

# Projective metric geometry and Clifford algebras

Hans Havlicek



Forschungsgruppe Differentialgeometrie und Geometrische Strukturen Institut für Diskrete Mathematik und Geometrie

Università degli Studi di Brescia April 7th, 2022

#### Metric vector spaces

In this talk we present some results from our recent article [5], which contains a comprehensive bibliography.

- A metric vector space is a pair (V, Q) such that V is a vector space over a (commutative) field F and Q: V → F is a quadratic form.
- In what follows, we assume V being of finite dimension  $n+1 \ge 0$ .
- A non-zero vector *a* ∈ *V* is called *regular* if *Q*(*a*) ≠ 0 and *singular* otherwise.

# Metric vector spaces (cont.)

• The *polar form* of *Q* is the symmetric bilinear form

$$B\colon \boldsymbol{V}\times\boldsymbol{V}\to F\colon (\boldsymbol{x},\boldsymbol{y})\mapsto Q(\boldsymbol{x}+\boldsymbol{y})-Q(\boldsymbol{x})-Q(\boldsymbol{y}).$$

• Then, 
$$B(\mathbf{x}, \mathbf{x}) = 2Q(\mathbf{x})$$
 for all  $\mathbf{x} \in \mathbf{V}$ .

- Orthogonality w.r.t. *B* is denoted by  $\perp$ ; that is, for all  $x, y \in V, x \perp y$  means B(x, y) = 0.
- Any subset  $\boldsymbol{S} \subseteq \boldsymbol{V}$  determines the subspace

$$\mathbf{S}^{\perp} := \{ \mathbf{x} \in \mathbf{V} \mid \mathbf{x} \perp \mathbf{y} \text{ for all } \mathbf{y} \in \mathbf{S} \} \le \mathbf{V}.$$

• In particular,  $V^{\perp}$  is called the *radical* of *B*.

# The weak orthogonal group of (V, Q)

- A linear bijection ψ: V → V is called an *isometry* if Q = Q ∘ ψ.
- All isometries of (*V*, *Q*) constitute the *orthogonal group* O(*V*, *Q*).
- The weak orthogonal group O'(V, Q) consists of all isometries of (V, Q) that fix the radical V<sup>⊥</sup> elementwise (E. Ellers [2]).
- Given a regular vector  $\mathbf{r} \in \mathbf{V}$  the mapping

$$\xi_{\boldsymbol{r}} \colon \boldsymbol{V} \to \boldsymbol{V} \colon \boldsymbol{x} \mapsto \boldsymbol{x} - \boldsymbol{B}(\boldsymbol{r}, \boldsymbol{x}) \boldsymbol{Q}(\boldsymbol{r})^{-1} \boldsymbol{r}.$$

is the *reflection* of (V, Q) in the direction of r. We have  $\xi_r \in O'(V, Q)$ .

# A version of a theorem by E. Cartan and J. Dieudonné

#### Theorem (M. Götzky [3], [4] and M. Kneser [10])

Each isometry  $\varphi \in O'(V, Q)$  is a product of reflections, except when *F* and (V, Q) satisfy one of the subsequent conditions (1) or (2) for some basis  $\{e_0, e_1, \dots, e_n\}$  of *V* and all  $\mathbf{x} = \sum_{j=0}^n x_j e_j$ with  $x_j \in F$ :

|F| = 2, dim V > 2 and  $Q(x) = x_0 x_1$ ; (1)

|F| = 2, dim  $V \ge 4$  and  $Q(x) = x_0 x_1 + x_2 x_3$ . (2)

## **Clifford algebras**

#### Convention

All our algebras are tacitly assumed to be associative and equipped with a non-zero unit element.

- Let (V, Q) be a metric vector space over F and let A be an F-algebra. Then a mapping  $\gamma: V \to A$  is said to be *Clifford* if it is linear and, for all  $x \in V$ , we have  $\gamma(x)^2 = Q(x) \cdot 1_A$ .
- A *Clifford algebra* C for (V, Q) is an F-algebra together with a *universal* Clifford mapping ι: V → C, that is: Given any F-algebra A and any Clifford map γ: V → A there exists a unique algebra homomorphism μ: C → A such that

$$\gamma = \mu \circ \iota.$$

# The Clifford algebra of (V, Q)

- For each metric vector space (V, Q) there exists (up to an algebra isomorphism) a unique Clifford algebra, say Cl(V, Q).
- Any universal Clifford mapping is injective, which allows us to consider *V* as being a subspace of Cl(*V*, *Q*).
- From now on, we identify 1 ∈ F with the unit element of Cl(V, Q). Thus F ≤ Cl(V, Q).

