Preserver Problems in Geometry

Hans Havlicek

6th Podlasie Conference on Mathematics, Białystok, July 2, 2014
Introduction
We consider a k-dimensional left vector space V over a (not necessarily commutative) field F, and denote by

$$G_m(V)$$

the Grassmannian of all m-subspaces of the vector space V.

Thereby is always assumed that k and m are integers satisfying

$$1 \leq m \leq k - 1.$$
We consider a k-dimensional left vector space V over a (not necessarily commutative) field F, and denote by

$$G_m(V)$$

the Grassmannian of all m-subspaces of the vector space V.

Thereby is always assumed that k and m are integers satisfying

$$1 \leq m \leq k - 1.$$

Since proper skew fields are included, we cannot use tools from exterior algebra.
Standard Transformations

The following mappings on vectors determine the *standard transformations* of the Grassmannian $G_m(V)$.
Standard Transformations

The following mappings on vectors determine the *standard transformations* of the Grassmannian $G_m(V)$.

- **Semilinear bijections** $f : V \rightarrow V$:

 $X \mapsto X^f := \{ v^f | v \in X \}$;

 there is a unique *automorphism* of K accompanying f.
The following mappings on vectors determine the *standard transformations* of the Grassmannian $\mathcal{G}_m(V)$.

- **Semilinear bijections** $f : V \rightarrow V$:

 $$X \mapsto X^f := \{v^f | v \in X\};$$

 there is a unique automorphism of K accompanying f.

- **For $k = 2m$ only**: Semilinear bijections $f : V \rightarrow V^*$, where V^* denotes the dual of V:

 $$X \mapsto \text{annihilator of } X^f.$$

 Any such f is accompanied by a unique antiautomorphism of K. (There are skew fields admitting no antiautomorphism.)
Problem

Characterise the standard transformations of Grassmannians from the previous slide by as few geometric invariants as possible.
The Grassmann Graph

- Subspaces $X_1, X_2 \in \mathcal{G}_m(V)$ are called adjacent (in symbols: $X_1 \sim X_2$) if

\[\dim(X_1 \cap X_2) = m - 1. \]
The Grassmann Graph

- Subspaces $X_1, X_2 \in \mathcal{G}_m(V)$ are called *adjacent* (in symbols: $X_1 \sim X_2$) if
 \[
 \dim(X_1 \cap X_2) = m - 1.
 \]

- We consider $\mathcal{G}_m(V)$ as the set of vertices of an *undirected graph*, called the *Grassmann graph*. Its edges are the (unordered) pairs of adjacent m-subspaces.
Subspaces $X_1, X_2 \in \mathcal{G}_m(V)$ are called adjacent (in symbols: $X_1 \sim X_2$) if

$$\dim(X_1 \cap X_2) = m - 1.$$

We consider $\mathcal{G}_m(V)$ as the set of vertices of an undirected graph, called the Grassmann graph. Its edges are the (unordered) pairs of adjacent m-subspaces.

The automorphisms of the Grassmann graph are precisely those bijections of $\mathcal{G}_m(V)$ that preserve adjacency in both directions.
The Grassmann Graph

- Subspaces \(X_1, X_2 \in G_m(V) \) are called adjacent (in symbols: \(X_1 \sim X_2 \)) if
 \[
 \dim(X_1 \cap X_2) = m - 1.
 \]

- We consider \(G_m(V) \) as the set of vertices of an undirected graph, called the Grassmann graph. Its edges are the (unordered) pairs of adjacent \(m \)-subspaces.

- The automorphisms of the Grassmann graph are precisely those bijections of \(G_m(V) \) that preserve adjacency in both directions.

- We shall often assume \(2 \leq m \leq k - 2 \) in order to avoid a complete graph.
Theorem (W. L. Chow (1949) [7])

Let \(2 \leq m \leq k - 2 \).

