

!
Proof. We read off from

!D S D S& a a -mb * &-i * &-ai+a -mb *! S S D! W ! t=t S S D! (4)7 b a -lb +b 8 7 1 8 7-bi+a -lb +b 8!
and

! S S D 2 S D S S Dt -i(-bi+a -lb +b )t=ti b +ib -ia +ilb -ib
S S S St =t-ilb -mb -ia +ilb
S Dt =t-mb -ai+a

!S S D ( )T 2that -bi+a -lb +b is a right eigenvalue of M and that -i,1 tetL is aab 9 03corresponding eigenvector for all a,btetK. Conversely, suppose that
!& a g * &-i * &-i *! ! W ! t=t ! c7 b d 8 7 1 8 7 1 8!!

----------------------------------------------------------------------------------------------------
3 2So we have at least one "absolute point" on the line at infinity of L .
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for a,b,g,dtetK and ctetL. Then -ai+gt=t-ic, -bi+dt=tc, whence
!S D S D-ict=t-ia -a +gt=t(-il-m)b +ib -id

!
and

! D S S S Dgt=ta -mb , dt=ta -lb +b ,

as required.P

3. SPREADS OF LINES ARISING FROM INDICATOR SETS WHICH ARE SUBSPACES
!~Let V be a right vector space over K. Then (with 1tetKtCtL) we have the

~ ~canonical embedding vt9Ltvt1 of V in the right vector space V!tK!L over L.
~ ~This yields an embedding of the projective space P on V in the projective

~ ~space P on V!tK!L and P,P will be called projective spaces over the right

quadratic field extension L/K.
~ ~Subspaces of P or P will be regarded as sets of points. Every subspace M of

~ ~P extends to a subspace of P, say M, which is the span of M within P. Note
~ ~ ~that Mt=tPnM and dimMt=tdimM. By abuse of language M will be called a subspace

~ ~ ~of P. This notation (MtCtP, MtCtP) will be kept until the end of this note.
~We state three lemmata on projective spaces P,P over L/K. The proof of

Lemma 1 is a straightforward generalization of results in [4], [6,522] and is

left to the reader; cf. also section 3 in [13]. Lemma 2 has been proved in [4]

(Proposition 2.7,a) under the additional assumption that P is pappian.

LEMMA 1. Let dimPt>t1. Then every hyperplane H of P which is not a hyperplane
~ ~of P contains a unique co-line of P.

!

LEMMA 2. Let T be an (n-d)-dimensional subspace of P, 1t<tdimPt=tnt<t8,
~n-2dt>t-1. Then T contains an at least (n-2d)-dimensional subspace of P.

!
Proof. If Tt=tP then the result is obvious; otherwise T may be written as

intersection of dt>t1 independent hyperplanes H1,...,Hd of P. If such an Hk is
~ ~a hyperplane of P then put Hkt=:tHk’t=:tHk". If Hk does not belong to P then,

~by Lemma 1, there exist two different hyperplanes Hk’,Hk" of P such that

Hk’nHk"tCtHk. Write
!

Ut:=tH1’nH1"n!...!nHd’nHd"tCtH1n!...!nHdt=tT.
! ~Then dimUt>tn-2d and U is a subspace of P.P

~ ~Given a point XtetP\P then there is a!t m!o!s!t one line l of P which is

incident with X. If such a line l exists then it is said to be indicated by X.
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~ 4 ~A subset I of P\P will be called an indicator set (with respect to P) if the

following conditions hold true:
! ~ 5(I) Whenever X,X’tetI indicate lines of P with non-empty intersection then

Xt=tX’.
~(II) The set S(I), formed by all lines l of P which are indicated by the

~points of I, is covering P.
!

In using this terminology even when the left degree of L over K is different

from 2, we have to be aware of the fact that a point of I may not indicate any
~line of P at all. See the results in section 4.

When I is an indicator set then write
!~ ~ ~S(I)t:=t{l !=!lnP|ltetS(I)}.

! ~ ~It is immediate from (I) and (II) that S(I) is a 1-spread of P, i.e. a parti-
~ ~tion of P into lines. We shall also say that I is an indicator set of S(I) or

~that S(I) is indicated by I.

The following Lemma 3 is a generalization of the description of elliptic

linear congruences of lines mentioned in section 1, of Theorem 3.6 in [4],
6where P is assumed to be pappian, and in part of Theorem 3 in [13].

