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Metric vector spaces

In this talk we present some results from our recent article [5],
which contains a comprehensive bibliography.

A metric vector space is a pair (V ,Q) such that V is a
vector space over a (commutative) field F and Q : V → F
is a quadratic form.

In what follows, we assume V being of finite dimension
n + 1 ≥ 0.

A non-zero vector a ∈ V is called regular if Q(a) 6= 0 and
singular otherwise.
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Metric vector spaces (cont.)

The polar form of Q is the symmetric bilinear form

B : V × V → F : (x ,y) 7→ Q(x + y)−Q(x)−Q(y).

Then, B(x ,x) = 2Q(x) for all x ∈ V .

Orthogonality w.r.t. B is denoted by ⊥; that is, for all
x ,y ∈ V , x ⊥ y means B(x ,y) = 0.

Any subset S ⊆ V determines the subspace

S⊥ := {x ∈ V | x ⊥ y for all y ∈ S} ≤ V .

In particular, V⊥ is called the radical of B.
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The weak orthogonal group of (V ,Q)

A linear bijection ψ : V → V is called an isometry if
Q = Q ◦ ψ.
All isometries of (V ,Q) constitute the orthogonal group
O(V ,Q).
The weak orthogonal group O′(V ,Q) consists of all
isometries of (V ,Q) that fix the radical V⊥ elementwise
(E. Ellers [2]).
Given a regular vector r ∈ V the mapping

ξr : V → V : x 7→ x − B(r ,x)Q(r)−1r .

is the reflection of (V ,Q) in the direction of r . We have
ξr ∈ O′(V ,Q).
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A version of a theorem by E. Cartan and J. Dieudonné

Theorem (M. Götzky [3], [4] and M. Kneser [10])

Each isometry ϕ ∈ O′(V ,Q) is a product of reflections, except
when F and (V ,Q) satisfy one of the subsequent conditions (1)
or (2) for some basis {e0,e1, . . . ,en} of V and all x =

∑n
j=0 xjej

with xj ∈ F :

|F | = 2, dim V > 2 and Q(x) = x0x1; (1)

|F | = 2, dim V ≥ 4 and Q(x) = x0x1 + x2x3. (2)
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Clifford algebras

Convention
All our algebras are tacitly assumed to be associative and
equipped with a non-zero unit element.

Let (V ,Q) be a metric vector space over F and let A be an
F -algebra. Then a mapping γ : V → A is said to be Clifford
if it is linear and, for all x ∈ V , we have γ(x)2 = Q(x) · 1A.
A Clifford algebra C for (V ,Q) is an F -algebra together
with a universal Clifford mapping ι : V → C, that is:
Given any F -algebra A and any Clifford map γ : V → A
there exists a unique algebra homomorphism µ : C → A
such that

γ = µ ◦ ι.
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The Clifford algebra of (V ,Q)

For each metric vector space (V ,Q) there exists (up to an
algebra isomorphism) a unique Clifford algebra, say
Cl(V ,Q).

Any universal Clifford mapping is injective, which allows us
to consider V as being a subspace of Cl(V ,Q).

From now on, we identify 1 ∈ F with the unit element of
Cl(V ,Q). Thus F ≤ Cl(V ,Q).
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The Clifford algebra of (V ,Q) (cont.)

If {e0,e1, . . . ,en} is a basis of V , then we obtain a basis of
Cl(V ,Q) as{

ej1ej2 · · · ejk | 0 ≤ j1 < j2 < · · · < jk ≤ n
}
, (3)

where an empty product is understood to be 1 ∈ F . So,
dim Cl(V ,Q) = 2n+1.
For all x ,y ∈ V , we have

x2 = Q(x),
xy + yx = B(x ,y).

By virtue of these formulas one may write up a
multiplication table for Cl(V ,Q) in terms of the basis (3).
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The Clifford algebra of (V ,Q) (cont.)

The Clifford algebra Cl(V ,Q) is Z/(2Z)-graded and so it is
the direct sum of the even part Cl0(V ,Q), which is a
subalgebra of Cl(V ,Q), and the odd part Cl1(V ,Q).

In particular, F ≤ Cl0(V ,Q) and V ≤ Cl1(V ,Q).

Given any subset S ⊆ Cl(V ,Q) we let

S0 := S ∩ Cl0(V ,Q) and S1 := S ∩ Cl1(V ,Q).

Furthermore, we denote by S× the set of all invertible
elements (w.r.t. multiplication) in S.
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The Clifford algebra of (V ,Q) (cont.)

