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1 Introduction

The aim of the present paper is to discuss in some detallageerre geometrycf. [1], [6])
which arises from th&-dimensional real algebra := R(e), wheree®* = 0. This algebra
generalizes the algebra of real dual numtiges R(s), wheres? = 0. The Laguerre geometry
overD is the geometry on the so-call&aschke cylinde(Figure 1); the non-degenerate conics
on this cylinder are callechains(or cycles, circlek If one generator of the cylinder is removed
then the remaining points of the cylinder are in one-onessmon-
dence (via astereographic projectionwith the points of the plane
of dual numbers, which is an isotropic plane; the chains gar o
to circles and non-isotropic lines. So the point space ofctien
geometry over the real dual numbers can be considered airan a
plane with an extra “improper line”.

The Laguerre geometry based lbrhas as point set the projective
line P(L) overL. It can be seen as the real affidespace orlL
together with an “improper affine plane”. There is a point mlod
for this geometry, like the Blaschke cylinder, but it is mooenpli-
cated, and belongs tdradimensional projective space ([6, p. 812])
We are not going to use it. Instead, we desciipk) as an exten-
sion of the affine space dn by “improper points” which will be
described via lines, parabolas, and cubic parabolas. Figure 1

2 Higher order contact of twisted cubics

Here we present some results which will be needed in Sectiaherefer to [3], [5], and [9]
for the basic properties of twisted cubics in the real pribjecspaceP;(R).

Theorem 1 LetC andC be twisted cubics dPs;(R) with a common poinf, a common tangent
ije F at f, and a common osculating pladeat f. Then a collineation of?;(R) takingC' to
C'is uniquely determined by each of the following conditions:



() Alllines of the penciC(f, ®) are invariant.
(1) All points of the lineF" are invariant.
(1) All planes of the pencil with axig are invariant.

Proof. (I) We recall that distinct tangent lines of a twisted cuhie skew. The tangent surface
of C'intersects the osculating plafen a curve which is the union df and a conids through

f, the line F' is tangent toK. Likewise the tangent surface o6f yields a conickK. Letr;,

i € {1,2}, be distinct points of" \ {f}. The tangent lines af' at these points meet the plane
® at pointsk; € K \ {f}, whence the lined; := f V k; are distinct. These lines meat
residually at pointsféi which in turn are incident with tangent lines 6fat distinct pointsr;.
These points; are determined uniquely. So, every collineation of typedKesr; to 7;, and f

to f. Conversely, there is a unique collineatiof P;(R) with C* = C, rf =7, andf* = f.
SinceF, f V ki, and f V ko remain invariant undex, all lines of the pencilZ(f, ) remain
fixed. So thisx is the only collineation with the required properties.

(Il) The proof runs in a similar manner. The osculating pkaer; meetF' at pointsk; # f.
Now7; € C'\ {f} can be chosen such that their osculating planes meet thé' laié;.

(1) Each of the planed’ Vv r; meets the twisted cubic residually at a point;. Now we can
proceed as above. O

Let po, p3, andp be three distinct points af’. Define the poinp; as the intersection of the
tangent line ap, with the osculating plane at. Likewise, by changing the role @f andps, a
point p, is obtained. Thellpy, p1, p2, ps, p) is a frame of reference such that

C = {R(s% s, st*,t°) | (0,0) # (s,t) € R*}. (1)

We assume thaf = p; = R(0,0,0,1), whenceF' is given byzy, = z; = 0 and® has an
equationzy = 0. A collineation of P3(R) is of type (I), (II) or (Ill) if, and only if, it has a
regular matrix with one of the following forms:

1 ap1 ape aos 1 ap1 ape aos 1 0 ap ap

. 0 ann 0 a3 . 0 ann a2 as . 0 1 ap a3
(I) 0 0 a1 Q93 ’ (”) 0 0 a92 0 ’ (”I) 00 92 A923 (2)

0 0 0 as3 0 0 0 929 0 0 0 as3

Next we describe higher-order contact of twisted cubicsalso [3, pp. 211-219].

