Symplectic Plücker Transformations

Hans HAVLICEK
Abteilung für Lineare Algebra und Geometrie, Technische Universität,
Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

Dedicated to Hans Vogler on the occasion of his 60th birthday

AMS Subject Classification: 51A50.

Keywords: Symplectic space, Plücker transformation, line geometry.

Abstract: Plücker transformations of symplectic spaces with
dimensions other than three are induced by orthogonality-preserving
collineations. For three-dimensional symplectic spaces all Plücker
transformations can be obtained - up to orthogonality-preserving
collineations - by replacing some but not necessarily all non-
isotropic lines by their absolute polar lines.

1. Introduction

In this paper we discuss bijections of the set \(L \) of lines of a symplectic
space, i.e. a (not necessarily finite-dimensional) projective space with
orthogonality based upon an absolute symplectic\(^1\) quasipolarity. Following [1],
two lines are called related, if they are concurrent and orthogonal, or if
they are identical. A bijection of \(L \) that preserves this relation in both
directions is called a (symplectic\(^2\)) Plücker transformation. We shall show
that any bijection \(L \rightarrow \hat{L} \) taking related lines to related lines is already a
Plücker transformation. Moreover, a complete description of all Plücker trans-
formations (cf. the abstract above) will be given.

2. Symplectic spaces

Let \((P, \mathcal{L})\) be a projective space, \(3 \leq \dim(P, \mathcal{L}) \leq \infty\). Assume that \(\pi \) is a
symplectic quasipolarity [11], [12]. Thus \(\pi \) assigns to each point \(X \) of \(P \) a

\(^1\)Instead of ‘symplectic’ some authors are using the term ‘null’.

\(^2\)We shall omit the word ‘symplectic’, since we do not discuss other types of
Plücker transformations in this paper. Cf., however, [11], [2], [4], [5],
[8,p.80ff], [9], [10] for results on other Plücker transformations.
hyperplane X^n with $X \in X^n$; furthermore $Y \in X^n$ implies $X \in Y^n$ for all $X, Y \in \mathcal{P}$. Cf. also [6] for an axiomatic description of projective spaces endowed with a quasipolarity.

We define a mapping from the lattice of subspaces of $(\mathcal{P},\mathcal{L})$ into itself by setting

$$\mathcal{J} \mapsto \bigcap \{X^n | X \in \mathcal{J} \} \text{ for all subspaces } \mathcal{J} \neq \emptyset \text{ and } \emptyset \mapsto \mathcal{P}. \quad (1)$$

This mapping is again written as π and is also called a quasipolarity. If $(\mathcal{P},\mathcal{L})$ is finite-dimensional, then it is well known that π is an antiautomorphism of the lattice of subspaces of $(\mathcal{P},\mathcal{L})$. In case of infinite dimension the mapping (1) still has the properties

$$(\mathcal{J}_1 \vee \mathcal{J}_2)^\pi = \mathcal{J}_1^n \cap \mathcal{J}_2^n, \quad (\mathcal{J}_1 \cap \mathcal{J}_2)^\pi \supset \mathcal{J}_1^n \vee \mathcal{J}_2^n, \quad \mathcal{J} \subset \mathcal{J}^{\pi^n}$$

for all subspaces $\mathcal{J}_1, \mathcal{J}_2, \mathcal{J} \in \mathcal{P}$. Note that in the last formula strict inclusions are not necessarily preserved, if \mathcal{J}_1 and \mathcal{J}_2 both have infinite dimension. Moreover, it is an easy induction to show for all finite-dimensional subspaces $\mathcal{J} \in \mathcal{P}$ that $\mathcal{J}^{\pi^n} = \mathcal{J}$ and that every complement of \mathcal{J}^n has the same finite dimension as \mathcal{J}.

$(\mathcal{P},\mathcal{L},\pi)$ is a **symplectic space** with **absolute quasipolarity** π [7,p.384ff], [11]. In terms of an underlying vector space V of $(\mathcal{P},\mathcal{L})$ the symplectic quasipolarity π can be described by a non-degenerate alternating bilinear form of $V \times V$ into the (necessarily commutative) ground field of V. If $(\mathcal{P},\mathcal{L})$ is finite-dimensional, then it is well known that $\dim(\mathcal{P},\mathcal{L})$ is odd.