# The Clifford algebra of (V, Q) (cont.)

If {*e*<sub>0</sub>, *e*<sub>1</sub>, ..., *e<sub>n</sub>*} is a basis of *V*, then we obtain a basis of Cl(*V*, *Q*) as

$$\big\{\boldsymbol{e}_{j_1}\boldsymbol{e}_{j_2}\cdots\boldsymbol{e}_{j_k}\mid 0\leq j_1< j_2<\cdots< j_k\leq n\big\}, \qquad (3)$$

where an empty product is understood to be  $1 \in F$ . So, dim Cl(V, Q) =  $2^{n+1}$ .

• For all  $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{V}$ , we have

$$\begin{aligned} \boldsymbol{x}^2 &= \boldsymbol{Q}(\boldsymbol{x}),\\ \boldsymbol{x}\boldsymbol{y} + \boldsymbol{y}\boldsymbol{x} &= \boldsymbol{B}(\boldsymbol{x},\boldsymbol{y}). \end{aligned}$$

By virtue of these formulas one may write up a multiplication table for Cl(V, Q) in terms of the basis (3).

# The Clifford algebra of (V, Q) (cont.)

- The Clifford algebra Cl(V, Q) is Z/(2Z)-graded and so it is the direct sum of the even part Cl₀(V, Q), which is a subalgebra of Cl(V, Q), and the odd part Cl₁(V, Q).
- In particular,  $F \leq Cl_0(V, Q)$  and  $V \leq Cl_1(V, Q)$ .
- Given any subset  $\boldsymbol{S} \subseteq Cl(\boldsymbol{V}, \boldsymbol{Q})$  we let

 $S_0 := S \cap \operatorname{Cl}_0(V, Q)$  and  $S_1 := S \cap \operatorname{Cl}_1(V, Q)$ .

Furthermore, we denote by  $S^{\times}$  the set of all invertible elements (w.r.t. multiplication) in *S*.

# The Clifford algebra of (V, Q) (cont.)

- The main involution σ: Cl(V, Q) → Cl(V, Q) is the only algebra automorphism of Cl(V, Q) such that x → -x for all x ∈ V.
- Under the main involution σ all elements of Cl<sub>0</sub>(V, Q) remain fixed, any h ∈ Cl<sub>1</sub>(V, Q) goes over to -h ∈ Cl<sub>1</sub>(V, Q).

## Reflections in terms of Cl(V, Q)

Let  $\xi_r$  be the reflection in the direction of a regular vector  $r \in V$ . Then, for all  $x \in V$ ,

$$\xi_{\mathbf{r}}(\mathbf{x}) = \mathbf{x} - B(\mathbf{r}, \mathbf{x}) \cdot Q(\mathbf{r})^{-1} \cdot \mathbf{r}$$
  
$$= \mathbf{x} - (\mathbf{r}\mathbf{x} + \mathbf{x}\mathbf{r}) \cdot \mathbf{r}^{-2} \cdot \mathbf{r}$$
  
$$= \mathbf{x} - \mathbf{r}\mathbf{x}\mathbf{r}^{-1} - \mathbf{x}$$
  
$$= -\mathbf{r}\mathbf{x}\mathbf{r}^{-1}$$
  
$$= \mathbf{r}\mathbf{x}(-\mathbf{r})^{-1}$$
  
$$= \mathbf{r}\mathbf{x}\sigma(\mathbf{r})^{-1},$$

where  $\sigma$  denotes the main involution.

# The Lipschitz monoid of (V, Q)

Below we present results by J. Helmstetter, as summarised in his survey [7].

#### Definition (J. Helmstetter [7, Def. 2.1])

The *Lipschitz monoid* Lip(V, Q) is the multiplicative monoid in Cl(V, Q) generated by the union of F, V and the set

$$\{1+\boldsymbol{st}\mid\boldsymbol{s},\boldsymbol{t}\in\boldsymbol{V},\ \boldsymbol{Q}(\boldsymbol{s})=\boldsymbol{Q}(\boldsymbol{t})=\boldsymbol{B}(\boldsymbol{s},\boldsymbol{t})=\boldsymbol{0}\}. \tag{4}$$

- From this definition,  $Lip(V, Q) = Lip_0(V, Q) \cup Lip_1(V, Q)$ .
- The Lipschitz monoid Lip(V, Q) is already generated by V except when one of the following applies: Q(V) = {0};
  F and (V, Q) satisfy (1); F and (V, Q) satisfy (2).

