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1 Introduction

The aim of the present paper is to discuss in some detail theLaguerre geometry(cf. [1], [6])
which arises from the3-dimensional real algebraL := R(ε), whereε3 = 0. This algebra
generalizes the algebra of real dual numbersD = R(ε), whereε2 = 0. The Laguerre geometry
overD is the geometry on the so-calledBlaschke cylinder(Figure 1); the non-degenerate conics
on this cylinder are calledchains(or cycles, circles). If one generator of the cylinder is removed
then the remaining points of the cylinder are in one-one correspon-
dence (via astereographic projection) with the points of the plane
of dual numbers, which is an isotropic plane; the chains go over
to circles and non-isotropic lines. So the point space of thechain
geometry over the real dual numbers can be considered as an affine
plane with an extra “improper line”.
The Laguerre geometry based onL has as point set the projective
line P(L) over L. It can be seen as the real affine3-space onL
together with an “improper affine plane”. There is a point model
for this geometry, like the Blaschke cylinder, but it is more compli-
cated, and belongs to a7-dimensional projective space ([6, p. 812]).
We are not going to use it. Instead, we describeP(L) as an exten-
sion of the affine space onL by “improper points” which will be
described via lines, parabolas, and cubic parabolas.
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2 Higher order contact of twisted cubics

Here we present some results which will be needed in Section 3. We refer to [3], [5], and [9]
for the basic properties of twisted cubics in the real projective spaceP3(R).

Theorem 1 LetC andC̃ be twisted cubics ofP3(R) with a common pointf , a common tangent
line F at f , and a common osculating planeΦ at f . Then a collineation ofP3(R) takingC to
C̃ is uniquely determined by each of the following conditions:



(I) All lines of the pencilL(f, Φ) are invariant.
(II) All points of the lineF are invariant.
(III) All planes of the pencil with axisF are invariant.

Proof. (I) We recall that distinct tangent lines of a twisted cubic are skew. The tangent surface
of C intersects the osculating planeΦ in a curve which is the union ofF and a conicK through
f ; the lineF is tangent toK. Likewise the tangent surface of̃C yields a conicK̃. Let ri,
i ∈ {1, 2}, be distinct points ofC \ {f}. The tangent lines ofC at these points meet the plane
Φ at pointski ∈ K \ {f}, whence the linesLi := f ∨ ki are distinct. These lines meet̃K

residually at points̃ki which in turn are incident with tangent lines of̃C at distinct points̃ri.
These points̃ri are determined uniquely. So, every collineation of type (I)takesri to r̃i, andf
to f . Conversely, there is a unique collineationκ of P3(R) with Cκ = C̃, rκ

i = r̃i, andfκ = f .
SinceF , f ∨ k1, andf ∨ k2 remain invariant underκ, all lines of the pencilL(f, Φ) remain
fixed. So thisκ is the only collineation with the required properties.

(II) The proof runs in a similar manner. The osculating planes atri meetF at pointski 6= f .
Now r̃i ∈ C̃ \ {f} can be chosen such that their osculating planes meet the lineF atki.

(III) Each of the planesF ∨ ri meets the twisted cubic̃C residually at a point̃ri. Now we can
proceed as above. ¤

Let p0, p3, andp be three distinct points ofC. Define the pointp1 as the intersection of the
tangent line atp0 with the osculating plane atp3. Likewise, by changing the role ofp0 andp3, a
pointp2 is obtained. Then(p0, p1, p2, p3, p) is a frame of reference such that

C = {R(s3, s2t, st2, t3) | (0, 0) 6= (s, t) ∈ R
2}. (1)

We assume thatf = p3 = R(0, 0, 0, 1), whenceF is given byx0 = x1 = 0 andΦ has an
equationx0 = 0. A collineation ofP3(R) is of type (I), (II) or (III) if, and only if, it has a
regular matrix with one of the following forms:

(I):




1 a01 a02 a03

0 a11 0 a13

0 0 a11 a23

0 0 0 a33


 , (II):




1 a01 a02 a03

0 a11 a12 a13

0 0 a22 0
0 0 0 a22


 , (III):




1 0 a02 a03

0 1 a12 a13

0 0 a22 a23

0 0 0 a33


 (2)

Next we describe higher-order contact of twisted cubics; cf. also [3, pp. 211–219].