We are introducing two binary relations on \mathcal{L}: Given $a, b \in \mathcal{L}$ then define a and b to be **orthogonal** (\perp), if $a \cap b^n \neq \emptyset$. The lines a and b are called **related** (\sim), if $a \cap b$ and $a \cap b \neq \emptyset$, or if $a = b$. Given orthogonal lines a, b there exists a point $R \in a \cap b^n$. Therefore

$$R^n \supset (a \cap b^n) \supset a^n \vee b^n = a^n \vee b.$$

The line b has a point in common with a^n, since R^n is a hyperplane and a^n is a co-line. Consequently, \perp and \sim are symmetric relations.

Each line $a \in \mathcal{L}$ either is contained in a^n or is a complement of a^n, since $a \cap a^n$ being a single point would imply that $X^n = a \cap a^n$ for all points $X \in a \setminus a^n$, in contradiction to $\pi|\mathcal{P}$ being injective. A line $a \in \mathcal{L}$ is **isotropic** (self-orthogonal) if, and only if, a is **totally isotropic**, i.e., $a \subset a^n$. We shall write \mathcal{J} for the set of all isotropic lines.

If Q is a point, then $\mathcal{L}[Q]$ stands for the star of lines with centre Q and

3There are, e.g., hyperplanes $H \subset \mathcal{P}$ with $H \neq X^n$ for all $X \in \mathcal{P}$. For all such hyperplanes $H^n = \mathcal{P}^n = \emptyset$, although $H \neq \mathcal{P}$.
\[J(Q) := L(Q) \cap J \] for the set of all isotropic lines through \(Q \). In the following Lemma 1 we state two simple properties of isotropic lines that are well known in case of finite dimension [3,p.181ff], [7,p.384ff] but hold as well for infinite dimension:

Lemma 1. If \(Q \in \mathcal{P} \), then all isotropic lines through \(Q \) are given by

\[J(Q) = \{ x \in L | Q \in x \subset Q^n \}. \]

Let \(a \in \mathcal{L} \setminus J \) be non-isotropic. The set of isotropic lines intersecting the line \(a \) equals the set of all lines intersecting both \(a \) and \(a^n \).

Proof. Let a line \(x \) with \(Q \in x \subset Q^n \) be given. This implies \(Q^n \cap x^n \) so that \(x \) and \(x^n \) are in the same hyperplane \(Q^n \). Since \(x^n \) is a co-line, \(x \) and \(x^n \) cannot be skew, i.e. \(x \in J(Q) \). On the other hand, from \(x \in J(Q) \) follows immediately that \(x \subset x^n \subset Q^n \).

Next let \(a \in \mathcal{L} \setminus J \). If \(b \in J \) intersects \(a \) at a point \(Q \), say, then \(Q \in b \subset b^n \) implies \(b^n = b \subset Q^n \), whereas \(Q \in a \) tells us \(a^n \subset Q^n \). Thus, as before, \(b \) and \(a^n \) are not skew. Conversely, given points \(Q \in a \) and \(R \in a^n \) then \(R \in a^n \subset Q^n \) and \(Q \in a \subset R^n \), whence \(Q \lor R \subset Q^n \cap R^n = (Q \lor R)^n \).

We apply this result to show

Lemma 2. Distinct lines \(a,b \in L \) with \(a \cap b \neq \emptyset \) are related if, and only if, \(a \in J \) or \(b \in J \).

Proof. If one of the given lines is isotropic, then \(a \sim b \). Conversely, if \(a \sim b \) and \(a \notin J \), say, then \(b \notin J \) by Lemma 1.

As an immediate consequence we obtain

Lemma 3. Let \(M \) be a set of mutually related lines. Then at most one line of \(M \) is non-isotropic.