# The Lipschitz group of (V, Q)

- All invertible elements of Lip(V, Q) constitute a group, the so-called *Lipschitz group* Lip<sup>×</sup>(V, Q).
- The group Lip<sup>×</sup>(V, Q) is generated by the set comprising all non-zero scalars of F, all regular vectors of V and all elements 1 + st as in (4). Indeed,

$$(1+st)(1+ts) = 1 + \underbrace{st+ts}_{=B(s,t)=0} + s(tt)s = 1 + s\underbrace{Q(t)}_{=0}s = 1$$

shows that 1 + st is invertible.

# The twisted adjoint representation of $Lip^{\times}(V, Q)$

**Theorem** (J. Helmstetter [7, Thm. 3.2]) The mapping

$$\xi\colon \operatorname{Lip}^{\times}(\boldsymbol{V},\boldsymbol{Q})\to \operatorname{O}'(\boldsymbol{V},\boldsymbol{Q})\colon \boldsymbol{\rho}\mapsto \left(\xi_{\boldsymbol{\rho}}\colon \boldsymbol{x}\mapsto \boldsymbol{\rho}\boldsymbol{x}\sigma(\boldsymbol{\rho})^{-1}\right) \quad (5)$$

is a surjective homomorphism of groups.

This  $\xi$  is known as the *twisted adjoint representation* of Lip<sup>×</sup>(V, Q); the attribute "twisted" refers to the main involution  $\sigma$  appearing in (5); see M. F. Atiyah, R. Bott and A. Shapiro [1].

## The kernel of the twisted adjoint representation $\xi$

- The subalgebra of Cl(V, Q) generated by the radical V<sup>⊥</sup> (together with 1) may be viewed as the Clifford algebra Cl(V<sup>⊥</sup>, Q|V<sup>⊥</sup>).
- The kernel of the twisted adjoint representation  $\xi$  satisfies

$$F^{\times} \leq \ker \xi = \operatorname{Lip}^{\times}(V, Q) \cap \operatorname{Cl}(V^{\perp}, Q | V^{\perp});$$

see J. Helmstetter [6, (22) Cor.], [8, (5.8.7) Lemma], R. Jurk [9, (2.2) Satz].

#### **Projective spaces**

- By the *projective space* P(V) we mean the set of all subspaces of V with *incidence* being symmetrised inclusion.
- The *dimension* of ℙ(V) is one less than the dimension of V.
- We adopt the usual geometric terms: *points*, *lines* and *planes* are the subspaces of *V* with (vector) dimension one, two, and three, respectively.
- The general linear group GL(V) acts in a canonical way on P(V): any ≈ ∈ GL(V) determines a *projective collineation* on P(V), which is given by X → ≈(X) for all X ∈ P(V). This action of GL(V) has the kernel F<sup>×</sup> id<sub>V</sub>.

#### Projective metric spaces

If (V, Q) is a metric vector space, then Q can been used to furnish the projective space with "additional structure", thus making it into a *projective metric space*  $\mathbb{P}(V, Q)$ . For example:

- A point *Fp* of ℙ(*V*, *Q*) is said to be *regular* (*singular*) if *p* is a regular (singular) vector.
- All singular points constitute the *absolute quadric* of *P*(*V*, *Q*).
- The *Q-distance* of two regular points *F***p**, *F***q** is given as

$$\operatorname{dist}_Q(F \boldsymbol{p}, F \boldsymbol{q}) = rac{B(\boldsymbol{p}, \boldsymbol{q})^2}{Q(\boldsymbol{p})Q(\boldsymbol{q})}.$$

See E. M. Schröder [11] for further details.

## The projective weak orthogonal group

- Any isometry φ ∈ O'(V, Q) determines a projective collineation of ℙ(V, Q).
- This action of the weak orthogonal group O'(V, Q) on  $\mathbb{P}(V, Q)$  has the kernel

$$\mathsf{I}'(\textit{\textit{V}},\textit{\textit{Q}}) := \mathsf{O}'(\textit{\textit{V}},\textit{\textit{Q}}) \cap \{\mathsf{id}_{\textit{\textit{V}}},-\mathsf{id}_{\textit{\textit{V}}}\}.$$

- The quotient O'(V, Q) / I'(V, Q) =: PO'(V, Q) is the projective weak orthogonal group.
- One easily verifies

$$|\mathbf{I}'(\mathbf{V}, \mathbf{Q})| = 1 \iff (\mathbf{V} = \{0\} \text{ or } \mathbf{V}^{\perp} \neq \{0\} \text{ or Char } \mathbf{F} = 2).$$