Theorem 2 Let( be the twisted cubic (1) and letbe a collineation ofP;(R) given by one of
the matrices (2). Then the conditions stated in the first mwhe first and the second row, and
in all rows of the table below are necessary and sufficientterttvisted cubicg€’ and C* to
have contact at the point = R(0, 0,0, 1) of order2, 3, and4, respectively.

() (1 (1
— — — 2
1| ass =an Q22 = Q11 a3z = Uao
2 =1 = =1 =9 =1 =9 (3)
an = 1, ag3 = —Qo1 || 11 = 1, Qo1 = 240412 || A22 = 1, A23 = 2Q12
3lan =0, ai3=2apn ||a2=0, a3=2a0n|a2=0, a3=2ap0




Proof. The quadratic forms

. o4 .
G1:R* —= R: (20, 71, 72, T3) — ToT3 — T172,

. R4 . 2
Go: R* = R (xg, 21, 29, x3) — 1123 — X5,

define a hyperbolic quadricyz3 — x12» = 0 and a quadratic cone z; — 22 = 0 with vertex
po. Their intersection is the twisted cubi¢ and the liner; = x3 = 0. The tangent planes of
the two surfaces gt are different. Lek be given by a matrixd of type (I). The mapping

g:R—=R*: 5 (5% 5%5,1)- A

gives an arc of”* containing the poinff, which has the parameter= 0. The products of
with GG; are functions

st (—ai; + ag)s’ + (—agian + as)st + (),

s (—af) + a11a33)s” + (ao1ass + ai1aas)s’ + (ao1a23 — 2011002 + ar1a13)s” + (%),

where(x) denotes terms of higher orderdinThe twisted cubicé’ andC* have contact of order
m at f if, and only if, in both functions the coefficients &t s', ..., s™ vanish [3, p. 147]. Now
the assertions follow easily, taking into account thgt# 0 andass # 0.

Similarly, if the matrix A is of type (I) then the functions

S — (—a11a22 + CL22>83 + (_a01a22 - 01110112)54 + (*)7

S (a11a22 — G%Q)SQ + (a01a22 — 2@12@22)83 + (—2&026622 + a11a13 — a%2)34 -+ (*),
are obtained, whereas for ahof type (lll) we get

S +— (_a22 + Cl33)83 + (—CL12 + CL23>84 + (*)7

s = (—a3y + ass)s” + (—2012a9 + a23)s° + (—2a02022 — aiy + a13)s* + (*).

As above, the results are immediate. O

Let us now conside® asplane at infinity Then our projective frame of reference determines
an affine coordinate system in the usual way; a pBifit, =, x2, z3) € P3(R) has affine coor-
dinates(zy, x2, z3). Itis our aim to describe the results of Theorem 1 and The@émaffine
terms. From the affine point of view the twisted cubiceindC* arecubic parabolasprojec-
tively extended by the poinf = p3;. So this point of higher order contactasitsidethe affine
space. In what follows aaffine transformations understood to be a collineation fixing the
plane®. We restrict ourselves to the description of higher ordettact via regular matrices of
type (1). Such a matrixd admits the following factorization:

1 00 0 1 00 0 1 0 0 0 1 g1 Qo2 Qo3
010 0 010 | |10ar 0 0 0O 1 0 O 4)
001 0 00 1 g& 0 0 an O 0O 0 1 O

00 0 &= 000 1 0 0 0 an 0 0 0 1

Conversely, if the entries;; in (4) are chosen arbitrarily, except for;, as; # 0, then a reg-
ular matrix of type (l) is obtained. Formula (4) corresponas decomposition of into a



perspective affinityvith axisz3 = 0 in the direction ofps, a shearwith an axis through the
line x;1 = x5 = 0 in the direction ofp3, a stretchingfixing the originp, with scale factow,
and atranslationthrough the vectofao:, ags, ag3), respectively; this decomposition is uniquely
determined.