The main involution σ : Cl(V ,Q)→ Cl(V ,Q) is the only
algebra automorphism of Cl(V ,Q) such that x 7→ −x for all
x ∈ V .

Under the main involution σ all elements of Cl0(V ,Q)

remain fixed, any h ∈ Cl1(V ,Q) goes over to
−h ∈ Cl1(V ,Q).
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Reflections in terms of Cl(V ,Q)

Let ξr be the reflection in the direction of a regular vector r ∈ V .
Then, for all x ∈ V ,

ξr (x) = x − B(r ,x) ·Q(r)−1 · r

= x − (rx + xr) · r−2 · r

= x − rxr−1 − x

= −rxr−1

= rx(−r)−1

= rxσ(r)−1,

where σ denotes the main involution.
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The Lipschitz monoid of (V ,Q)

Below we present results by J. Helmstetter, as summarised in
his survey [7].

Definition (J. Helmstetter [7, Def. 2.1])

The Lipschitz monoid Lip(V ,Q) is the multiplicative monoid in
Cl(V ,Q) generated by the union of F , V and the set{

1 + st | s, t ∈ V , Q(s) = Q(t) = B(s, t) = 0
}
. (4)

From this definition, Lip(V ,Q) = Lip0(V ,Q) ∪ Lip1(V ,Q).

The Lipschitz monoid Lip(V ,Q) is already generated by V
except when one of the following applies: Q(V ) = {0};
F and (V ,Q) satisfy (1); F and (V ,Q) satisfy (2).
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The Lipschitz group of (V ,Q)

All invertible elements of Lip(V ,Q) constitute a group, the
so-called Lipschitz group Lip×(V ,Q).

The group Lip×(V ,Q) is generated by the set comprising
all non-zero scalars of F , all regular vectors of V and all
elements 1 + st as in (4). Indeed,

(1 + st)(1 + ts) = 1 + st + ts︸ ︷︷ ︸
= B(s,t)=0

+s(tt)s = 1 + s Q(t)︸︷︷︸
= 0

s = 1

shows that 1 + st is invertible.
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The twisted adjoint representation of Lip×(V ,Q)

Theorem (J. Helmstetter [7, Thm. 3.2])
The mapping

ξ : Lip×(V ,Q)→ O′(V ,Q) : p 7→
(
ξp : x 7→ pxσ(p)−1) (5)

is a surjective homomorphism of groups.

This ξ is known as the twisted adjoint representation of
Lip×(V ,Q); the attribute “twisted” refers to the main involution σ
appearing in (5); see M. F. Atiyah, R. Bott and A. Shapiro [1].
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The kernel of the twisted adjoint representation ξ

The subalgebra of Cl(V ,Q) generated by the radical V⊥

(together with 1) may be viewed as the Clifford algebra
Cl(V⊥,Q|V⊥).

The kernel of the twisted adjoint representation ξ satisfies

F× ≤ ker ξ = Lip×(V ,Q) ∩ Cl(V⊥,Q|V⊥);

see J. Helmstetter [6, (22) Cor.], [8, (5.8.7) Lemma],
R. Jurk [9, (2.2) Satz].
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Projective spaces

By the projective space P(V ) we mean the set of all
subspaces of V with incidence being symmetrised
inclusion.

The dimension of P(V ) is one less than the dimension
of V .

We adopt the usual geometric terms: points, lines and
planes are the subspaces of V with (vector) dimension
one, two, and three, respectively.

The general linear group GL(V ) acts in a canonical way on
P(V ): any κ ∈ GL(V ) determines a projective collineation
on P(V ), which is given by X 7→ κ(X ) for all X ∈ P(V ).
This action of GL(V ) has the kernel F× idV .
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Projective metric spaces

If (V ,Q) is a metric vector space, then Q can been used to
furnish the projective space with “additional structure”, thus
making it into a projective metric space P(V ,Q). For example:

A point Fp of P(V ,Q) is said to be regular (singular) if p is
a regular (singular) vector.
All singular points constitute the absolute quadric of
P(V ,Q).
The Q-distance of two regular points Fp, Fq is given as

distQ(Fp,Fq) =
B(p,q)2

Q(p)Q(q)
.

See E. M. Schröder [11] for further details.
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The projective weak orthogonal group

Any isometry ϕ ∈ O′(V ,Q) determines a projective
collineation of P(V ,Q).
This action of the weak orthogonal group O′(V ,Q) on
P(V ,Q) has the kernel

I′(V ,Q) := O′(V ,Q) ∩ {idV ,− idV}.