A bijective mapping

\[
\varphi : \mathcal{G}_m(V) \rightarrow \mathcal{G}_m(V) : X \mapsto X^\varphi
\]

preserves adjacency in both directions, i.e.,

\[
X_1 \sim X_2 \Leftrightarrow X_1^\varphi \sim X_2^\varphi \quad \text{for all } X_1, X_2 \in \mathcal{G}_m(V),
\]

if, and only if, \(\varphi \) is a standard transformation.
The Matrix Approach
Each element of the Grassmannian $G_m(F^k)$ can be viewed as the left row space of a matrix $A|B$ with left row rank m, where $A \in F^{m \times (k-m)}$, $B \in F^{m \times m}$, and vice versa. We let $n := k - m$.
Each element of the Grassmannian $G_m(F^k)$ can be viewed as the left row space of a matrix $A|B$ with left row rank m, where $A \in F^{m \times (k-m)}$, $B \in F^{m \times m}$, and vice versa. We let $n := k - m$.

- Let $\text{rk}(A|B) = m$. Then $A|B$ and $A'|B'$ have the same left row space, if and only if, there is a $T \in \text{GL}_m(F)$ with

$$A' = TA \quad \text{and} \quad B' = TB.$$
Projective Matrix Spaces

Each element of the Grassmannian $G_m(F^k)$ can be viewed as the left row space of a matrix $A|B$ with left row rank m, where $A \in F^{m \times (k-m)}$, $B \in F^{m \times m}$, and vice versa. We let $n := k - m$.

- Let $\text{rk}(A|B) = m$. Then $A|B$ and $A'|B'$ have the same left row space, if and only if, there is a $T \in \text{GL}_m(F)$ with
 $$A' = TA \quad \text{and} \quad B' = TB.$$

- One may consider a matrix pair
 $$(A, B) \in F^{m \times n} \times F^{m \times m} \quad \text{with} \quad \text{rk}(A|B) = m$$
 as left homogeneous coordinates of an element of $G_m(F^k)$.

Projective Matrix Spaces

Each element of the Grassmannian $G_m(F^k)$ can be viewed as the left row space of a matrix $A|B$ with left row rank m, where $A \in F^{m \times (k-m)}$, $B \in F^{m \times m}$, and vice versa. We let $n := k - m$.

- Let $\text{rk}(A|B) = m$. Then $A|B$ and $A'|B'$ have the same left row space, if and only if, there is a $T \in \text{GL}_m(F)$ with
 \[A' = TA \quad \text{and} \quad B' = TB. \]

- One may consider a matrix pair
 \[(A, B) \in F^{m \times n} \times F^{m \times m} \quad \text{with} \quad \text{rk}(A|B) = m \]
 as left homogeneous coordinates of an element of $G_m(F^k)$.

- $G_m(F^k)$ is also called the point set of the \textit{projective space of $m \times n$ matrices} over F.
An Embedding

We have an injective mapping:

\[F^{m \times n} \rightarrow F^{m \times k} \rightarrow G_m(F^k) \]

\[A \mapsto A | I_m \mapsto \text{left rowspace of } A | I_m \]

Here \(I_m \) denotes the \(m \times m \) identity matrix over \(F \).
An Embedding

We have an injective mapping:

\[
F^{m \times n} \rightarrow F^{m \times k} \rightarrow G_m(F^k)
\]

\[
A \mapsto A|I_m \mapsto \text{left rowspace of } A|I_m
\]

Here \(I_m\) denotes the \(m \times m\) identity matrix over \(F\).

- An \(m\)-subspace with coordinates \((A, B)\) is in the image of this embedding if, and only if, \(\text{rk } B = m\).
An Embedding

We have an injective mapping:

\[F^{m \times n} \rightarrow F^{m \times k} \rightarrow G_m(F^k) \]

\[A \mapsto A|I_m \mapsto \text{left rowspace of } A|I_m \]

Here \(I_m \) denotes the \(m \times m \) identity matrix over \(F \).

