Hans Havlicek, Vienna University of Technology, Austria

A note on Segre varieties in characteristic two

havlicek@geometrie.tuwien.ac.at

Let V_1, V_2, \ldots, V_m be $m \geq 1$ two-dimensional vector spaces over the same commutative field F. The non-zero decomposable tensors of $\bigotimes_{k=1}^m V_k$ determine the Segre variety $S_{(m)}(F)$ in the projective space $\mathbb{P}(\bigotimes_{k=1}^m V_k)$. Each V_k admits a symplectic bilinear form $[\cdot, \cdot]$, so that $\bigotimes_{k=1}^m V_k$ is equipped with a bilinear form which is given by

$$\begin{bmatrix} \boldsymbol{a}_1 \otimes \boldsymbol{a}_2 \otimes \cdots \otimes \boldsymbol{a}_m, \boldsymbol{b}_1 \otimes \boldsymbol{b}_2 \otimes \cdots \otimes \boldsymbol{b}_m \end{bmatrix} := \prod_{k=1}^m [\boldsymbol{a}_k, \boldsymbol{b}_k] \text{ for } \boldsymbol{a}_k, \boldsymbol{b}_k \in V_k.$$

In projective terms this form yields the well known fundamental polarity of $\mathcal{S}_{(m)}(F)$. It is associated to a regular quadric when m is even and Char $F \neq 2$. Otherwise it is a null polarity.

In our talk we focus on the case when F has characteristic two. Here the fundamental polarity of $\mathcal{S}_{(m)}(F)$ is always null, and there exists an *invariant quadric*:

Theorem. Let $m \ge 2$ and Char F = 2. There exists in the ambient space of the Segre $S_{(m)}(F)$ a regular quadric Q(F) with the following properties:

- 1. The projective index of $\mathcal{Q}(F)$ is $2^{m-1}-1$.
- 2. $\mathcal{Q}(F)$ is invariant under the group of projective collineations stabilising the Segre $\mathcal{S}_{(m)}(F)$.

This is joint work with Boris Odehnal (Vienna, Austria) and Metod Saniga (Tatranská Lomnica, Slovakia).

References

 H. Havlicek, B. Odehnal, and M. Saniga. On invariant notions of Segre varieties in binary projective spaces. *Des. Codes Cryptogr.* 62 (2012), 343–356.