The quotient O′(V ,Q)/ I′(V ,Q) =: PO′(V ,Q) is the
projective weak orthogonal group.
One easily verifies

|I′(V ,Q)| = 1 ⇔
(

V = {0} or V⊥ 6= {0} or Char F = 2
)
.
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The point setM(V ,Q)

Given any set of points, say S, in P
(
Cl(V ,Q)

)
we denote

by S0 (resp. S1) the subset of S comprising all points that
are contained in Cl0(V ,Q) (resp. Cl1(V ,Q)).
The Lipschitz monoid Lip(V ,Q) gives rise to the point set

M(V ,Q) :=
{

Fp | 0 6= p ∈ Lip(V ,Q)
}
.

M(V ,Q) is the disjoint union ofM0(V ,Q) andM1(V ,Q).
The setsM0(V ,Q) andM1(V ,Q) are algebraic varieties
of the projective spaces on Cl0(V ,Q) and Cl1(V ,Q),
respectively (J. Helmstetter [7, p. 673]).
If dim V ≤ 3, thenM0(V ,Q) resp.M1(V ,Q) comprises all
points of P

(
Cl0(V ,Q)

)
resp. P

(
Cl1(V ,Q)

)
(J. Helmstetter

[6, (31) Lemma]).
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The group G(V ,Q)

Next, we take the Lipschitz group Lip×(V ,Q) and introduce
the point set

G(V ,Q) :=
{

Fp | p ∈ Lip×(V ,Q)
}
,

which can be made into (multiplicative) group in the
following way:

(Fp)(Fq) := F (pq) for all Fp,Fq ∈ G(V ,Q).

Then G(V ,Q) ∼= Lip×(V ,Q)/F×.
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Action of G(V ,Q) on P(V ,Q)

The group G(V ,Q) acts on the projective space P(V ,Q) as
follows: for all Fp ∈ G(V ,Q) and all X ∈ P(V ,Q), we have

Fp 7→
(
X 7→ ξp(X ) = pXσ(p)−1). (6)

This action of G(V ,Q) on P(V ,Q) yields a surjective
homomorphism of groups

ϑ : G(V ,Q)→ PO′(V ,Q)

with
kerϑ =

{
Fp ∈ G(V ,Q) | ξp ∈ I′(V ,Q)

}
.
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Faithful action of G(V ,Q) on P(V ,Q)

All instances where G(V ,Q) ∼= PO′(V ,Q) (via ϑ) are as follows:

dim V⊥ Q(V⊥) dim V Char F
= 0

= 0 > 0 = 2
= 1 = {0}
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Faithful action of G0(V ,Q) on P(V ,Q)

All instances where G0(V ,Q) ∼= PO′(V ,Q) (via ϑ|G0(V ,Q)) are
as follows:

dim V⊥ Q(V⊥) dim V Char F Remark
= 0 G(V ,Q) = G0(V ,Q)

= 0 odd 6= 2 G(V ,Q) 6= G0(V ,Q)

= 1 = {0} = 1 G(V ,Q) = G0(V ,Q)

= 1 6= {0} G(V ,Q) 6= G0(V ,Q)
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A non-faithful action of G(V ,Q) on P(V ,Q)

There is one instance, where each element of PO′(V ,Q) is
represented by an unordered pair of distinct points from
G(V ,Q):

dim V⊥ Q(V⊥) dim V Char F
= 0 > 0 and even 6= 2

To be more precise, let us take an arbitrary orthogonal basis
{e0,e1, . . . ,en} of V and write

e := e0e1 · · · en ∈ Lip×0 (V ,Q).

From (3), F1 6= Fe. Then kerϑ = {F1,Fe} and so

G(V ,Q)/{F1,Fe} ∼= PO′(V ,Q).



Metric vector spaces Clifford algebras Lipschitz groups Projective metric geometry References

Final remarks

If the quadratic form Q is replaced by a non-zero multiple,
say cQ with c ∈ F×, then this does not affect the geometry
of P(V ,Q), but neither the Clifford algebras Cl(V ,Q) and
Cl(V , cQ) nor the Lipschitz groups Lip×(V ,Q) and
Lip×(V , cQ) need to be isomorphic.

There exists, however, a specific linear bijection
Cl(V ,Q)→ Cl(V , cQ) that mapsM(V ,Q) ontoM(V , cQ)

and induces an isomorphism of groups
G(V ,Q)→ G(V , cQ).

By virtue of this isomorphism, we obtain equivalent actions
of G(V ,Q) and G(V , cQ) on P(V ,Q) according to (6).
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