Theorem 2 LetC be the twisted cubic (1) and letκ be a collineation ofP3(R) given by one of
the matrices (2). Then the conditions stated in the first row,in the first and the second row, and
in all rows of the table below are necessary and sufficient for the twisted cubicsC andCκ to
have contact at the pointf = R(0, 0, 0, 1) of order2, 3, and4, respectively.

(I) (II) (III)
1 a33 = a11 a22 = a11 a33 = a2

22

2 a11 = 1, a23 = −a01 a11 = 1, a01 = 2a12 a22 = 1, a23 = 2a12

3 a01 = 0, a13 = 2a02 a12 = 0, a13 = 2a02 a12 = 0, a13 = 2a02

(3)



Proof. The quadratic forms

G1 : R
4 → R : (x0, x1, x2, x3) 7→ x0x3 − x1x2,

G2 : R
4 → R : (x0, x1, x2, x3) 7→ x1x3 − x2

2,

define a hyperbolic quadricx0x3 − x1x2 = 0 and a quadratic conex1x3 − x2
2 = 0 with vertex

p0. Their intersection is the twisted cubicC and the linex2 = x3 = 0. The tangent planes of
the two surfaces atf are different. Letκ be given by a matrixA of type (I). The mapping

g : R → R
4 : s 7→ (s3, s2, s, 1) · A

gives an arc ofCκ containing the pointf , which has the parameters = 0. The products ofg
with Gi are functions

s 7→ (−a2

11 + a33)s
3 + (−a01a11 + a23)s

4 + (∗),

s 7→ (−a2

11 + a11a33)s
2 + (a01a33 + a11a23)s

3 + (a01a23 − 2a11a02 + a11a13)s
4 + (∗),

where(∗) denotes terms of higher order ins. The twisted cubicsC andCκ have contact of order
m atf if, and only if, in both functions the coefficients ats0, s1, . . . , sm vanish [3, p. 147]. Now
the assertions follow easily, taking into account thata11 6= 0 anda33 6= 0.

Similarly, if the matrixA is of type (II) then the functions

s 7→ (−a11a22 + a22)s
3 + (−a01a22 − a11a12)s

4 + (∗),

s 7→ (a11a22 − a2

22)s
2 + (a01a22 − 2a12a22)s

3 + (−2a02a22 + a11a13 − a2

12)s
4 + (∗),

are obtained, whereas for anA of type (III) we get

s 7→ (−a22 + a33)s
3 + (−a12 + a23)s

4 + (∗),

s 7→ (−a2

22 + a33)s
2 + (−2a12a22 + a23)s

3 + (−2a02a22 − a2

12 + a13)s
4 + (∗).

As above, the results are immediate. ¤

Let us now considerΦ asplane at infinity. Then our projective frame of reference determines
an affine coordinate system in the usual way; a pointR(1, x1, x2, x3) ∈ P3(R) has affine coor-
dinates(x1, x2, x3). It is our aim to describe the results of Theorem 1 and Theorem2 in affine
terms. From the affine point of view the twisted cubicsC andCκ arecubic parabolas, projec-
tively extended by the pointf = p3. So this point of higher order contact isoutsidethe affine
space. In what follows anaffine transformationis understood to be a collineation fixing the
planeΦ. We restrict ourselves to the description of higher order contact via regular matrices of
type (I). Such a matrixA admits the following factorization:



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a33

a11


 ·




1 0 0 0
0 1 0 a13

a11

0 0 1 a23

a11

0 0 0 1


 ·




1 0 0 0
0 a11 0 0
0 0 a11 0
0 0 0 a11


 ·




1 a01 a02 a03

0 1 0 0
0 0 1 0
0 0 0 1


 (4)

Conversely, if the entriesaij in (4) are chosen arbitrarily, except fora11, a33 6= 0, then a reg-
ular matrix of type (I) is obtained. Formula (4) correspondsto a decomposition ofκ into a



perspective affinitywith axis x3 = 0 in the direction ofp3, a shearwith an axis through the
line x1 = x2 = 0 in the direction ofp3, a stretchingfixing the originp0 with scale factora11,
and atranslationthrough the vector(a01, a02, a03), respectively; this decomposition is uniquely
determined.