LEMMA 3. Let I be an m-dimensional subspace of P, 1t<tdimPt=t2m+1t<t8, which
~carries no point of P. Then I is an indicator set.

!~ ~Proof. Fix any point XtetP. Every line of P which goes through X and is indi-

cated by a point of I necessarily is contained in the subspace
!

TXt:=tXvI.
! ~By Lemma 2 and dimTXt=tm+1t=t2m+1-m, there is at least one line of P which

~lies in TX. Now suppose that there exists a plane E of P satisfying EtCtTX:

Then, by the dimension formula, EnI would be a line which, by Lemma 1, would
~ ~have a common point with P in contradiction to InPt=to. We deduce that X is on

~every line l of P which is contained in TX, since lvX cannot be a plane. On
~the other hand there cannot be two distinct lines l,l’ of P passing through X,

~since lvl’ cannot be a plane either. Hence there is a unique line of P, say

lX, such that XtetlXtCtTX. Furthermore this lX is indicated by a point of I,

----------------------------------------------------------------------------------------------------
4This is slightly more general than the definition in [6,523]. Cf. also the
concept of spazio direttore [21,29].
5 ~ ~ ~ ~Two lines l,l’tCtP have a common point within P if, and only if, the extended
lines l,l’ have a common point in P.
6That result, in contrast to the present one, is not restricted to finite-
dimensional spaces, but it is subject to other assumptions which do not appear
in Lemma 3.
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since dimIt=tdimTX!-!1. Therefore I is an indicator set.P

In the sequel we shall confine our attention to 3-dimensional projective
~spaces P and P. Here a 1-spread briefly will be called a spread. Every spread

gives rise to a translation plane and we are going to use the term desar-

guesian spread if this plane is desarguesian. Recall that the kernel of a
~ ~spread S of P is the set formed by all endomorphisms of the abelian group

~ 7 ~ ~(V,+) which map every line ltetS into itself. This kernel is a field and will
~ ~be written as K(V,S). Cf. e.g. [19,3]. Every atetK gives rise to an element of

~ ~K(V,S), again denoted by a, by putting
!a ~x t:=txa for all xtetV.

! ~ ~ ~ ~This identification of atetK and atetK(V,S) turns K into a subfield of K(V,S).

~THEOREM 2. Let P,P be 3-dimensional projective spaces over a right quadratic
~field extension L/K. There exists a line of P which carries no point of P.

Every line I with this property is an indicator set of a desarguesian spread
~ ~S(I) of P. There exists an isomorphism of the field L onto the kernel
~ ~K(V,S(I)) of this spread such that K is elementwise invariant.

!~ ~ ~ ~ ~Proof. (a) In P there exist three mutually skew lines l01,l23,l. Draw within P
~ ~ ~three different transversal lines t02,t13,t, say. Then put

!~ ~ ~ ~ ~ ~ ~ ~ ~ ~P0t:=tl01nt02, P1t:=tl01nt13, P2t:=tl23nt02, P3t:=tl23nt13, Pt:=tlnt.
! !~Hence there exists a coordinatization of P with (P0,P1,P2,P3,P) as frame of

reference and this extends to a coordinatization of P. Choose any itetL\K and

define I as the line of P which joins the points with coordinates
!( )T ( )T-i,1,0,0 , 0,0,-i,1 .9 0 9 0!~This line has no common points with P.

~(b) Now let I be a line of P such that InPt=to. By Lemma 3, I is an indi-
~ ~ ~ ~cator set. Choose three different lines of S(I), label them l01,l23,l and

introduce coordinates as above. The points of intersection l01nI, lnI, l23nI

are collinear, whence they have coordinate vectors
!( )T ( )T ( )T-i,1,0,0 , -i,1,-i,1 , 0,0,-i,1 , (5)9 0 9 0 9 0 !

respectively, for some itetL\K. All results of section 2 hold true for this

specific element itetL\K.
~Let g be any line of P which is skew to l23. There is a unique 2*2 matrix

----------------------------------------------------------------------------------------------------
7Whenever it is conveniant, we shall use the same symbol to denote a line,~i.e. a range of points in P (or P), as well as the associated 2-dimensional~subspace of the vector space V (or V).
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M with entries in K such that the coordinates of vectors in g have the formg !( )T & u * & x * & x * 2x,y,u,v with ! ! t=tM W ! ! and ! ! tetL .9 0 7 v 8 g 7 y 8 7 y 8
! ( )TBy definition of S(I) this line g belongs to S(I) if, and only if, -i,1 is9 0

an eigenvector of the matrix M . By Theorem 1 this is equivalent tog ! !
M t=tM for some a,btetK.g ab !