- An \(m \)-subspace with coordinates \((A, B)\) is in the image of this embedding if, and only if, \(\text{rk } B = m \).
- Matrices \(A_1, A_2 \in F^{m \times n} \) are called \textit{adjacent} (in symbols: \(A_1 \sim A_2 \)) if \(\text{rk}(A_1 - A_2) = 1 \).
An Embedding

We have an injective mapping:

\[
F^{m \times n} \rightarrow F^{m \times k} \rightarrow G_m(F^k) \\
A \mapsto A|I_m \mapsto \text{left rowspace of } A|I_m
\]

Here \(I_m \) denotes the \(m \times m \) identity matrix over \(F \).

- An \(m \)-subspace with coordinates \((A, B)\) is in the image of this embedding if, and only if, \(\text{rk } B = m \).
- Matrices \(A_1, A_2 \in F^{m \times n} \) are called adjacent (in symbols: \(A_1 \sim A_2 \)) if \(\text{rk}(A_1 - A_2) = 1 \).
- Matrices from \(F^{m \times n} \) are adjacent precisely when their images in \(G_m(F^k) \) are adjacent.
Standard Transformations

The following *standard transformations* $F^{m \times n} \rightarrow F^{m \times n}$ preserve adjacency in both directions:
Standard Transformations

The following *standard transformations* $F^{m \times n} \rightarrow F^{m \times n}$ preserve adjacency in both directions:

- **For arbitrary** m, n:

 $$A \mapsto P \cdot A^\sigma \cdot Q + R,$$

 where $P \in \text{GL}_m(F)$, $Q \in \text{GL}_n(F)$, $R \in F^{m \times n}$, and σ is an automorphism of F.
Standard Transformations

The following *standard transformations* \(F^{m \times n} \rightarrow F^{m \times n} \) preserve adjacency in both directions:

- **For arbitrary** \(m, n \):

 \[A \mapsto P \cdot A^\sigma \cdot Q + R, \]

 where \(P \in \text{GL}_m(F), \ Q \in \text{GL}_n(F), \ R \in F^{m \times n}, \) and \(\sigma \) is an automorphism of \(F \).

- **For** \(m = n \) **only**:

 \[A \mapsto P \cdot (A^\sigma)^T \cdot Q + R, \]

 where \(P, Q, R \) are as above, \(\sigma \) is an antiautomorphisms of \(F \), and \(T \) denotes transposition.
Theorem (L. K. Hua (1951) [10])

Let \(m, n \geq 2 \).

A bijective mapping \(\varphi : F^{m \times n} \rightarrow F^{m \times n} : A \mapsto A^\varphi \) preserves adjacency in both directions, i.e.,

\[
A_1 \sim A_2 \iff A_1^\varphi \sim A_2^\varphi \quad \text{for all } A_1, A_2 \in F^{m \times n},
\]

if, and only if, \(\varphi \) is a standard transformation.
Theorem (L. K. Hua (1951) [10])

Let \(m, n \geq 2 \).

A bijective mapping \(\varphi : F^{m \times n} \rightarrow F^{m \times n} : A \mapsto A^\varphi \) preserves adjacency in both directions, i.e.,

\[
A_1 \sim A_2 \iff A_1^\varphi \sim A_2^\varphi \quad \text{for all } A_1, A_2 \in F^{m \times n},
\]

if, and only if, \(\varphi \) is a standard transformation.

For \(\#F = 2 \) the result was established by Z.-X. Wan and Y.-X. Wang (1962, in Chinese); cf. [27].
Theorem (L. K. Hua (1951) [10])

Let $m, n \geq 2$.

A bijective mapping $\varphi : F^{m \times n} \rightarrow F^{m \times n} : A \mapsto A^\varphi$ preserves adjacency in both directions, i.e.,

$$A_1 \sim A_2 \iff A_1^\varphi \sim A_2^\varphi$$

for all $A_1, A_2 \in F^{m \times n}$,

if, and only if, φ is a standard transformation.

