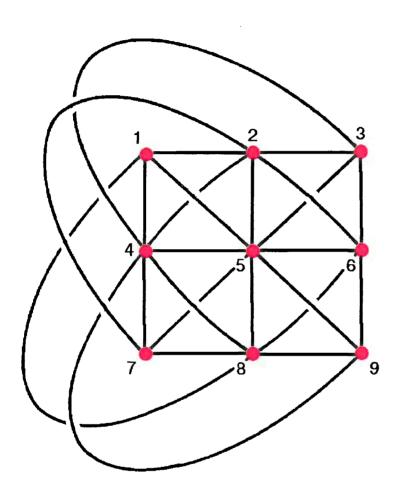
Designs:

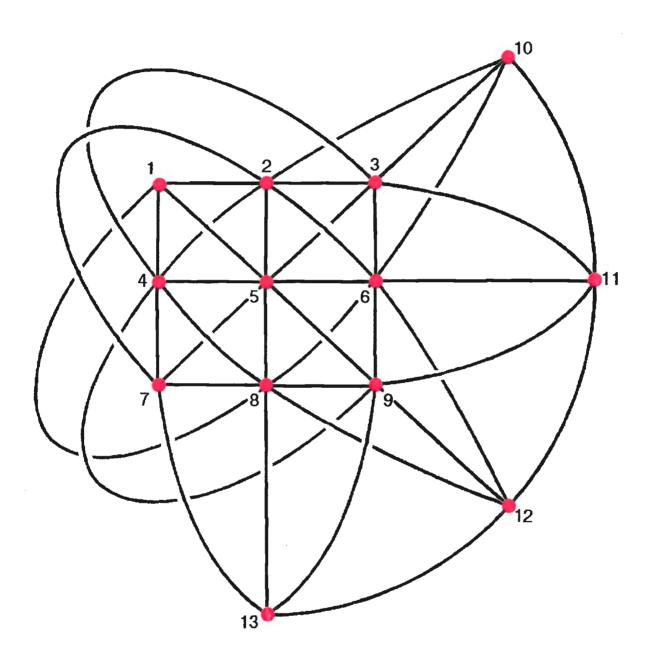
Examples:

Projective planes: 2-(n2+n+1, n+1, 1)

Affine planes: $2-(n^2, n, 1)$


With's 5-(12,6,1) design W12

12 points, 132 blocks


9 points remaining
12 blocks -> 12 lines

affine plane AG(2,3)

3 fold extension

The affine plane AG(2,3)

The projective plane PG(2,3)

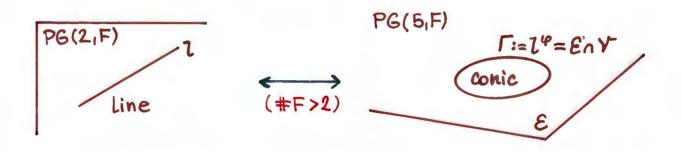
Point model of W12 in PG(5,3)

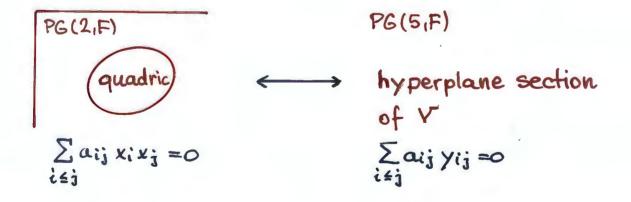
K ... 12 points

5 points in R ⇒ 3* hyperplane H #(2n K)=6

H.S.M. Coxeter, G. Pellegrino, J.A. Todd

Veronese surface:

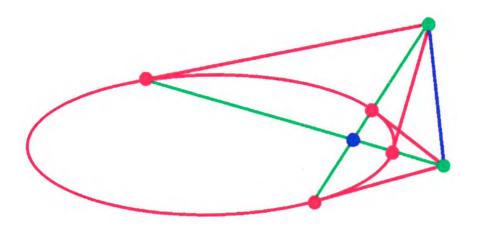

Veronese mapping:


$$F(x_0,x_4,x_2) \xrightarrow{\varphi} F(x_0^2,x_0x_4,x_0x_2,x_1^2,x_4x_2,x_2^2)$$