The matrixA is of type (I.1) if, and only if,a11 = a33, i.e., the first matrix in (4) is the unit
matrix. The ultimate and the penultimate matrix in (4) together yield adilatation and every
dilatation arises in this way. Hence, up to dilatations, we obtain all twisted cubics which have
second order contact withC at f by applying toC all shears with the properties mentioned
above. Figure 2 shows the twisted cubicC and some of its images under a groupΣ of shears
in the direction ofp3 with the common axisx1 + x2 = 0. All these twisted cubics are on a
parabolic cylinderΨ (x2

1 − x2 = 0) which is invariant under the groupΣ.
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The matrixA is of type (I.1.2) if, and only if, it can be written as



1 0 0 0
0 1 0 a13

0 0 1 0
0 0 0 1


 ·




1 0 0 0
0 1 0 0
0 0 1 −a01

0 0 0 1


 ·




1 a01 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ·




1 0 a02 a03

0 1 0 0
0 0 1 0
0 0 0 1


 . (5)

As before, this factorization is unique and the coefficientscan be chosen freely. The first (sec-
ond) matrix gives a shear with axisx1 = 0 (x2 = 0) in the direction ofp3, whereas the remaining
matrices yield a translation in the direction ofp1 and a translation parallel to the planex1 = 0.
However, the second and the third matrix are linked via the common parametera01. As a01

varies inR, their products comprise a one-parameter groupΓ1 of affine transformations. (See
[4, I, p. 130], III 3, “Nichtisotrope Cliffordschiebungen”: All points of the linex0 = x2 = 0 are
invariant underΓ1. All other point orbits are lines of a parabolic linear congruence with axis
x0 = x2 = 0.) Hence, up to translations parallel to the planex1 = 0, we obtain all twisted
cubics which have third order contact withC atf by applying toC all shears with axisx1 = 0
and then all transformations of the groupΓ1. In Figure 3 the twisted cubicC and some of
its images under affinities ofΓ1 are displayed. These curves lie on parabolic cylinders which
are translates ofΨ. Figure 4 shows the ruled surface which arises by applyingΓ1 to the curve
C. The illustrated lines are point orbits with respect toΓ1. In particular, thex1-axis of the
coordinate system is the orbit of the origin; this line is an edge of regression of the surface.



The matrixA is of type (I.1.2.3) if, and only if, it can be written as



1 0 0 0
0 1 0 2a02

0 0 1 0
0 0 0 1


 ·




1 0 a02 0
0 1 0 0
0 0 1 0
0 0 0 1


 ·




1 0 0 a03

0 1 0 0
0 0 1 0
0 0 0 1


 . (6)

Again, this decomposition is unique and the coefficients canbe chosen arbitrarily. The products
of the first and the second matrix in (6) comprise a one-parameter subgroupΓ2; cf. the remarks
above. Hence, up to translations parallel to the linex1 = x2 = 0, we obtain all twisted cubics
which have fourth order contact withC at f as the orbit ofC underΓ2. Figure 5 illustrates the
twisted cubicC and the cylinderΨ, together with some of their images under affinities ofΓ2.
Figure 6 shows the ruled surface which is generated by applyingΓ2 to the curveC. This surface
is a proper subset (only the points ofF \ {f} are missing) of the (ruled)Cayley surfacewith
equation2x0x1x2 − x3

1 = x2
0x3.
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3 The Laguerre Geometry Σ(R, L)

Let R[X] be the polynomial ring over the reals. The factor ringR[X]/〈X3〉 =: L is a 3-
dimensional real commutative local algebra with anR-basis1L, ε, ε2, whereε := X + 〈X3〉.
Its non-invertible elements form the only maximal idealN := Rε + Rε2. We considerR as a
subring ofL by identifyingx ∈ R with x · 1L ∈ L. (Our ringL is the ringL4 in [1, p. 306].)
Let us recall the definition of theprojective line overL, in symbolsP(L): We consider the free
left L-moduleL

2. A cyclic submoduleL(u, v) ⊂ L
2 is a point ofP(L) if, and only if, u or

v is a unit inL. Two such pairs(u, v) and(u′, v′) in L
2 determine the same point precisely

when they are proportional by a unit inL. (Cf. [6, p. 785] for a definition of the projective line
over an arbitrary ring with a unit element.). We embed the real projective lineP(R) in P(L) by
R(x, y) 7→ L(x, y). The point set of thechain geometryΣ(R, L) is the projective line overL,
thechainsare the images ofP(R) ⊂ P(L) under the natural right action ofGL2(L) on L