Given lines \(a,b \in L \) then there is always a finite sequence

\[a \sim a_1 \sim \ldots \sim a_n \sim b; \]

This is trivial when \(a = b \). If \(a \cap b =: Q \) is a point, then there exists a line \(a_1 \in J(Q) \) so that \(a \sim a_1 \sim b \) by Lemma 2. If \(a \) and \(b \) are skew then there exists a common transversal line of \(a \) and \(b \), say \(c \), whence repeating the previous construction for \(a,c \) and then for \(c,b \) gives the required sequence. Thus \((L,\sim)\)
is a Plücker space\(^4\) [1,p.199]. A (symplectic) Plücker transformation is a bijective mapping \(\varphi : \mathcal{L} \to \mathcal{L}\) preserving the relation \(\sim\) in both directions. We say that \(\varphi\) is induced by a mapping \(\kappa : \mathcal{P} \to \mathcal{P}\), if
\[(A \vee B)^\varphi = A^\kappa \vee B^\kappa\] for all \(A, B \in \mathcal{P}\) with \(A \neq B\).

The group \(\text{PGSp}(\mathcal{P}, \pi)\) consists of all collineations \(\mathcal{P} \to \mathcal{P}\) commuting with \(\pi\) [7,p.388ff], [8,p.19]. Obviously, each \(\kappa \in \text{PGSp}(\mathcal{P}, \pi)\) is inducing a Plücker transformation.

If \(\dim(\mathcal{P}, \mathcal{L}) = 3\), then for each duality \(\tau\) with \(\tau^\tau = \tau\) the restriction \(\tau|_{\mathcal{L}}: \mathcal{L} \to \mathcal{L}\) is a Plücker transformation. Moreover, in the three-dimensional case there are always Plücker transformations not arising from collineations or dualities: Let \(\mathcal{L}_1\) be any subset of \(\mathcal{L} \setminus \mathcal{J}\) such that \(\mathcal{L}_1^\pi = \mathcal{L}_1\). Then define
\[
\delta : \mathcal{L} \to \mathcal{L}, \quad \left\{\begin{array}{ll}
x \mapsto x & \text{if } x \in \mathcal{L} \setminus \mathcal{L}_1, \\
x \mapsto x^\pi & \text{if } x \in \mathcal{L}_1.
\end{array}\right.
\]

Such a bijection \(\delta\) will be called partial \(\pi\)-transformation (with respect to \(\mathcal{L}_1\)); it is a Plücker transformation of \((\mathcal{L}, \sim)\), since
\[a \sim b \iff a^\pi \sim b^\pi \iff a^{\pi \sim b}\] for all \(a, b \in \mathcal{L}, a \neq b\).

The identity on \(\mathcal{L}\) and the restriction of \(\pi\) to \(\mathcal{L}\) are partial \(\pi\)-transformations, as follows from setting \(\mathcal{L}_1 := \emptyset\) and \(\mathcal{L}_1 := \mathcal{L} \setminus \mathcal{J}\), respectively. For every other choice of \(\mathcal{L}_1\) (e.g., \(\mathcal{L}_1 := (a, a^\pi)\)) it is easily seen that there exist two non-isotropic concurrent lines \(x \in \mathcal{L} \setminus \mathcal{L}_1, y \in \mathcal{L}_1\). Then \(x^\delta = x\) and \(y^\delta = y^\pi\) are skew lines. Such a Plücker transformation cannot arise from a collineation or duality.

3. The three-dimensional case

Theorem 1. Let \((\mathcal{P}, \mathcal{L}, \pi)\) be a 3-dimensional symplectic space and let \(\beta : \mathcal{L} \to \mathcal{L}\) be a bijection such that
\[a \sim b \text{ implies } a^\beta \sim b^\beta\] for all \(a, b \in \mathcal{L}\).

Then there exists a partial \(\pi\)-transformation \(\delta : \mathcal{L} \to \mathcal{L}\) such that \(\delta \beta\) is induced by a collineation \(\kappa \in \text{PGSp}(\mathcal{P}, \pi)\).

Theorem 1 is a consequence of the subsequent Propositions 1.1 - 1.4 in which \(\beta\) and \((\mathcal{P}, \mathcal{L}, \pi)\) are given as above.

Proposition 1.1. There exists an injective mapping \(\kappa : \mathcal{P} \to \mathcal{P}\) such that

\(^4\)Alternatively, \(\mathcal{L}\) may be seen as the set of vertices of a graph with two vertices joined by an edge if, and only if, the corresponding lines are distinct and related. We refrain, however, from using terminology of graph theory.
\[J(Q)^\beta = J(Q') \text{ for all } Q \in \mathcal{P}. \]

(3)

Moreover, \(\beta \) is a Plücker transformation, since

\[J^\beta = J. \]

(4)

Proof. By the invariance of \(\sim \) under \(\beta \), the elements of \(J(Q)^\beta \) are mutually related. We infer from Lemma 3 that \(J(Q)^\beta \) contains at most one non-isotropic line. Thus \(J(Q)^\beta \cap J \) has at least two distinct elements, whence it is a subset of a pencil of isotropic lines, say \(J(Q') \) with \(Q' \in \mathcal{P} \).