$$PG(2,F)$$

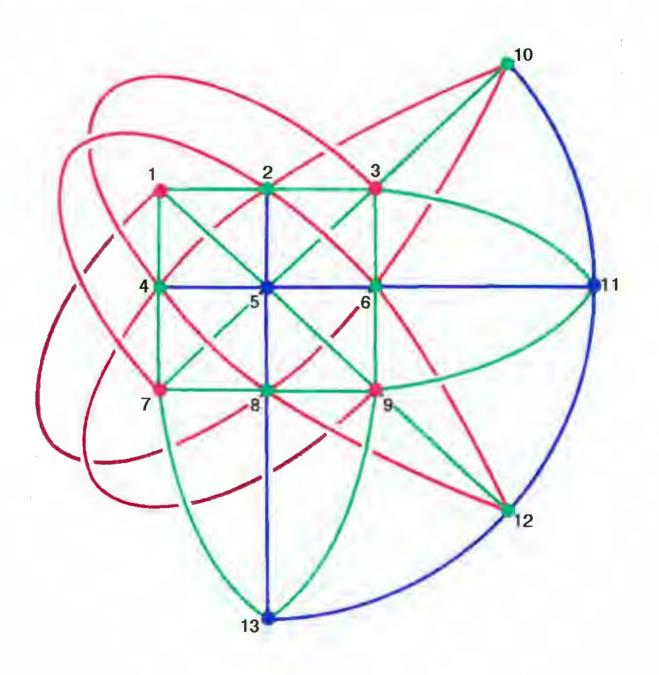
$$PG(5,F)$$

imφ = : Y ... Veronese surface


Zanella - H.

Quadrics in PG(2,3):

Equation	Name	Picture	#points
$X_0^2 + X_1^2 + X_2^2 = 0$	conic		4
$X_0^2 + X_1^2 = 0$	one point	•	1
$x_0^2 - x_1^2 = 0$	cross of lines	-	7
$\chi_0^2 = 0$	repeated line	_	4


H.. hyperplane of PG(5,3)

Thas - Hirschfeld

Conic in the real projective plane:

Red: Points (of the conic) and tangents. Blue: An internal point and an exterior line. Green: External points and bisecant lines.

Conic in PG(2,3):

Red: 4 points (of the conic) and 4 tangents. Blue: 3 internal points and 3 exterior lines. Green: 6 external points and 6 bisecant lines.

Replacement:

$$\Gamma_{\infty} := l_{\infty}^{\varphi} \dots \text{ a conic } (cV)$$
 $\Delta_{\infty} \dots \text{ diagonal triangle of }$
the quadrangle Γ_{∞}
 $\epsilon_{\infty} \dots \text{ plane of } \Gamma_{\infty}$

$$K := (Y \setminus \Gamma_{\infty}) \cup \Delta_{\infty}$$

	4		
	1,0,0	1,0,0,0,0,0	
	1,0,1	1,0,1,0,0,1	
	1,0,2	1,0,2,0,0,1	
	1,1,0	1,1,0,1,0,0	
AG(2,3)	14.4	1,1,1,1,1,1	7/100
	1,1,2	1,1,2,1,2,1	
	1,2,0	1,2,0,1,0,0	
	1,2,1	1,2,1,1,2,1	
	1,2,2	1,2,2,1,1,1	
		0,0,0,1,0,1	
	X	0,0,0,2,1,1	∇^{∞}
		0,0,0,2,2,1	

Theorem: $d := \#(\mathcal{H} \cap \mathcal{K}) \in \{0,3,6\}$ for all hyperplanes \mathcal{H} of PG(5,3).

1.
$$\varepsilon_{\infty} \subset \mathcal{H} \Rightarrow \underline{d} = c - 4 + 3 = \underline{c} - 1 \in \{0, 3, 6\}$$

2. $\varepsilon_{\infty} \cap \mathcal{H}$ external line of Γ_{∞} $\Rightarrow d = c - 0 + 2 = c + 2$ Q has no points at infinity

3. $\varepsilon_{\infty} \cap \mathcal{H}$ is a taugent of $\Gamma_{\infty} \Rightarrow \underline{d} = c - 1 + 0 = \underline{c} - 1 \in \{0,3,6\}$ 4. $\varepsilon_{\infty} \cap \mathcal{H}$ is a bisecant of $\Gamma_{\infty} \Rightarrow \underline{d} = c - 2 + 1 = \underline{c} - 1 \in \{0,3,6\}$

Characterizations of K

- (1) # K = 12
- (2) d∈ {0,3,6}
- (3) # 7 ≥ 7
- (4) #(20nK)≥5 ⇒ #(20nK)=6
- (5) Any 5-subset of K is independent.
- (1) ...
- (5) ...

H.S.M. Coxeter, G. Pellegrino, J.A. Todd, H.H.

$$(1)_{\Lambda}(2) \iff (3)_{\Lambda}(4)_{\Lambda}(5) \iff (1)_{\Lambda}(5)$$

I* unique K up to collineations


Model of W12 in PG(5,3)

P:= KB:= {26nK| $\#(26nK) \ge 4$, 26ahyperplane of <math>PG(5,3)} #(26nK) = 6

Model of W12 in PG(5,3) = (P, I)

3 elliptic involutions on la

3 " new" points A1, A2, A3

P:= (9\100) U {A1, A2, A3}

- B ... affine line + all elliptic involutious (3)
 - ellipse + those elliptic involutions that are not the involution of conjugate points on los (2)
 - · union of two disjoint affine lines (0)
 - union of two non-parallel affine lives + that involution which interchanges the points at infinity. (1)

Veronese replacement