This is a well known description of a spread by means of matrices [19,7!ff],

but we use it in an extended way, since it is applied to all points of gtCtP
~ ~rather than gtCtP.

We infer that formula (3) gives the multiplication rule in an underlying
2 ~quasifield (Q,+,q)t=t(K ,+,q) of the spread S(I). Hence Q is even a field

~ ~which is isomorphic to L. Thus S(I) is desarguesian and the kernel of S(I)

also is isomorphic to L.
~ ~(c) We declare a mapping E!:!LtLtK(V,S(I)) as follows: For every a+ibtetL

E ~ ~(a,btetK) the action of the endomorphism (a+ib) !:!VtLtV is defined in terms

of coordinates by
! & x0 * & & x0 * & a * * & x0 *! ! q ! !| h0 | | 7 h0 8 7 b 8 | | h0 | 4! ! t9Lt ! ! for all ! ! tetK .| | | | | || x1 | | & x1 * & a * | | x1 |! ! q ! !7 h1 8 7 7 h1 8 7 b 8 8 7 h1 8

!
A straightforward calculation shows that this definition does make sense and

that E is an injective endomorphism of fields which leaves K elementwise in-
E ~ ~ E ~ ~ Evariant. But KtCtL tCtK(V,S(I)) implies L t=tK(V,S(I)), since both L and

~ ~K(V,S(I)) are right quadratic extensions of K.P

~Now we investigate all spreads of P which arise according to Theorem 2.

~THEOREM 3. Let P,P be 3-dimensional projective spaces over a right quadratic
~ ~field extension L/K, let S1 be a spread of P which is indicated by a line I1

~ ~of P and let S2 be a spread of P. Then the following assertions are equi-

valent:
~ ~ ~ ~ ~(a) There exists a projective collineation k!:!PtLtP which maps S1 onto S2.

~(b) S2 is indicated by a line I2 of P.
~ ~(c) There exists an isomorphism of the kernel of S1 onto the kernel of S2

which fixes K elementwise.
! ~ ~ ~Proof. (a)t6t(b) The given collineation k is induced by an ftetGL(V) which

extends to a mapping ftetGL(VtKL). This f in turn induces a projective col-
~ klineation k of P which is an extension of k. Then I2t:=tI1 is a line with the

required properties.
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(b)t6t(c) This is an immediate consequece of Theorem 2.
~ ~ ~ ~(c)t6t(a) Suppose that an isomorphism E!:!K(V,S1)tLtK(V,S2) fixes every

~ ~ ~element of K. On one hand V will be regarded as vector space over K(V,S1) and,
~ ~ ~ ~on the other hand, as vector space over K(V,S2). So given atetK(V,S1) or

~ ~ ~ aatetK(V,S2) and xtetV we may write xa instead of x .
~ ~ ~ ~ ~There exists an E-semilinear bijection f of V over K(V,S1) onto V over

~ ~ ~ ~ ~ ~K(V,S2). This f operates linearly on V over K. Fix a line ltetS1 and a non-
~zero vector xtetl. Then

! ~ ~ ~lt=t{xa|atetK(V,S1)}
! ~and a similar description holds true for the lines of S2. We deduce from

~ ~f f E ~ ~(xa) t=t(x )a for all xtetV, atetK(V,S1),
! ~ ~and from the bijectivity of f that the projective collineation of P which is

~ ~ ~induced by f maps S1 onto S2.P

~In general it is not true that e!v!e!r!y desarguesian spread of P with an
~underlying field isomorphic to L is of the form S(I) for some line ItCtP. This

is illustrated by the following simple counterexample:
6Put Kt:=tQ(r2). Let L,tL’ be the splitting fields of the polynomials2 6 2 6 6 6X -r2,tX +r2tetQ(r2)[X], respectively. There exists an automorphism F of Q(r2)6 6such that r2 is interchanged with -r2 . Thus L and L’ are isomorphic fields.6But there does not exist an isomorphism LtLtL’ which leaves Q(r2) element-6 ~wise invariant, since r2 is a square in L but a non-square in L’. Define P and~ ~P over K and L, respectively, and take a spread S1t=tS(I) which exists accord-~ ~ing to Theorem 2. There is a non-projective collineation k of P belonging to~ ~ ~ ~ ~FtetAut(K). The image of S1 under k is a spread S2 of P. The kernel of S1 is~isomorphic to the kernel of S2, but condition (c) of Theorem 3 is not met,~whence S2 is not indicated by a line of P. Clearly, in some o!t!h!e!r exten-~ ~sion of P, namely the projective space on VtKL’, such a line exists.!