For $\#F = 2$ the result was established by Z.-X. Wan and Y.-X. Wang (1962, in Chinese); cf. [27].

A link between the theorems of Chow and Hua is provided by the theory of spine spaces; see K. Prażmowski and M. Żynel [24].
Other Matrix Spaces

and Related Topics
Transformations on Symmetric Matrices

Similar results hold (up to certain exceptions) for bijections that preserve adjacency in both directions for the following spaces:

For any commutative field F:
- The space of $m \times m$ symmetric matrices over F.
Similar results hold (up to certain exceptions) for bijections that preserve adjacency in both directions for the following spaces:

For any commutative field F:

- The space of $m \times m$ symmetric matrices over F.

- The space of maximal totally isotropic subspaces of F^{2m} w.r.t. a symplectic form.
Transformations on Symmetric Matrices

Similar results hold (up to certain exceptions) for bijections that preserve adjacency in both directions for the following spaces:

For any commutative field F:

- The space of $m \times m$ symmetric matrices over F.

- The space of maximal totally isotropic subspaces of F^{2m} w.r.t. a symplectic form.

This is also called the *projective space of* $m \times m$ *symmetric matrices* over F.
Transformations on σ-Hermitian Matrices

Similar results hold (up to certain exceptions) for bijections that preserve adjacency in both directions for the following spaces:

For any field F that admits an antiautomorphism σ of order two:

- The space of $m \times m \sigma$-Hermitian matrices over F.

- The space of maximal totally isotropic subspaces of F^{2m} w.r.t. a particular skew σ-Hermitian sesquilinear form.

This is also called the *projective space of $m \times m \sigma$-Hermitian matrices* over F.
Transformations on Alternating Matrices

Similar results hold (up to certain exceptions) for bijections that preserve adjacency in both directions for the following spaces:

For any commutative field F:

- The space of $m \times m$ alternating matrices over F.
 Adjacency is not inherited from $F^{n \times n}$.

- The space of maximal totally singular subspaces of F^{2n} w.r.t.
 a particular quadratic form.
 This is also called the projective space of $m \times m$ alternating
 matrices over F.
Monographs and Surveys

- W. Benz: *Geometrische Transformationen* (1992) [1].
- W. Benz: *Real Geometries* (1994) [2].
- J. Lester: Distance preserving transformations (1995) [19].
- P. Šemrl: Maps on matrix and operator algebras (2006) [26].

Applications: light cone preservers, Jordan homomorphisms, ...
Chow’s Theorem
Key Questions

1. How does this work?
Key Questions

1. How does this work?

2. Is it possible to further weaken the assumptions?
Key Questions

1. How does this work?

2. Is it possible to further weaken the assumptions?

3. Why adjacency, why not . . . ?
Key Questions

1. How does this work?

2. Is it possible to further weaken the assumptions?

3. Why adjacency, why not ...?

4. Is there a unified theory?
Grassmannians Revisited

Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.
Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:
Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:

- The elements of $G_m(V)$ are the $(m - 1)$-flats of the projective space on V.
Grassmannians Revisited

Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:

- The elements of $G_m(V)$ are the $(m - 1)$-flats of the projective space on V.
- 0-flats are called *points*.
Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:

- The elements of $G_m(V)$ are the $(m - 1)$-flats of the projective space on V.
- 0-flats are called **points**.
- 1-flats are called **lines**.
Grassmannians Revisited

Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:

- The elements of $G_m(V)$ are the $(m - 1)$-flats of the projective space on V.
- 0-flats are called points.
- 1-flats are called lines.
- 2-flats are called planes.
Grassmannians Revisited

Recall that $G_m(V)$ denotes the Grassmannian of all m-subspaces of the left vector space $V \cong F^k$, where $1 \leq m \leq k - 1$.