The matrix A is of type (I.1) if, and only if,a;; = ass, i.e., the first matrix in (4) is the unit
matrix. The ultimate and the penultimate matrix in (4) tégetyield adilatation and every
dilatation arises in this way. Hence, up to dilatations, Ww&m all twisted cubics which have
second order contact with' at f by applying toC' all shears with the properties mentioned
above. Figure 2 shows the twisted cubbicand some of its images under a groupf shears
in the direction ofps with the common axis;; + zo = 0. All these twisted cubics are on a
parabolic cylinde®w (z? — z, = 0) which is invariant under the group.
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The matrixA is of type (1.1.2) if, and only if, it can be written as

1 00 O 100 0 1 apn 0 0O 1 0 ap2 aps

01 0 ap 010 O 0 1 0O 01 0 O (5)
001 0 001 —anm 0 0 10 00 1 O )
000 1 000 1 0 0 01 00 0 1

As before, this factorization is unique and the coefficiarats be chosen freely. The first (sec-
ond) matrix gives a shear with axis = 0 (x2 = 0) in the direction ofy;, whereas the remaining
matrices yield a translation in the directionygfand a translation parallel to the plang= 0.
However, the second and the third matrix are linked via thmroon parametetio;. AS ag;
varies inRR, their products comprise a one-parameter grbupf affine transformations. (See
[4, 1, p. 130], Il 3, “Nichtisotrope Cliffordschiebung&nAll points of the linex, = x5 = 0 are
invariant under’;. All other point orbits are lines of a parabolic linear camgnce with axis
rog = x2 = 0.) Hence, up to translations parallel to the plane= 0, we obtain all twisted
cubics which have third order contact withat f by applying toC' all shears with axig; = 0
and then all transformations of the grolip. In Figure 3 the twisted cubi€ and some of
its images under affinities df; are displayed. These curves lie on parabolic cylinders kvhic
are translates ob. Figure 4 shows the ruled surface which arises by applyintp the curve
C. The illustrated lines are point orbits with respectlto In particular, ther;-axis of the
coordinate system is the orbit of the origin; this line is dge of regression of the surface.



The matrixA is of type (1.1.2.3) if, and only if, it can be written as

1 00 0 1 0 ap2 0 1 00 ap3

010 2a | (O 1 0 O 010 0 (6)
001 0 00 1 O 001 0 )

000 1 00 0 1 000 1

Again, this decomposition is unique and the coefficientshEaohosen arbitrarily. The products
of the first and the second matrix in (6) comprise a one-pat@nsebgroug’,; cf. the remarks
above. Hence, up to translations parallel to the kne= z, = 0, we obtain all twisted cubics
which have fourth order contact withi at f/ as the orbit o' underT’y. Figure 5 illustrates the
twisted cubicC' and the cylindet, together with some of their images under affinitied of
Figure 6 shows the ruled surface which is generated by apply to the curve”'. This surface
is a proper subset (only the points Bf\ {f} are missing) of the (ruled}ayley surfacevith
equatior2zyr zs — o3 = x3x3.
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3 ThelLaguerre Geometry ¥ (R, L)

Let R[X] be the polynomial ring over the reals. The factor riRgX]/(X3) =: L is a 3-
dimensional real commutative local algebra withRubasisly, €, %, wheree := X + (X3).
Its non-invertible elements form the only maximal idéal:= Re + Rs2. We consideiR as a
subring ofL by identifyingx € R with x - 1, € L. (Our ringLL is the ring£, in [1, p. 306].)
Let us recall the definition of thgrojective line ovetL, in symbolsP(LL): We consider the free
left L-modulelL?. A cyclic submodul€L(u,v) C L? is a point of P(L) if, and only if, u or

