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Part 1

Square Matrices

The first part deals with some notions and results from ring

geometry and the geometry of square matrices.

The presentation is not given in the most general form, but

in a way which is tailored for our needs.



Basic Notation

Throughout this lecture we adopt the following notation:

• K . . . a (not necessarily commutative) field.

• n . . . an integer > 1. (Many results hold trivially for n = 1.)

• R . . . the ring of n × n matrices with entries in K.

• R2 . . . considered as free left R-module over R. (We use row notation).

• GL2(R) = GL2n(K) . . . the group of invertible 2 × 2-matrices with entries in R.



The Projective Line over a Ring

Below we follow Herzer [10]; see also Blunck and Herzer [7].

• (A,B) ∈ R2 is called an admissible pair if there exists a matrix in GL2(R) with

(A,B) being its first row.

• The projective line over R, in symbols P(R) is the set of cyclic submodules

R(A,B) for all admissible pairs (A,B) ∈ R2.

• Let (A′, B′), (A,B) ∈ R2 with (A,B) admissible.

R(A′, B′) = R(A,B) ⇔ (A′, B′) = U(A,B) for some U ∈ GLn(K).

In this case (A′, B′) is admissible too.

The results from the last item do not hold over any ring; see [3].



A Link with Grassmannians

The projective line over our matrix ring R allows the following description (see Blunck

[2]) which is not available for arbitrary rings, as it makes use of the left row rank of a

matrix X over K (in symbols: rank X):

P(R) = {R(A, B) | A,B ∈ R, rank(A,B) = n}. (1)

Here (A, B) ∈ R2 has to be interpreted as n × 2n matrix over K.

Because of (1), P(R) is in bijective correspondence with the Grassmannian

Gr2n,n(K) comprising all n-dimensional subspaces of the left K-vector space K2n

via

P(R) → Gr2n,n(K) : R(A, B) 7→ left row space of (A, B). (2)



R has Stable Rank 2

Our matrix ring R = Kn×n has stable rank 2. (See Veldkamp [13].) Viz. for each
(A, B) ∈ R2 which is unimodular, i. e., there are X,Y ∈ R with AX + BY = I, there
exists W ∈ R such that

A + BW ∈ GLn(K).

Consequently, two important results hold:

• Any unimodular pair (A, B) ∈ R2 is admissible.
(Unimodularity is in general much easier to check than admissibility.)

• Bartolone’s parametrisation

R2 → P(R) : (T1, T2) 7→ R(T2T1 − I, T2) (3)

is well defined and surjective (Bartolone [1]). Hence

P(R) = {R(T2T1 − I, T2) | T1, T2 ∈ R}.



R has Stable Rank 2 (cont.)
We have P(R) = R(I, 0)GL2(R). (This holds over an arbitrary ring.)

The elementary subgroup E2(R) of GL2(R) is generated by the set of all elementary
matrices

B12(T ) :=

(

I T

0 I

)

and B21(T ) :=

(

I 0
T I

)

with T ∈ R.

E2(R) is also generated by the set of all matrices

E(T ) :=

(

T I

−I 0

)

with T ∈ R.

Indeed, P(R) = R(I, 0)E2(R) follows from

(T2T1 − I, T2) = (I, 0) · E(T2) · E(T1) for all T2, T1 ∈ R.

See [4] and Veldkamp [13].



Projective Matrix Spaces

• The point set P(Kn×n) = P(R) can be identified with the Grassmannian

Gr2n,n(K) according to (2).

• All pairs (A, I) and (I,A) with A ∈ R are admissible, because rank(A, I) =

rank(I,A) = n.

• The Grassmannian Gr2n,n(K) is also called the projective space of n×n matrices

over K. See Wan [14]; cf. also Dieudonné [9].

• The bijection from (2) turns (3) into a surjective parametric representation of the

Grassmannian Gr2n,n(K), namely

R2 → Gr2n,n(K) : (T1, T2) 7→ left row space of (T2T1 − I, T2).

• Many authors (like Wan [14]) adopt the projective point of view for Gr2n,n(K):

(n − 1)-dimensional subspaces of an (2n − 1)-dimensional projective space.



Additional Structure
A major difference concerns the additional structure on P(R) = Gr2n,n(K):

Ring Geometry

• P(R) is endowed with the symmetric and anti-reflexive relation distant (△) defined
by

R(A, B)△ R(C,D) ⇔

(

A B

C D

)

∈ GL2(R).

• Being distant is equivalent to the complementarity of the n-dimensional sub-
spaces of K2n which correspond via (2).

• Given points p, q ∈ P(R) there exists some point r ∈ P(R) such that p△ r △ q.