We shall frequently adopt the projective point of view:

- The elements of $G_m(V)$ are the $(m - 1)$-flats of the projective space on V.
- 0-flats are called points.
- 1-flats are called lines.
- 2-flats are called planes.
- ...
Recall that \(G_m(V) \) denotes the Grassmannian of all \(m \)-subspaces of the left vector space \(V \cong F^k \), where \(1 \leq m \leq k - 1 \).

We shall frequently adopt the projective point of view:

- The elements of \(G_m(V) \) are the \((m - 1)\)-flats of the projective space on \(V \).
- 0-flats are called *points*.
- 1-flats are called *lines*.
- 2-flats are called *planes*.
- \(\ldots \)
- \((k - 2)\)-flats are called *hyperplanes*.
Techniques: Maximal Cliques

For \(2 \leq m \leq k - 2\) the maximal cliques of the Grassmann graph \((G_m(V), \sim)\) fall into two classes.

- A star is the set of all \((m - 1)\)-flats through a fixed \((m - 2)\)-flat, called the centre of the star.
- A top is the set of all \((m - 1)\)-flats within a fixed \(m\)-flat, called the carrier of the top.
Techniques: Maximal Cliques

For $2 \leq m \leq k - 2$ the maximal cliques of the Grassmann graph $(G_m(V), \sim)$ fall into two classes.

- A **star** is the set of all $(m - 1)$-flats through a fixed $(m - 2)$-flat, called the **centre** of the star.
- A **top** is the set of all $(m - 1)$-flats within a fixed m-flat, called the **carrier** of the top.

$k = 4, m = 2$
Techniques: Maximal Cliques

For $2 \leq m \leq k - 2$ the maximal cliques of the Grassmann graph $(G_m(V), \sim)$ fall into two classes.

- A *star* is the set of all $(m - 1)$-flats through a fixed $(m - 2)$-flat, called the *centre* of the star.

- A *top* is the set of all $(m - 1)$-flats within a fixed m-flat, called the *carrier* of the top.
Techniques: Intersection of Maximal Cliques

- The intersection of two distinct stars (tops) is either empty or it contains a single \((m - 1)\)-flat.

- The intersection of a star and a top is either empty or it contains at least three \((m - 1)\)-flats.

The second case characterises stars (tops) with adjacent centres (carriers).
The intersection of two distinct stars (tops) is either empty or it contains a single $(m - 1)$-flat.

The intersection of a star and a top is either empty or it contains at least three $(m - 1)$-flats.

$k = 4, \ m = 2$

The second case characterises stars (tops) with adjacent centres (carriers).
Techniques: Intersection of Maximal Cliques

- The intersection of two distinct stars (tops) is either empty or it contains a single \((m - 1)\)-flat.

- The intersection of a star and a top is either empty or it contains at least three \((m - 1)\)-flats.

\(k = 4, \ m = 2\)
Techniques: Intersection of Maximal Cliques

- The intersection of two distinct stars (tops) is either empty or it contains a single \((m - 1)\)-flat.

- The intersection of a star and a top is either empty or it contains at least three \((m - 1)\)-flats.

The second case yields a \textit{pencil} of \((m - 1)\)-flats.
Techniques: Intersection of Maximal Cliques

- The intersection of two distinct stars (tops) is either empty or it contains a single \((m - 1)\)-flat.

- The intersection of a star and a top is either empty or it contains at least three \((m - 1)\)-flats.

\[k = 4, \ m = 2 \]

The second case yields a pencil of \((m - 1)\)-flats.
Techniques: Collineations

Fundamental Theorem of Projective Geometry

All collineations between the point sets of projective spaces on vector spaces V, V' of dimension ≥ 3 stem from semilinear bijections $V \to V'$, and vice versa.
Proof of Chow’s Theorem

The proof of Chow’s theorem is essentially based on:

- the intersection properties of maximal cliques,
The proof of Chow’s theorem is essentially based on:

- the intersection properties of maximal cliques,
- an recursion argument,
Proof of Chow’s Theorem

The proof of Chow’s theorem is essentially based on:

- the intersection properties of maximal cliques,

- an recursion argument,

- the fundamental theorem of projective geometry.
Theorem (R. Westwick (1974) [28], W. I. Huang (1998) [13])

Let \(2 \leq m \leq k - 2 \).