v is a unitinL. Two such pairgu, v) and (v/,v’) in IL? determine the same point precisely
when they are proportional by a unitlin (Cf. [6, p. 785] for a definition of the projective line
over an arbitrary ring with a unit element.). We embed thé pegjective lineP(R) in P(LL) by
R(z,y) — L(x,y). The point set of thehain geometry=(RR, L) is the projective line ovekt.,
the chainsare the images dP(R) C P(IL) under the natural right action 6fL,(LL) on1L?; cf.
[6, p. 790]. SincelL is a local ring, our chain geometry isLaguerre geometr{6, p. 793]. If
two distinct points of?(IL) can be joined by a chain then they are said tdistant Non-distant
points are also said to lparallel (]|). Lettingp = L(a,b) andq = LL(c, d) gives

a b
p||q<:>det(cd)€N. (7)



This parallelism is an equivalence relation. There is awmichain through any three mutually
distant points.

We fix the pointl.(1,0) =: co € P(IL). Then the point set df(IL) can be split into two classes:
A proper pointhas the forniL(z, 1), and we identify such a point with the element L. The
proper points are precisely the points which are distam-{marallel) toocc. Every other point
of P(L) has the formL(1, z) with = € N. Such points are said to li@proper Hence we can
regardP(LL) as the real affin@-space orlL together with an extra “improper plane” which is
just a copy of the maximal ide&.

The algebrdl. has two distinguished ideals, namely the maximal idéaand its annihilator

{z € L | zN = 0} = Re?. Accordingly, there are three types of lines: A liRe. + v C L,
whereu € L\ {0}, v € L is calledsingularif « € N, andregular otherwise. A singular line of
the formRe? + v is said to bevertical. We say that a plane isgular provided that it contains at
least one regular line. Aingular plane is just a non-regular plane. By (7), the singular planes
are the classes of proper parallel points.

For each subsef C P(L) let S° be itsproper part i.e. the set of all its proper points. The
following is taken from H.-J. 8MAGA [8, Satz 4]; cf. also [2]: A subset of P(LL) is a chain
of X(R, L) precisely when one of the following conditions holds:

C = {t + (ap2 + arat)e + (ags3 + ast)e® | t € R} U {oo}, (8)
whenceC* is an affine line;
C = {t + (apz + aat)e + (ag3 + arst + asst®)e? | t € R, as3 # 0} U {LL(1, —asse®)}, (9)
whenceC? is a parabola;

C = {t + (ag + arat + agt®)e + (ags + ai3t + agst® + azst®)e? |t € R, ass = a3y # 0}
U {L(1, —age + (—ags + 2a12a22)€2)}, (10)

whenceC® is a cubic parabola. In either case thgs are real constants subject to the conditions
stated above. Obviously, the lines given by (8) are pregcided regular ones. So, all regular
lines arerepresentativefor the pointco. We say that a (cubic) parabolalinis admissiblaf it

is the proper part of a chain. By (9), a parabola is admissfbenid only if, its diameters are
vertical lines and its plane is regular. Each admissiblalpala is a representative of a unique
improper point. We describe admissible parabolas whicerdehe the same improper point:

Theorem 3 LetC° andC° be admissible parabolas df. Then the chaing andC have the
same improper point if, and only if, the parallel projectiohC® onto the plane o€°, in the
direction of an arbitrary non-vertical singular line, is aanslate ofC°.

Proof. Let C andC be given according to (9) with coefficients; anda,;, respectively. The
parallel projection of° onto the plane of° is a parabola
{t + (a02 + algt)€ + (a(’;3 + a};t + a§3t2)52 | t e ]R} with a§3 = 533.

An easy calculation shows that the projected parabola srestaite oC° if, and only if, as; =
ass. By (9), this is necessary and sufficient {bandC to have the same improper point. [J



Let us consider therojective closuréP;(R) of the affine space oh, where we do not distin-
guish betweeiR (1, z1, 7, 73) € P3(R) andz; + 29 + x3¢? € L. Since we are going to work
with two different extensionsf the affine space oh, we reserve the phrases “at infinity” and
“improper” for the projective closure and for the chain-gesdric closure, respectively. (fis a
chain of (R, L) thenC™ C P3(R) denotes that unique projective line or conic or twisted cubi
which containg°. We denote byf, F', and® the point at infinity of the vertical lin®e, the
line at infinity of the singular plan&/, and the plane at infinity, respectively.