It seems to be an open problem to give an intrinsic characterization of all
~ ~desarguesian spreads of P in terms of P alone. However, when K is part of the

centre of L then results stated in [14] can be applied.

4. GEOMETRIC ASPECTS OF THE LEFT DEGREE
!

The left degree of a right quadratic extension L/K is either two or strictly

greater than two, since it cannot be equal to one. The following result tells

us, how to see from different geometric points of view, if this left degree

equals two or not. One condition is based upon the embedding of a projective
~space P in a projective space P (cf. the beginning of section 3), while the

~other uses a three dimensional projective space P together with the concept of
~dual spread, i.e. a set of lines with exactly one line in every plane of P.
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~THEOREM 4. Let P,P be projective spaces over a right quadratic field extension

L/K. The following assertions are equivalent:

(a) The left degree of K/L equals two.
~(b) Provided that dimPt>t2, every point of P which is not a point of P is on

~a unique line of P.
~(c) If dimPt=t3 then every spread of P which is indicated by a line I of P is

~also a dual spread of P.
!

Proof. (a)t5t(b) If the left degree of L over K is two then through every
~ ~point of P\P there goes a unique line of P. This is easily shown in terms of

coordinates; cf. the references with respect to Lemma 1.

If this left degree is >t2 then there are elements a,btetL such that
!

x+ha+zbt=t0 with x,h,ztetK implies xt=tht=tzt=t0. (6)
!~Take any plane E of P and introduce projective coordinates with respect to a

~quadrangle of PnE. There exists a point Z which has a coordinate vector
( )T ~1,a,b . If a line of P goes through Z then it has to be a part of E, since9 0 ~ZtetE\P. However, by (6), such a line cannot exist within the plane E.

(a)t5t(c) We adopt the notations of the proof of Theorem 2. There is a line
~of S(I) in a given plane E of P if, and only if, EnI is on a line of S(I),

~because of EnItmtP.
~If |L!:!K| t=t2 then, by (b), every point of I is on a line of P andleft ~this line belongs to S(I) by definition. Hence S(I) is a dual spread.

Conversely, if |L!:!K| t$t2 thenleft ! S|L!:!K| t=t|K!:!K | !+!1left left !
(cf. [8,540] or [9,57]) so that S is not surjective. We obtain all points of I

which are incident with a member of S(I)\{l23} via formula (3). By (4) the
( )Tright eigenvalue of M belonging to -i,1 isab 9 0 !S S D S D S S D S Sv t:=t-bi+a -lb +b t=t-ib -b +a -lb +b t=ta -(l+i)b (7)ab !

and this yields, by (5), the point of I with coordinates
!( )T ( )T-i,1,0,0 + 0,0,-i,1 v .9 0 9 0 ab!S 2There exists an element gtetK\K . Moreover gt$tv for all a,btetK , sinceabSgt=tv would force bt=t0 and gt=ta , an absurdity. Hence the point GtetIab

with coordinates
! ( )T ( )T-i,1,0,0 + 0,0,-i,1 g9 0 9 0!

does not indicate a line of S(I). On the other hand it follows from
!( )T ( )T ( )T ( )T-i,1,-ig,g t=t 1,0,0,0 (-i)+ 0,1,0,g + 0,0,1,0 (-ig)9 0 9 0 9 0 9 0!~ ~that there is a plane of P which goes through G. Therefore S(I) is not a dual
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spread.P

The existence of right quadratic extensions of left degree greater than two

[8], [9,123!ff] establishes:

COROLLARY 1. There exist 3-dimensional projective spaces with a desarguesian

spread which is not a dual spread.

It is well known that a spread of a projective 3-space of infinite order need

not be a dual spread [7], [11], but it seems that so far no attention has been

paid to the question whether such a spread is desarguesian or not. Another

question related with Theorem 4 is the definition of Baer subplanes in pro-

jective planes of infinite order which has been discussed in [1]. We are in a

position to contribute the following

~COROLLARY 2. There exist desarguesian projective planes P with a subplane P
~such that every line of P is incident with at least one point of P, but not

~every point of P is on a line of P.