A bijective mapping

\[
\varphi : \mathcal{G}_m(V) \rightarrow \mathcal{G}_m(V) : X \mapsto X^\varphi
\]

preserves adjacency, i. e.,

\[
X_1 \sim X_2 \Rightarrow X_1^\varphi \sim X_2^\varphi \quad \text{for all} \quad X_1, X_2 \in \mathcal{G}_m(V),
\]

if, and only if, \(\varphi \) is a standard transformation.
Theorem (R. Westwick (1974) [28], W. I. Huang (1998) [13])

Let \(2 \leq m \leq k - 2 \).

A bijective mapping

\[
\varphi : \mathcal{G}_m(V) \rightarrow \mathcal{G}_m(V) : X \mapsto X^\varphi
\]

preserves adjacency, i. e.,

\[
X_1 \sim X_2 \Rightarrow X_1^\varphi \sim X_2^\varphi \quad \text{for all } X_1, X_2 \in \mathcal{G}_m(V),
\]

if, and only if, \(\varphi \) is a standard transformation.

For \(m = 2 \) (Grassmannians of lines) see also H. Brauner [6] in combination with H. H. [8].
Theorem (R. Westwick (1974) [28], W. I. Huang (1998) [13])

Let $2 \leq m \leq k - 2$.

A bijective mapping

$$\varphi : G_m(V) \rightarrow G_m(V) : X \mapsto X^\varphi$$

preserves adjacency, i.e.,

$$X_1 \sim X_2 \Rightarrow X_1^\varphi \sim X_2^\varphi \quad \text{for all } X_1, X_2 \in G_m(V),$$

if, and only if, φ is a standard transformation.

For $m = 2$ (Grassmannians of lines) see also H. Brauner [6] in combination with H. H. [8].

A (rather intricate) example of an adjacency preserving bijection $G_2(F^4) \rightarrow G_2(F'^3)$ is due to A. Kreuzer [18].
Westwick’s proof runs along the lines of Chow. Huang’s reasoning is quite different. Her proof is based on a detailed study of maximal distances between a single element and certain subsets of the Grassmannian $G_m(V)$.
Techniques: Distances

Westwick’s proof runs along the lines of Chow. Huang’s reasoning is quite different. Her proof is based on a detailed study of maximal distances between a single element and certain subsets of the Grassmannian $G_m(V)$.

The graph theoretic distance between $X, Y \in G_m(V)$, which is also called the arithmetic distance, will be denoted by $\text{dist}(X, Y)$.
 Techniques: Distances

Westwick’s proof runs along the lines of Chow. Huang’s reasoning is quite different. Her proof is based on a detailed study of maximal distances between a single element and certain subsets of the Grassmannian $G_m(V)$.

The graph theoretic distance between $X, Y \in G_m(V)$, which is also called the arithmetic distance, will be denoted by $\text{dist}(X, Y)$.

Its basic properties are:

- $\text{dist}(X, Y) = s \iff \dim(X \cap Y) = m - s$.
Westwick’s proof runs along the lines of Chow. Huang’s reasoning is quite different. Her proof is based on a detailed study of maximal distances between a single element and certain subsets of the Grassmannian $G_m(V)$.

The graph theoretic distance between $X, Y \in G_m(V)$, which is also called the arithmetic distance, will be denoted by $\text{dist}(X, Y)$.

Its basic properties are:

- $\text{dist}(X, Y) = s \iff \dim(X \cap Y) = m - s$.