# The point set $\mathcal{M}(V, Q)$

- Given any set of points, say S, in P(Cl(V, Q)) we denote by S<sub>0</sub> (resp. S<sub>1</sub>) the subset of S comprising all points that are contained in Cl<sub>0</sub>(V, Q) (resp. Cl<sub>1</sub>(V, Q)).
- The Lipschitz monoid Lip(V, Q) gives rise to the point set

$$\mathcal{M}(\boldsymbol{V}, \boldsymbol{Q}) := \big\{ F \boldsymbol{p} \mid 0 \neq \boldsymbol{p} \in \operatorname{Lip}(\boldsymbol{V}, \boldsymbol{Q}) \big\}.$$

- $\mathcal{M}(\mathbf{V}, \mathbf{Q})$  is the disjoint union of  $\mathcal{M}_0(\mathbf{V}, \mathbf{Q})$  and  $\mathcal{M}_1(\mathbf{V}, \mathbf{Q})$ .
- The sets M<sub>0</sub>(V, Q) and M<sub>1</sub>(V, Q) are algebraic varieties of the projective spaces on Cl<sub>0</sub>(V, Q) and Cl<sub>1</sub>(V, Q), respectively (J. Helmstetter [7, p. 673]).
- If dim V ≤ 3, then M<sub>0</sub>(V, Q) resp. M<sub>1</sub>(V, Q) comprises all points of P(Cl<sub>0</sub>(V, Q)) resp. P(Cl<sub>1</sub>(V, Q)) (J. Helmstetter [6, (31) Lemma]).

 Next, we take the Lipschitz group Lip<sup>×</sup>(V, Q) and introduce the point set

$$\mathcal{G}(\textit{V},\textit{Q}) := ig\{\textit{F}\textit{p} \mid \textit{p} \in \mathsf{Lip}^{ imes}(\textit{V},\textit{Q})ig\},$$

which can be made into (multiplicative) group in the following way:

(Fp)(Fq) := F(pq) for all  $Fp, Fq \in \mathcal{G}(V, Q)$ .

• Then  $\mathcal{G}(\mathbf{V}, \mathbf{Q}) \cong \operatorname{Lip}^{\times}(\mathbf{V}, \mathbf{Q})/F^{\times}$ .

# Action of $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q})$ on $\mathbb{P}(\boldsymbol{V}, \boldsymbol{Q})$

The group G(V, Q) acts on the projective space P(V, Q) as follows: for all Fp ∈ G(V, Q) and all X ∈ P(V, Q), we have

$$F \boldsymbol{\rho} \mapsto (\boldsymbol{X} \mapsto \xi_{\boldsymbol{\rho}}(\boldsymbol{X}) = \boldsymbol{\rho} \boldsymbol{X} \sigma(\boldsymbol{\rho})^{-1}).$$
 (6)

 This action of G(V, Q) on ℙ(V, Q) yields a surjective homomorphism of groups

$$\vartheta\colon \mathcal{G}(\textit{\textbf{V}},\textit{\textbf{Q}}) \to \mathsf{PO}'(\textit{\textbf{V}},\textit{\textbf{Q}})$$

with

$$\ker \vartheta = \big\{ \textit{F}\textit{p} \in \mathcal{G}(\textit{V},\textit{Q}) \mid \xi_{\textit{p}} \in \mathsf{I}'(\textit{V},\textit{Q}) \big\}.$$

# Faithful action of $\mathcal{G}(\mathbf{V}, \mathbf{Q})$ on $\mathbb{P}(\mathbf{V}, \mathbf{Q})$

All instances where  $\mathcal{G}(\mathbf{V}, \mathbf{Q}) \cong \mathsf{PO}'(\mathbf{V}, \mathbf{Q})$  (via  $\vartheta$ ) are as follows:

| dim $V^{\perp}$ | $Q(V^{\perp})$ | dim <b>V</b> | Char F |
|-----------------|----------------|--------------|--------|
|                 |                | = 0          |        |
| = 0             |                | > 0          | = 2    |
| = 1             | = {0}          |              |        |