We show \(J(Q') \subset J(Q)^\beta \): Assume, to the contrary, that there exists a line \(x \notin J(Q) \) with \(x^\beta \notin J(Q') \). Recall that at most one line of \(J(Q)^\beta \) is non-isotropic. Therefore there is a point \(X' \in x^\beta \) that is not incident with any line of \(J(Q)^\beta \). Thus we can draw a line \(b' = b^\beta \) through \(X' \) that is not related to any line of \(J(Q)^\beta \). Hence \(b \) is not related to any line of \(J(Q) \). By \(\dim(\mathcal{P}, \mathcal{L}) = 3 \), \(b \) and the plane \(Q^\alpha \) have a common point lying on some line \(c \in J(Q) \), so that \(c \sim b \), a contradiction.

Next \(J(Q)^\beta \subset J(Q') \) will be established: Suppose there is a line \(a \in J(Q) \) such that \(a^\beta \notin J(Q') \). Then \(a^\beta \sim J(Q') \) forces that \(a^\beta \) is a non-isotropic line either through the point \(Q' \) or in the plane \(Q^\alpha \). Let \(d \in J(Q) \) be non-isotropic, whence \(J(Q)^\beta \cup \{ d^\beta \} \) is a set of mutually related lines containing the non-isotropic line \(a^\beta \). Since \(d^\beta \notin J(Q)^\beta \) and \(J(Q') \subset J(Q)^\beta \), the line \(d^\beta \neq a^\beta \) also has to be non-isotropic in contradiction to Lemma 3.

To sum up, there is a mapping \(\kappa \) satisfying formula (3). The injectivity of \(\kappa \) follows from the bijectivity of \(\beta \) together with (3).

Finally, we prove (4): \(J^\beta \subset J \) is a consequence of (3). Conversely, assume that \(e \in \mathcal{L} \setminus J \). Choose a point \(R \in e \). Then \(J(R)^\beta \cup \{ e^\beta \} = J(R^\beta) \cup \{ e^\beta \} \) is a set of mutually related lines. Therefore \(e^\beta \) is a non-isotropic line either through \(R^\alpha \) or in \(R^\beta \). Lemma 2 and \(J^\beta = J \) imply that \(\beta \) is a Plücker transformation.■

Proposition 1.2. Let \(a \in \mathcal{L} \). Then

\[a^{\alpha \beta} = a^{\alpha \beta}, \]

(5)

\[Q^\kappa \in a^\beta \cup a^{\alpha \beta} \text{ for all } Q \in a. \]

(6)

If \(a \in \mathcal{L} \setminus J \), then either

\[Q^\kappa \in a^\beta \text{ for all } Q \in a, \]

(7)

or

\[Q^\kappa \in a^{\alpha \beta} \text{ for all } Q \in a. \]

(8)

Proof. If \(a \in J \), then \(a^\beta \in J \), whence (5) follows from \(a = a^\alpha \) and \(a^\beta = a^{\alpha \beta} \). If \(a \in \mathcal{L} \setminus J \), then, by Lemma 1,
\[C := \{ x \in L | x \neq a, x \sim a \} \]

is a hyperbolic linear congruence of lines with axes \(a \) and \(a^\pi \); moreover \(C \subset \mathcal{J} \).

We infer from \(\beta \) being a Plücker transformation and (4), that \(C^\beta \subset \mathcal{J} \) is also a hyperbolic linear congruence with \(a^\beta, a^{\pi\beta} \) being its axes. Obviously, only \(a^\beta \) and \(a^{\pi\beta} \) are meeting all lines of \(C^\beta \). On the other hand, by Lemma 1, the axes of \(C^\beta \) are \(a^\beta \) and \(a^{\pi\beta} \). This completes the proof of (5).