Let C be a chain. IfC° is a line thenC*t ¢ ® is a projective line with a point at infinity not
on F and vice versa. I€° is a parabola theG* ¢ @ is a conic througly touching a line at
infinity other thanf". As before, all such conics arise from chains. We note than&h and
C° are parabolas in the same plane then the existence of aatiiandbkingC* to C° just means
that the projective coniac8™ andC* have contact of second order at the pginSee, e.g., [7].
But, since admissible parabolas in different planes mayessmt the same improper point, we
cannot always describe improper points in terms of conitis second order contact at infinity.
Now we turn to the case wheft is a cubic parabola:

Theorem 4 The cubic parabola
{t+t’c+t3%c* |t € R} (11)

is admissible. A cubic parabola df is admissible if, and only if, its projective extension and
the projective extension of (11) have contact of secondr @te pointf = R(0,0,0, 1).

Proof. By (10), there is a unique chaif, say, such thaD° coincides with the cubic parabola
(11). Its projective extensiof™ is given by (1), whence it is a twisted cubic throughwith
tangent lineF', and osculating plan®@. Now we apply those collineations &f(R) which are
given by regular matrices of type (lll.1). So we get all thested cubics which have second
order contact wittD* at f and, by (10), these are precisely the projectively extedieissible
cubic parabolas. O

Theorem 5 LetC® andC® be admissible cubic parabolas @f. Then the chaing andC have
the same improper point if, and only if, the extended cué/esnd C* have contact of third
order atf = R(0,0,0,1).

Proof. (a) First, we consider that chain which yields the cubic parabola (11). The improper
point of D isL(1, —¢). Now we apply those collineations Bf(R) which are given by regular
matrices of type (Ill.1.2). This gives, by Theorem 2, pretjsthose twisted cubics which
have third order contact witi* at f and, by (10), we get all the projectively extended cubic
parabolas that arise from the chains throligh, —<). Since contact of third order is a transitive
notion, the assertion follows for all chaidghroughL(1, —¢).

(b) Next, letC be any chain whose proper part is a cubic parabola, so thatpt®per point can
be written adl.(1, —as — be?), wherea, b € R anda # 0. The matrix

o= ( ) ! ) € GLy(R) C CLy(L)



induces a projectivity oP (L) taking the improper poirt(1, —as — be?) to
2

]L((1 - ﬁe) <a+b5—|— %52,—% —b52>> =1L(1, —¢).

a a®
The action ofn on the proper points is the affine transformatior- L : z — za — g which in

turn can be extended to a collineation®fR). Since contact of any order is preserved under
collineations, we can apply the results from (a) in orderdmplete the proof. O

From the affine point of view, the previous results are nasgang, because they are formu-
lated in projective terms. However, in Section 2 we have &rpld how one can “see” contact
of higher order aff via an affine transformation taking to C°. Another basic topic is to char-
acterize chain€ andC whichtouchat a common improper point. ¢ is an affine line then this
means, by definition, th@ andC are parallel lines. I€° is a parabola then a characterization
as in Theorem 2 can be given, but now the parallel projecti@it tnas to arise fronf° under a
translation in the direction af?. (This means contact of third order A) Likewise, Theorem 5
can be modified as to describe touching chains, by repla¢imgl“order contact” with “fourth
order contact”. The proofs are left to the reader. The affpaes onlL is closely related with
theflag spacdtwo-fold isotropic spacg as the triple f, F, ®) can be considered as @bsolute
flag. Cf., among others, the papers [4] by HRBUNER. Due to lack of space we have to refrain
from presenting here the interesting connections betwessettwo geometries.
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