2; cf.
[6, p. 790]. SinceL is a local ring, our chain geometry is aLaguerre geometry[6, p. 793]. If
two distinct points ofP(L) can be joined by a chain then they are said to bedistant. Non-distant
points are also said to beparallel (‖). Lettingp = L(a, b) andq = L(c, d) gives

p ‖ q ⇔ det

(
a b
c d

)
∈ N. (7)



This parallelism is an equivalence relation. There is a unique chain through any three mutually
distant points.

We fix the pointL(1, 0) =: ∞ ∈ P(L). Then the point set ofP(L) can be split into two classes:
A proper pointhas the formL(z, 1), and we identify such a point with the elementz ∈ L. The
proper points are precisely the points which are distant (non-parallel) to∞. Every other point
of P(L) has the formL(1, z) with z ∈ N . Such points are said to beimproper. Hence we can
regardP(L) as the real affine3-space onL together with an extra “improper plane” which is
just a copy of the maximal idealN .

The algebraL has two distinguished ideals, namely the maximal idealN and its annihilator
{z ∈ L | zN = 0} = Rε2. Accordingly, there are three types of lines: A lineRu + v ⊂ L,
whereu ∈ L \ {0}, v ∈ L is calledsingular if u ∈ N , andregular otherwise. A singular line of
the formRε2 +v is said to bevertical. We say that a plane isregularprovided that it contains at
least one regular line. Asingularplane is just a non-regular plane. By (7), the singular planes
are the classes of proper parallel points.

For each subsetS ⊂ P(L) let S◦ be itsproper part, i.e. the set of all its proper points. The
following is taken from H.-J. SAMAGA [8, Satz 4]; cf. also [2]: A subsetC of P(L) is a chain
of Σ(R, L) precisely when one of the following conditions holds:

C = {t + (a02 + a12t)ε + (a03 + a13t)ε
2 | t ∈ R} ∪ {∞}, (8)

whenceC◦ is an affine line;

C = {t + (a02 + a12t)ε + (a03 + a13t + a33t
2)ε2 | t ∈ R, a33 6= 0} ∪ {L(1,−a33ε

2)}, (9)

whenceC◦ is a parabola;

C = {t + (a02 + a12t + a22t
2)ε + (a03 + a13t + a23t

2 + a33t
3)ε2 | t ∈ R, a33 = a2

22 6= 0}

∪ {L(1,−a22ε + (−a23 + 2a12a22)ε
2)}, (10)

whenceC◦ is a cubic parabola. In either case theaij ’s are real constants subject to the conditions
stated above. Obviously, the lines given by (8) are precisely the regular ones. So, all regular
lines arerepresentativesfor the point∞. We say that a (cubic) parabola inL is admissibleif it
is the proper part of a chain. By (9), a parabola is admissible if, and only if, its diameters are
vertical lines and its plane is regular. Each admissible parabola is a representative of a unique
improper point. We describe admissible parabolas which determine the same improper point:

Theorem 3 Let C◦ and C̃◦ be admissible parabolas ofL. Then the chainsC and C̃ have the
same improper point if, and only if, the parallel projectionof C̃◦ onto the plane ofC◦, in the
direction of an arbitrary non-vertical singular line, is a translate ofC◦.

Proof. Let C and C̃ be given according to (9) with coefficientsaij and ãij, respectively. The
parallel projection of̃C◦ onto the plane ofC◦ is a parabola

{t + (a02 + a12t)ε + (a∗

03 + a∗

13t + a∗

33t
2)ε2 | t ∈ R} with a∗

33 = ã33.

An easy calculation shows that the projected parabola is a translate ofC◦ if, and only if, ã33 =
a33. By (9), this is necessary and sufficient forC andC̃ to have the same improper point. ¤



Let us consider theprojective closureP3(R) of the affine space onL, where we do not distin-
guish betweenR(1, x1, x2, x3) ∈ P3(R) andx1 + x2ε + x3ε

2 ∈ L. Since we are going to work
with two different extensionsof the affine space onL, we reserve the phrases “at infinity” and
“improper” for the projective closure and for the chain-geometric closure, respectively. IfC is a
chain ofΣ(R, L) thenC+ ⊂ P3(R) denotes that unique projective line or conic or twisted cubic
which containsC◦. We denote byf , F , andΦ the point at infinity of the vertical lineRε, the
line at infinity of the singular planeN , and the plane at infinity, respectively.