If \(a \in \mathcal{J} \), then (6) holds true, since \(\mathcal{Q}^\epsilon \in a^\beta = a^{\pi\beta} \). If \(a \in \mathcal{L} \setminus \mathcal{J} \) and \(\mathcal{Q}^\epsilon \not\in a \), then \(a^\beta = \mathcal{J}[Q]^\beta = \mathcal{J}[Q^\epsilon] \), whence \(Q^\pi \not\in a^\beta \) and therefore \(\mathcal{Q}^\epsilon \in a^{\pi\beta} = a^{\pi\beta} \), as required to establish (6).

Now let \(a \in \mathcal{L} \setminus \mathcal{J} \). Assume to the contrary that there exist points \(Q_0, Q_1 \in a \) such that \(Q^\epsilon_0 \in a^\beta \) and \(Q^\epsilon_1 \in a^{\pi\beta} \). Then \(a \not\in \mathcal{J} \) implies \(\mathcal{J}[Q_0] \cap \mathcal{J}[Q_1] = \emptyset \) whereas, by Lemma 1 and (3), \(Q^\epsilon_0 \cup Q^\epsilon_1 \in \mathcal{J}[Q_0]^\beta \cap \mathcal{J}[Q_1]^\beta \). This is a contradiction to \(\beta \) being injective.

Proposition 1.3. Write \(\mathcal{L}_1 \) for the set of all lines \(a \in \mathcal{L} \setminus \mathcal{J} \) satisfying (8). Then

\[
\delta : \mathcal{L} \to \mathcal{L}, \quad \left\{ \begin{array}{ll}
 x \mapsto x & \text{if } x \in \mathcal{L} \setminus \mathcal{L}_1, \\
 x \mapsto x^\pi & \text{if } x \in \mathcal{L}_1,
\end{array} \right. \tag{9}
\]

is a partial \(\pi \)-transformation. The Plücker transformation \(\delta \beta : \mathcal{L} \to \mathcal{L} \) takes intersecting lines to intersecting lines.

Proof. In order to show that \(\delta \) is a well-defined partial \(\pi \)-transformation, we just have to establish that \(a \in \mathcal{L}_1 \) implies \(a^\pi \in \mathcal{L}_1 \): Given \(Q_0 \in a \) and \(Q_1 \in a^\pi \) then \(Q_0 \cup Q_1 \) and \((Q_0 \cup Q_1)^\beta = Q^\epsilon_0 \cup Q^\epsilon_1 \) are isotropic lines. Therefore

\[Q^\epsilon_0 \cup Q^\epsilon_1 \neq a^{\pi\beta} = a^{\pi\beta} \in \mathcal{J} \]

so that \(Q^\epsilon_1 \not\in a^{\pi\beta} \). Now, by (8), \(a^\pi \in \mathcal{L}_1 \).

If distinct lines \(b \) and \(c \) intersect at a point \(R \), then \(b^{\beta} \cap c^{\beta} = R^\epsilon \) follows from (7), (8) and (9).

Proposition 1.4. The mapping \(\kappa : \mathcal{P} \to \mathcal{P} \) defined in (3) belongs to \(\text{PSp}(P,\pi) \).

The Plücker transformation \(\delta \beta \) is induced by this collineation \(\kappa \).

Proof. The bijection \(\delta \beta \) is taking intersecting lines to intersecting lines. Every star of lines is mapped under \(\delta \beta \) either onto a star of lines or onto a ruled plane \([4], [10, \text{Theorem 1}] \). The latter possibility does not occur, since \(\delta \beta \) is induced by \(\kappa \). Because of \(\dim(\mathcal{P}, \mathcal{L}) \) being finite, the mapping \(\kappa \) is a collineation \([10, \text{Theorem 3}] \). Finally, \(J^\beta = J \) implies \(\kappa \in \text{PSp}(P,\pi) \).
4. The higher-dimensional case

Theorem 2. Let \((\mathcal{P}, \mathcal{I}, \pi)\) be an \(n\)-dimensional symplectic space \((5 \leq n \leq \omega)\) and let \(\beta : \mathcal{I} \to \mathcal{I}\) be a bijection such that

\[
 a \sim b \implies a^\beta \sim b^\beta \text{ for all } a, b \in \mathcal{I}.
\]

Then \(\beta\) is induced by a collineation \(\kappa \in \text{PGSp}(\mathcal{P}, \pi)\).