This property holds, more generally, over any ring of stable rank 2. It provides
another way of understanding Bartolone’s parametrisation, as

R(I, 0) △ R(T1, I)△ R(T2T1 − I, T2) for all T2, T1 ∈ R.

•
(

P(R),△
)

is called the distant graph.



Additional Structure (cont.)

Matrix Geometry

• Two n-dimensional subspaces of K2n are called adjacent (∼) if, and only if, their

intersection has dimension n − 1.

•
(

Gr2n,n(K),∼
)

is called the Grassmann graph.

Adjacency can be expressed in terms of being distant and vice versa; see [5].

Therefore the distant graph and the Grassmann graph have—up to the identification

from (2)—the same automorphism group .



An Application: Chow’s Theorem

There is no need to distinguish in the following description (like, e. g., in Wan [14])

between those automorphisms of the Grassmann graph which arise from semilinear

bijections of K2n and those which arise from non-degenerate sesquilinear forms on

K2n.

Theorem 1 (Chow (1949), [6]). A mapping Φ : Gr2n,n(K) → Gr2n,n(K) is an auto-
morphism of the Grassmann graph if, and only if, it can be written in the form

left row space of (T2T1 − I, T2) 7→ left row space of (T ϕ
2 T

ϕ
1 − I, T

ϕ
2 ) · A,

where ϕ : R → R is an automorphism or antiautomorphism of R and A ∈ GL2n(K).

The above theorem describes the full automorphism group of the Grassmann graph

and—up to the identification with P(R) from (2)—also the full automorphism group

of the distant graph.



Part 2

σ-Hermitian Matrices

The second part deals with geometries on σ-Hermitian ma-

trices.

The situation is more complicated here, because the σ-

Hermitian matrices do not comprise a subring of the ring

of square matrices.



σ-Transposition

We suppose from now on that the field K admits an involution, i. e. an antiautomor-

phism σ, say, such that σ2 = idK. As before, we let R = Kn×n with n > 1.

• σ determines an antiautomorphism of R, namely the σ-transposition

M = (mij) 7→ (Mσ)T := (mσ
ji).

• The elements of Hσ := {X ∈ R | X = (Xσ)T} are the σ-Hermitian matrices of R.

• In the special case that σ = idK the field K is commutative, and we obtain the

subset of symmetric matrices of Kn×n.



Algebraic Properties

Below we adopt the terminology from Blunck and Herzer [7]: We consider R = Kn×n

as an algebra over F = Fix σ ∩ Z(K), where Fix σ = {x ∈ K | x = xσ} and Z(K)

denotes the centre of K.

• Hσ is a Jordan system of R. This means:

1. Hσ is a subspace of the F -vector space R.

2. I ∈ Hσ.

3. A−1 ∈ Hσ for all A ∈ GLn(K) ∩ Hσ.

• Hσ is Jordan closed, i. e., it satisfies the condition

ABA ∈ Hσ for all A,B ∈ Hσ.

• The set Hσ is not closed under matrix multiplication.



Ring Geometry . . .
The projective line over Hσ, in symbols P(Hσ), is defined as

P(Hσ) = {R(T2T1 − I, T2) | T1, T2 ∈ Hσ}. (4)

One motivation to exhibit such structures came from the theory of chain geometries.

These generalise the classical circle geometry of Möbius by replacing the R-algebra

C with an arbitrary algebra over a commutative field (here: the F -algebra R). See

Blunck and Herzer [7].

• From Bartolone’s parametrisation (3), P(Hσ) is indeed a subset of P(R).

• P(Hσ) is not defined as the set of all cyclic submodules R(A, B) with (A, B) ad-

missible and A, B ∈ Hσ.

• Nevertheless, all points R(A, I) and R(I,A) with A ∈ Hσ belong to P(Hσ).



. . . vs. Matrix Geometry
Below we follow Wan [14]: Let β : K2n × K2n → K be the non-degenerate σ-anti-

Hermitian sesquilinear form given by the matrix

(

0 I

−I 0

)

∈ GL2n(K).

This form β is trace-valued and has Witt index n.

The subset of Gr2n,n(K) comprising all maximal totally isotropic (m. t. i.) subspaces

of β is the point set of the projective space of σ-Hermitian matrices.

(Or: the point set of the dual polar space given by β; see also Cameron [8].)

• An admissible pair (A,B) ∈ R2 gives rise to a m. t. i. subspace if, and only if,

A(Bσ)T = B(Aσ)T. (5)

• All pairs (A, I) and (I,A) with A ∈ Hσ give rise to m. t. i. subspaces.



Remarks

• Cf. Blunck and Herzer [7, 3.1.5].