- The diameter of the Grassmann graph $G_m(V)$ equals

$$\text{diam} \ G_m(V) = \min\{m, k - m\}.$$
Theorem (M.-H. Lim (2010) [20])

Let \(2 \leq m \leq k - 2 \) and chose an integer \(s \) such that

\[
1 \leq s < \text{diam}\, G_m(V).
\]

A surjective mapping

\[
\varphi : G_m(V) \rightarrow G_m(V) : X \mapsto X^\varphi
\]

satisfies

\[
\text{dist}(X_1, X_2) \leq s \iff \text{dist}(X_1^{\varphi}, X_2^{\varphi}) \leq s \quad \text{for all} \quad X_1, X_2 \in G_m(V),
\]

if, and only if, \(\varphi \) is a standard transformation.
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$\mathcal{T}^{[s]} := \{X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.$$
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$\mathcal{T}^{[s]} := \{X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.$$

Then for all $X_1, X_2 \in G_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} = \{X_1, X_2\}$.
- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} \text{ has at least three elements. (It is a pencil).}$
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$
\mathcal{T}^{[s]} := \{ X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.
$$

Then for all $X_1, X_2 \in G_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} = \{X_1, X_2\}$.
- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} \text{ has at least three elements. (It is a pencil).}$
Techniques: Balls of Radius \(s \)

For each subset \(\mathcal{T} \subset \mathcal{G}_m(V) \) let

\[
\mathcal{T}^{[s]} := \{X \in \mathcal{G}_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.
\]

Then for all \(X_1, X_2 \in \mathcal{G}_m(V) \) with \(1 \leq \text{dist}(X_1, X_2) \leq s \) the following characterisations hold:

- \(\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]}{[s]} = \{X_1, X_2\} \).
- \(\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]}{[s]} \text{ has at least three elements. (It is a pencil)}\).
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$\mathcal{T}[^s] := \{X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.$$

Then for all $X_1, X_2 \in G_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}[^s])[^s] = \{X_1, X_2\}$.
- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}[^s])[^s]$ has at least three elements. (It is a pencil).

A more general example:

$\text{dist}(X_1, X_2) = 2, \ s = 1$

$k = 4, \ m = 2$
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$\mathcal{T}^{[s]} := \{ X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T} \}.$$

Then for all $X_1, X_2 \in G_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} = \{X_1, X_2\}$.

- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]})^{[s]}$ has at least three elements. (It is a pencil).

A more general example:
$\text{dist}(X_1, X_2) = 2, \ s = 1$

$k = 4, \ m = 2$
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset \mathcal{G}_m(V)$ let

$$\mathcal{T}^{[s]} := \{ X \in \mathcal{G}_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T} \}.$$

Then for all $X_1, X_2 \in \mathcal{G}_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} = \{X_1, X_2\}$.

- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} \text{ has at least three elements. (It is a pencil).}$

$\text{dist}(X_1, X_2) = 1, \ s = 1$

$k = 4, \ m = 2$
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset G_m(V)$ let

$$\mathcal{T}^s := \{X \in G_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.$$

Then for all $X_1, X_2 \in G_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^s)^s = \{X_1, X_2\}$.

- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^s)^s$ has at least three elements. (It is a pencil.)
Techniques: Balls of Radius s

For each subset $\mathcal{T} \subset \mathcal{G}_m(V)$ let

$$\mathcal{T}^{[s]} := \{ X \in \mathcal{G}_m(V) \mid \text{dist}(X, Y) \leq s \text{ for all } Y \in \mathcal{T}\}.$$

Then for all $X_1, X_2 \in \mathcal{G}_m(V)$ with $1 \leq \text{dist}(X_1, X_2) \leq s$ the following characterisations hold:

- $\text{dist}(X_1, X_2) \neq 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} = \{X_1, X_2\}$.