As before, the Theorem will be split into several Propositions subject to the assumptions stated above.

Proposition 2.1. The bijection \(\beta\) takes intersecting lines to intersecting lines. There exists an injective mapping \(\kappa : \mathcal{P} \to \mathcal{P}\) inducing \(\beta\). This \(\kappa\) is preserving collinearity and non-collinearity of points. Moreover

\[
\mathcal{L}[Q]^\beta = \mathcal{L}[Q'] \text{ for all } Q \in \mathcal{P}.
\]

Proof. Suppose that \(a, b \in \mathcal{I}\) meet at a point \(Q\). If \(a \sim b\), then \(a^\beta\) and \(b^\beta\) are intersecting. Otherwise, by Lemma 2, \(a \not\sim b\) and \(b \not\sim a\). Then \(\mathcal{J}[Q] \cup \{a\}\) and \(\mathcal{J}[Q] \cup \{b\}\) are, respectively, sets of mutually related lines. Each line of \(\mathcal{L}\) is related to at least one line in \(\mathcal{J}[Q]\), since \(\mathcal{Q}^\omega\) is a hyperplane covered by \(\mathcal{J}[Q]\). If \(\mathcal{J}[Q]^\beta\) would be a set of coplanar lines, then all lines in \(\mathcal{L}\) would meet a fixed plane in contradiction to \(n \geq 5\). Thus \(\mathcal{J}[Q]^\beta\) is not contained in a plane, whence there exists a point \(Q'\) with \(\mathcal{J}[Q] \cup \mathcal{L}[Q']\). Since the elements of \(\mathcal{J}[Q] \cup \{a^\beta\}\) are mutually related, \(Q' \in a^\beta\). Repeating this for \(b\) yields \(Q' \in b^\beta\).

Now the assertions on \(\kappa\) follow from [10, Theorem 1].

Proposition 2.2. The bijection \(\beta\) is a Plücker transformation, since

\[
\mathcal{J}^\beta = \mathcal{J}.
\]

Proof. Given \(a \in \mathcal{J}\) then choose a point \(Q \in a\). We observe that \(a \sim \mathcal{L}[Q]\), whence \(a^\beta \sim \mathcal{L}[Q^\beta]\) by (10). Since \(\mathcal{L}[Q^\omega]\) contains more than one non-isotropic line, \(a^\beta \in \mathcal{J}\) follows from Lemma 2.

Given \(b \in \mathcal{L} \setminus \mathcal{J}\) then choose a point \(R \in b\). Assume to the contrary that \(b^\beta \in \mathcal{J}\). Then for each line

\[
\chi \in \mathcal{L}[R] \setminus (\mathcal{J}[R] \cup \{b\})
\]

there exists a line \(\chi^\beta \in \mathcal{J}[R]\) such that \(b, \chi, \chi^\beta\) are three distinct lines in one pencil. By the invariance of collinearity and non-collinearity of points under \(\kappa\), as is stated in Proposition 2.1, \(b^\beta, \chi^\beta, \chi^\beta\) are again three distinct lines in one pencil. However, \(b^\beta\) and \(\chi^\beta\) are isotropic, so that

\[
\chi^\beta \in \mathcal{J}[R^\beta].
\]
Hence $\mathcal{L}[R]^{\beta} \subset \mathcal{I}[R^{\infty}]$ which is impossible by (10).

Now (11) and Lemma 2 show that β is a Plücker transformation.

Proposition 2.3. The mapping $\kappa : \mathcal{P} \to \mathcal{P}$, described in Proposition 2.1, is a collineation belonging to $\text{PTS} \mathcal{P}(\mathcal{P}, \pi)$.

Proof. Since β is a Plücker transformation of (\mathcal{L}, \sim), Proposition 2.1 can be applied to β^{-1}. Therefore β and β^{-1} are preserving intersection of lines. By [10, Theorem 2], the mapping κ is a collineation and, by formula (11), $\kappa \in \text{PTS} \mathcal{P}(\mathcal{P}, \pi)$.

This completes the proof of Theorem 2.

References

[2] W. BENZ - E.M. SCHRÖDER: Bestimmung der orthogonalitätstreuen Permuta-

[5] H. BRAUNER: Eine Kennzeichnung der Ähnlichkeiten affiner Räume mit de-