~ ~ ~Next we show that, whenever S(I) is not a dual spread of P (dimPt=t3), we may

easily describe those points of I which contain a line of S(I). An indicator
^ ~ ^set ItCtP\P will be called minimal if every proper subset of I is not an

indicator set.

~THEOREM 5. Let P,P be 3-dimensional projective spaces over a right quadratic
~ ~field extension L/K. Assume that S(I) is a spread of P which is indicated by a

line I of P. There exists a subline of I which is a minimal indicator set of
~ ~S(I). This subline is a proper subline of I if, and only if, S(I) is not a

~dual spread of P.
!

Proof. According to [8,535] the endomorphism S!:!KtLtK may be extended to an

endomorphism of L (again denoted by S) by putting it9Lt-(l+i); cf. formula
S S(1). Moreover K t=tK is shown to be equivalent to L t=tL. In this notation

formula (7) reads
! Sv t=t(a+ib) ,ab ! S ^whence those points of I which are on a line of S(I) form an L -subline I of

^ ~ ^ ~ ^I. This I is a minimal indicator set and S(I)t=tS(I). But It$tI is equivalent,
~by the proof of Theorem 4, to S(I) not being a dual spread.P
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5. GALOIS EXTENSIONS
!

There arises the question if there are two or even more lines of P, such that
~each of these lines is indicating a given spread S(I). When L is commutative

then similar questions have been discussed in [4], [5,439], [16], [17],

[21,29].

~THEOREM 6. Let P,P be 3-dimensional projective spaces over a right quadratic
~ ~field extension L/K and let S(I) be a spread of P which is indicated by a line

ItCtP. There exist two different lines of P such that each of them is an
~indicator set of S(I) if, and only if, L/K is a Galois extension.

!
Proof. We shall use the settings of Theorem 2.

If L/K is a Galois extension, i.e. there is a non-trivial automorphism R of
RL which leaves K elementwise fixed, then necessarily i t$ti. In geometric

terms we obtain the existence of a collineation k!:!PtLtP which fixes every
~ ( )Tpoint of P but actually moves the point with coordinates -i,1,0,0 along the9 0 kinvariant line l01, so that I cannot be k-invariant. Thus the line I is an-

~other indicator set of the spread S(I).
~Now let a line Jt$tI be an indicator set of S(I), whence l01nJ, lnJ, l23nJ

have coordinate vectors
!( )T ( )T ( )T-j,1,0,0 , -j,1,-j,1 , 0,0,-j,1 ,9 0 9 0 9 0! ( )Trespectively, with it$tjtetL\K; cf. formula (5). Since -j,1 has to be an9 0

eigenvector of every matrix M appearing in formula (2), we may replace i byab
j in formula (4). Evaluating the right eigenvalue of M which belongs toab( )T-j,1 yields the identity9 0 !S S D S D-j(-bj+a -lb +b )t=t-mb -aj+a for all a,btetK. (8)

!
Now we substitute in (8) as follows: Putting bt:=t0 establishes

!S Dajt=tja !+!a for all atetK, (9)
!Dwhereas at:=t0, bt:=t1, together with 1 t=t0, shows

!
2j +jl+mt=t0. (10)

!
By (9), (10) and (1) the mapping

!
R!:!LtLtL, a+ibt9Lta+jb (a,btetK)

!
is an automorphism of L with the required properties.P

We remark that any right quadratic Galois extension L/K has left degree two

[9,49]. So we are able to state the following
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~COROLLARY 3. Let P,P be 3-dimensional projective spaces over a right quadratic
~ ~field extension L/K and let S be a spread of P. If there are two different

~ ~lines of P such that each of them is an indicator set of S then S is also a
~dual spread of P.

If L is commutative then the Galois group of the quadratic extension L/K is of

order <t2, whence there cannot be more than two different lines which indicate

a spread. But even when K is commutative and L is not commutative this need no

longer be true.

This is illustrated, for example, by taking the real quaternions as L and
any subfield of L which is isomorphic to the complex numbers as K. Every ele-
ment of K\{0} gives rise to an inner automorphism of L. This implies for every~spread S(I) that there is an infinite number of lines such that each of them~indicates S(I). Cf. also [13], where a relationship to Segre manifolds has
been established.
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