- $\text{dist}(X_1, X_2) = 1 \iff (\{X_1, X_2\}^{[s]})^{[s]} \text{ has at least three elements. (It is a pencil)}$.

\[k = 4, \ m = 2 \]

\[\text{dist}(X_1, X_2) = 1, \ s = 1 \]
Corollary (Lim’s theorem for $s = d - 1$)

Let $2 \leq m \leq k - 2$ and define $d := \text{diam} \mathcal{G}_m(V)$. A surjective mapping
\[
\varphi : \mathcal{G}_m(V) \rightarrow \mathcal{G}_m(V) : X \mapsto X^\varphi
\]
satisfies
\[
\text{dist}(X_1, X_2) = d \iff \text{dist}(X_1^\varphi, X_2^\varphi) = d \quad \text{for all} \quad X_1, X_2 \in \mathcal{G}_m(V),
\]
if, and only if, φ is a standard transformation.
Let $2 \leq m \leq k - 2$ and define $d := \text{diam } G_m(V)$. A surjective mapping
\[\varphi : G_m(V) \to G_m(V) : X \mapsto X^\varphi \]
satisfies
\[\text{dist}(X_1, X_2) = d \Leftrightarrow \text{dist}(X_1^\varphi, X_2^\varphi) = d \quad \text{for all } X_1, X_2 \in G_m(V), \]
if, and only if, φ is a standard transformation.

Lim’s result generalises previous work on diameter preservers by A. Blunck, W. I. Huang, M. Pankov, and H. H. [3], [15], [9].
Corollary (Lim’s theorem for $s = d - 1$)

Let $2 \leq m \leq k - 2$ and define $d := \text{diam } \mathcal{G}_m(V)$. A surjective mapping

$$\varphi : \mathcal{G}_m(V) \to \mathcal{G}_m(V) : X \mapsto X^\varphi$$

satisfies

$$\text{dist}(X_1, X_2) = d \iff \text{dist}(X_1^\varphi, X_2^\varphi) = d \quad \text{for all } X_1, X_2 \in \mathcal{G}_m(V),$$

if, and only if, φ is a standard transformation.

Lim’s result generalises previous work on diameter preservers by A. Blunck, W. I. Huang, M. Pankov, and H. H. [3], [15], [9].

It overlaps with a characterisation of (not necessarily surjective) distance preserving mappings due to J. Kosiorek, A. Matraś, and M. Pankov [17], [22].
Final Remarks

- W. I. Huang [14] generalised Lim’s result to wide class of graphs satisfying certain axioms.
Final Remarks

- W. I. Huang [14] generalised Lim’s result to wide class of graphs satisfying certain axioms.

- Adjacency may be replaced by the weaker notion of ortho-adjacency if V has an appropriate extra structure. Recent work is due to J. Konarzewski, K. Prażmowski, and M. Żynel [16], [25].
Final Remarks

- W. I. Huang [14] generalised Lim’s result to a wide class of graphs satisfying certain axioms.

- Adjacency may be replaced by the weaker notion of ortho-adjacency if V has an appropriate extra structure. Recent work is due to J. Konarzewski, K. Prażmowski, and M. Żynel [16], [25].

- There are also results for vector spaces of infinite dimension by A. Blunck, H.H. [4], [5], M.-H. Lim [20], L. Plevnik and P. Šemrl [23], preprint.
Final Remarks

- W. I. Huang [14] generalised Lim’s result to **wide class of graphs** satisfying certain axioms.

- Adjacency may be replaced by the weaker notion of **ortho-adjacency** if V has an appropriate extra structure. Recent work is due to J. Konarzewski, K. Prażmowski, and M. Żynel [16], [25].

- There are also results for vector spaces of **infinite dimension** by A. Blunck, H.H. [4], [5], M.-H. Lim [20], L. Plevnik and P. Šemrl [23], preprint.

- For **Grassmannians over rings** refer to L. P. Huang [11], [12].
Serdecznie dziękuję za zaproszenie i za Państwa uwagę!
The bibliography focusses on preserver problems for Grassmannians, and includes only a few items of related work.
References (cont.)

References (cont.)

References (cont.)

References (cont.)