Note that our Jordan system Hσ need not be strong in the sense of the authors (in

German: “starkes Jordan-System”). We do not assume any richness conditions,

like the strongness from loc. cit.

• Cf. Wan [14, p. 306].

When dealing with σ-Hermitian matrices extra assumptions on the set Fix σ, the

centre of K, and the trace map K → Fixσ : x 7→ x + xσ are adopted. None of

them is not used here.



Question

The set Hσ of σ-Hermitian n × n matrices over K gives rise to two subsets of the

Grassmannian Gr2n,n(K) (which has to be identified with the projective line P(R)

according to (2)).

• In the ring-geometric setting the subset is given in terms of the parametric repre-

sentation (4).

• In the matrix-geometric setting there is the defining matrix equation (5).

Question: Do these two subsets coincide or not?



Example

Let K be a commutative field, σ = idK, and n = 2.

Hence β is a symplectic form on K4 and Hσ is the set of symmetric 2 × 2 matrices

over K.

• In this case the answer to our previous question is affirmative.

• In projective terms we have:

P(R) . . . the Grassmannian of lines of a 3-dimensional projective space over K.

P(Hσ) . . . a general linear complex, i. e., the set of null-lines of a symplectic

polarity.



Main Theorem

Theorem 2 ([6]). Let K be any field admitting an involution σ. Then the following
sets coincide:

• the point set of the projective line over the Jordan system Hσ of all σ-Hermitian
n × n matrices over K;

• the point set of the projective space of σ-Hermitian n × n matrices over K.

Our proof of this theorem uses two auxiliary results about dual polar spaces. So

we work in the realm of matrix geometry, viz. the Grassmannian Gr2n,n(K) and the

sesquilinear form β, rather than in a ring-theoretic setting.



Two Auxiliary Results

The first result is rather technical.

Lemma 1 ([6]). Let U = V ⊕ W be a maximal totally isotropic subspace of (K2n, β)

which is given as direct sum of subspaces V and W . Then there exists a maximal
totally isotropic subspace, say X , such that X ∩ V ⊥ = W .

Proof (sketched). Our proof amounts to changing from the standard basis to a new

basis of K2n such that the matrix of the sesquilinear form β with respect to this new

basis has a particular block form from which the assertion is immediate. Starting

from the given matrix
(

0 I

−I 0

)

for β, this task can be accomplished by several elementary row and column trans-

formations.



Two Auxiliary Results (cont.)

Lemma 2 ([6]). Let U1 and U2 be maximal totally isotropic subspaces of (K2n, β).
Then there exists a maximal totally isotropic subspace X which is a common com-
plement of U1 and U2.

Proof (sketched). Let V := U1 ∩ U2. The first step is to find a t. i. subspace W such

that V ⊕ W is a m. t. i. subspace and Ui ∩ W = 0 for i = 1, 2. Then Lemma 1,

applied to U := V ⊕W , establishes the existence of a subspace X with the required

properties.

Lemma 2 can be reformulated in ring-theoretic language as follows:

Corollary. Given points p, q ∈ P(Hσ) there exists some point r ∈ P(Hσ) with the
property p △ r △ q.



Proof of the Main Theorem
Proof (sketched). The proof of one inclusion simply amounts to substituting the
parametrisation (4) into the matrix equation (5).
Conversely, let the left row space of (A, B) be a m. t. i. subspace. By Lemma 2,
there exists a m. t. i. subspace of K2n which is a common complement of the left
row spaces of (I, 0) and (A, B). In matrix form it can be written as

(C, I) with C ∈ Hσ.

So, in terms of P(Hσ) ⊂ P(R), we have

R(I, 0)△ R(C, I)△ R(A, B).

Defining
T1 := C and T2 := (BC − A)−1B

gives after some calculations that R(A, B) = R(T2T1−I, T2) and T1, T2 ∈ Hσ. Hence,
finally R(A, B) ∈ P(Hσ).



Remark

In view of Theorem 2 one may carry over results from P(Hσ) which are based on the

parametrisation (4) to the projective space of σ-Hermitian matrices.

See [6] for further details.



Open Problems

1. Is it possible to express the adjacency relation on a projective space of σ-

Hermitian matrices in terms of the distant relation on P(Hσ)?

An affirmative answer would extend our result from a structural point of view.

See [6], Kwiatkowski and Pankov [11], and Pankov [12, 4.7.1] for further details.

2. Is it possible to extend the present results from the matrix ring R = Kn×n to other

rings which admit an anti-automorphism?

An affirmative answer would give, mutatis mutandis, an alternative approach to

projective lines over the Jordan system comprising the fixed elements of the given

anti-automorphism. More precisely, one would obtain a defining equation similar

to (5) rather than a parametric representation.
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