# Faithful action of $\mathcal{G}_0(V, Q)$ on $\mathbb{P}(V, Q)$

All instances where  $\mathcal{G}_0(V, Q) \cong \mathsf{PO}'(V, Q)$  (via  $\vartheta | \mathcal{G}_0(V, Q)$ ) are as follows:

| dim $V^{\perp}$ | $Q(V^{\perp})$ | dim <b>V</b> | Char F     | Remark                                                                                           |
|-----------------|----------------|--------------|------------|--------------------------------------------------------------------------------------------------|
|                 |                | = 0          |            | $\mathcal{G}(\boldsymbol{V},\boldsymbol{Q})=\mathcal{G}_0(\boldsymbol{V},\boldsymbol{Q})$        |
| = 0             |                | odd          | <b>≠ 2</b> | $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q}) \neq \mathcal{G}_0(\boldsymbol{V}, \boldsymbol{Q})$ |
| = 1             | = {0}          | = 1          |            | $\mathcal{G}(\boldsymbol{V},\boldsymbol{Q})=\mathcal{G}_0(\boldsymbol{V},\boldsymbol{Q})$        |
| = 1             | $\neq$ {0}     |              |            | $\mathcal{G}(\boldsymbol{V}, \boldsymbol{Q}) \neq \mathcal{G}_0(\boldsymbol{V}, \boldsymbol{Q})$ |

# A non-faithful action of $\mathcal{G}(\mathbf{V}, \mathbf{Q})$ on $\mathbb{P}(\mathbf{V}, \mathbf{Q})$

There is one instance, where each element of PO'(V, Q) is represented by an unordered pair of distinct points from  $\mathcal{G}(V, Q)$ :

| dim $V^{\perp}$ | $Q(V^{\perp})$ | dim <b>V</b> | Char F     |
|-----------------|----------------|--------------|------------|
| = 0             |                | > 0 and even | <b>≠ 2</b> |

To be more precise, let us take an arbitrary orthogonal basis  $\{e_0, e_1, \dots, e_n\}$  of V and write

$$\boldsymbol{e} := \boldsymbol{e}_0 \boldsymbol{e}_1 \cdots \boldsymbol{e}_n \in \operatorname{Lip}_0^{\times}(\boldsymbol{V}, \boldsymbol{Q}).$$

From (3),  $F1 \neq Fe$ . Then ker  $\vartheta = \{F1, Fe\}$  and so

 $\mathcal{G}(\mathbf{V}, \mathbf{Q})/\{F\mathbf{1}, F\mathbf{e}\} \cong \mathsf{PO}'(\mathbf{V}, \mathbf{Q}).$ 

## Final remarks

- If the quadratic form *Q* is replaced by a non-zero multiple, say *cQ* with *c* ∈ *F*<sup>×</sup>, then this does not affect the geometry of P(*V*, *Q*), but neither the Clifford algebras Cl(*V*, *Q*) and Cl(*V*, *cQ*) nor the Lipschitz groups Lip<sup>×</sup>(*V*, *Q*) and Lip<sup>×</sup>(*V*, *cQ*) need to be isomorphic.
- There exists, however, a specific linear bijection Cl(V, Q) → Cl(V, cQ) that maps M(V, Q) onto M(V, cQ) and induces an isomorphism of groups G(V, Q) → G(V, cQ).
- By virtue of this isomorphism, we obtain equivalent actions of G(V, Q) and G(V, cQ) on P(V, Q) according to (6).

#### References

- [1] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. *Topology* **3** (1964), 3–38.
- [2] E. W. Ellers, Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries. *Abh. Math. Sem. Univ. Hamburg* **46** (1977), 97–127.
- [3] M. Götzky, Über die Erzeugenden der engeren unitären Gruppen. *Arch. Math. (Basel)* **19** (1968), 383–389.
- [4] M. Götzky, Unverkürzbare Produkte und Relationen in unitären Gruppen. *Math. Z.* **104** (1968), 1–15.
- H. Havlicek, Projective metric geometry and Clifford algebras. *Results Math.* **76** (2021), Paper No. 219, 22 pp. Corrected version: https://arxiv.org/abs/2109.11470v2

# References (cont.)

- [6] J. Helmstetter, Lipschitz monoids and Vahlen matrices. *Adv. Appl. Clifford Algebr.* **15** (2005), 83–122.
- [7] J. Helmstetter, A survey of Lipschitz monoids. *Adv. Appl. Clifford Algebr.* **22** (2012), 665–688.
- [8] J. Helmstetter, A. Micali, *Quadratic Mappings and Clifford Algebras*. Birkhäuser Verlag, Basel 2008.
- [9] R. Jurk, Zur Darstellung der klassischen Gruppen durch Clifford-Algebren. *J. Geom.* **16** (1981), 72–82.
- [10] M. Kneser, Witts Satz über quadratische Formen und die Erzeugung orthogonaler Gruppen durch Spiegelungen. *Math.-Phys. Semesterber.* **17** (1970), 33–45.

# References (cont.)

[11] E. M. Schröder, Metric geometry. In: F. Buekenhout, editor, Handbook of Incidence Geometry, 945–1013, North-Holland, Amsterdam 1995.