Let C be a chain. IfC◦ is a line thenC+ 6⊂ Φ is a projective line with a point at infinity not
on F and vice versa. IfC◦ is a parabola thenC+ 6⊂ Φ is a conic throughf touching a line at
infinity other thanF . As before, all such conics arise from chains. We note that whenC◦ and
C̃◦ are parabolas in the same plane then the existence of a translation takingC◦ to C̃◦ just means
that the projective conicsC+ andC̃+ have contact of second order at the pointf . See, e.g., [7].
But, since admissible parabolas in different planes may represent the same improper point, we
cannot always describe improper points in terms of conics with second order contact at infinity.
Now we turn to the case whenC◦ is a cubic parabola:

Theorem 4 The cubic parabola

{t + t2ε + t3ε2 | t ∈ R} (11)

is admissible. A cubic parabola ofL is admissible if, and only if, its projective extension and
the projective extension of (11) have contact of second order at the pointf = R(0, 0, 0, 1).

Proof. By (10), there is a unique chainD, say, such thatD◦ coincides with the cubic parabola
(11). Its projective extensionD+ is given by (1), whence it is a twisted cubic throughf , with
tangent lineF , and osculating planeΦ. Now we apply those collineations ofP3(R) which are
given by regular matrices of type (III.1). So we get all the twisted cubics which have second
order contact withD+ atf and, by (10), these are precisely the projectively extendedadmissible
cubic parabolas. ¤

Theorem 5 Let C◦ and C̃◦ be admissible cubic parabolas ofL. Then the chainsC and C̃ have
the same improper point if, and only if, the extended curvesC+ and C̃+ have contact of third
order atf = R(0, 0, 0, 1).

Proof. (a) First, we consider that chainD which yields the cubic parabola (11). The improper
point ofD is L(1,−ε). Now we apply those collineations ofP3(R) which are given by regular
matrices of type (III.1.2). This gives, by Theorem 2, precisely those twisted cubics which
have third order contact withD+ at f and, by (10), we get all the projectively extended cubic
parabolas that arise from the chains throughL(1,−ε). Since contact of third order is a transitive
notion, the assertion follows for all chainsC throughL(1,−ε).

(b) Next, letC be any chain whose proper part is a cubic parabola, so that itsimproper point can
be written asL(1,−aε − bε2), wherea, b ∈ R anda 6= 0. The matrix

α :=

(
a 0

− b
a 1

)
∈ GL2(R) ⊂ GL2(L)



induces a projectivity ofP(L) taking the improper pointL(1,−aε − bε2) to

L

((1

a
−

b

a2
ε
)(

a + bε +
b2

a
ε2,−aε − bε2

))
= L(1,−ε).

The action ofα on the proper points is the affine transformationL → L : z 7→ za− b
a

which in
turn can be extended to a collineation ofP3(R). Since contact of any order is preserved under
collineations, we can apply the results from (a) in order to complete the proof. ¤

From the affine point of view, the previous results are not satisfying, because they are formu-
lated in projective terms. However, in Section 2 we have explained how one can “see” contact
of higher order atf via an affine transformation taking̃C◦ to C◦. Another basic topic is to char-
acterize chainsC andC̃ which touchat a common improper point. IfC◦ is an affine line then this
means, by definition, thatC◦ andC̃ are parallel lines. IfC◦ is a parabola then a characterization
as in Theorem 2 can be given, but now the parallel projection of C̃◦ has to arise fromC◦ under a
translation in the direction ofε2. (This means contact of third order atf .) Likewise, Theorem 5
can be modified as to describe touching chains, by replacing “third order contact” with “fourth
order contact”. The proofs are left to the reader. The affine space onL is closely related with
theflag space(two-fold isotropic space), as the triple(f, F, Φ) can be considered as itsabsolute
flag. Cf., among others, the papers [4] by H. BRAUNER. Due to lack of space we have to refrain
from presenting here the interesting connections between these two geometries.
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