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The kinematic mapping
of Blaschke and Grünwald
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111 years ago . . .

In 1911, W. Blaschke [3] and,
independently, J. Grünwald [10]
established a seminal result,
which since then is known as
the kinematic mapping of
Blaschke and Grünwald.

W. Blaschke refers to
Grünwald’s work in an erratum
[4] to his article, which
appeared in 1912.
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The kinematic mapping

We consider the Euclidean space R3, which is embedded in the
projective space P(R4) via

(x1, x2, x3) 7→ R(1, x1, x2, x3).

The kinematic mapping of Blaschke and Grünwald assigns to
each direct motion of the Euclidean plane E , given as x3 = 0, a
point of the projective space P(R4).

Such a direct motion is either a non-trivial rotation or a
translation.
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Image of a non-trivial rotation

x1 x2

x3

R(1, f1, f2,0)

R
(
1, f1, f2, cot(γ/2)

)

γ 6= 0

E

The rotation about the fixed point R(1, f1, f2,0) through the
angle γ 6= 0 is mapped to the point R

(
1, f1, f2, cot(γ/2)

)
.
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Image of a translation

x1 x2

x3

(v1, v2,0)

R
(
0,−v2/2, v1/2,1)

)

E

The translation along the vector (v1, v2,0) is mapped to the
point R(0,−v2/2, v1/2,1), which belongs to the plane at infinity.
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The slit space P(R4) \ S

Removing the line S with equation x0 = x3 = 0 makes the
projective space P(R4) into a slit space P(R4) \ S.

The kinematic mapping is a bijection of the group of direct
motions of the Euclidean plane E (x3 = 0) onto the point set P
of the slit space P(R4) \ S.

The lines of this slit space fall into two classes:
a projective line is skew to S;
an affine line meets S at a unique point.

Affine lines that meet S at the same point are called parallel.
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Affine lines

p

q

A

B S

All affine lines through a point p ∈ P determine an affine plane
with S being its line at infinity.

The affine line B is the only line through q being parallel to the
affine line A.
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Properties

The kinematic mapping makes the point set P into a group
(P, ·), which is isomorphic to the group of direct motions of
the Euclidean plane E .

For all a ∈ P, the left translation λa : P → P : x 7→ ax
extends to a collineation of P(R4).

For all a ∈ P, the right translation ρa : P → P : x 7→ xa
extends to a collineation of P(R4).

All lines through the point e := R(0,0,0,1), which is the
neutral element of the group (P, ·), give rise to subgroups
of (P, ·).
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Lines through e

e
E

M ∩ E

M

A ∩ E

A
S

A projective line M through e represents all rotations about the
point M ∩ E .

An affine line A through e represents all translations in the
direction orthogonal to A ∩ E = A ∩ S.
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Generalisations

There exists a wealth of results about the kinematic mapping of
Blaschke and Grünwald and its generalisations.

For example, there are kinematic mappings for the
pseudo-Euclidean plane (Minkowski plane), non-Euclidean
planes and their higher-dimensional analogues.

Further aspects show up in the context of differential
geometry and the theory of Lie groups.

For extensive bibliographies we refer to O. Bottema and B. Roth
[6], O. Giering [9], H. Karzel and G. Kist [17], H. Karzel and
H.-J. Kroll [18], M. Husty, A. Karger, H. Sachs and
W. Steinhilper [14], A. Karger and J. Novák [15], D. Klawitter
[20], J. Selig [29].
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Partial parallelism spaces
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Linear spaces

Definition
Let P be a set of points and let L be a subset of the power set
of P; the elements of L are called lines. The pair (P,L) is said
to be a linear space, if it satisfies the following axioms:

(L1) Any two distinct points are contained in a unique line.

(L2) Any line contains at least two points.

Linear spaces are also known under the name incidence
spaces.

The automorphisms of a linear space will be addressed as
collineations.
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Partial parallelisms

Definition (M. Marchi and S. Pianta [22], [23])

Let (P,L) be a linear space and let L′ be a distinguished
subset of L. An equivalence relation ‖ on L′ is called a partial
parallelism of (P,L), if it satisfies the following condition:

(PP) Any point of P is incident with a unique line from each
equivalence class of ‖.

(PP) is an analogue of “Euclid’s axiom”.

We shall refer to L′ as the domain of ‖.

If L′ = L, then ‖ turns into a parallelism of (P,L).



The kinematic mapping of Blaschke and Grünwald Partial parallelism spaces Kinematic spaces Outlook References

Partial parallelism spaces

Definition (M. Marchi and S. Pianta [22], [23])

A partial parallelism space is a quadruple (P,L,Laff , ‖)
satisfying the following conditions:

(P,L) is a linear space.

Laff is a distinguished subset of L, the set of affine lines.

‖ is a partial parallelism of (P,L) with domain Laff .

There exist at least two lines.
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Examples

The slit space P(R4) \ S is an example of a partial
parallelism space.

Further examples can be obtained from arbitrary slit
spaces. Such a space arises, by analogy to the above,
from a projective space by deleting one of its proper
subspaces.

Any affine parallel structure, as introduced by J. André [1],
yields an example where L = Laff .
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A characterisation

In their paper [23], M. Marchi and S. Pianta gave an elegant
characterisation of slit spaces as partial parallelism spaces
satisfying a few extra conditions.

Before, H. Karzel and H. Meißner [19] had also given such a
characterisation. However, they adopted a quite different
formalism. For example, among their basic notions there is
nothing like a partial parallelism.

Recent work by K. Petelczyc and M. Żynel [24] deals with
generalisations to polar spaces.
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Kinematic spaces
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Kinematic spaces

Definition (H. Karzel [16])

Let (P,L) be a linear space and let (P, ·) be a group with
neutral element e. The triple (P,L, ·) is said to be a kinematic
space if the following axioms hold:

(K1) For all a ∈ P, the left translation λa : P → P : x 7→ ax is a
collineation of the linear space (P,L).

(K2) For all a ∈ P, the right translation ρa : P → P : x 7→ xa is a
collineation of the linear space (P,L).

(K3) All lines through the point e are subgroups of (P, ·).
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Quadratic algebras

Let A be a associative unital non-zero algebra over a
commutative field F ; we thereby suppose F ⊆ A.

If A satisfies the condition a2 ∈ F + Fa for all a ∈ A, then A is
called a quadratic algebra (or: kinematic algebra).

Any quadratic F -algebra A determines a kinematic space
(P,L, ·), which is embedded in the projective space P(A):

P := {Fp | p ∈ A∗}, where A∗ denotes the group of
invertible elements of A.
L := {X ∩ P | X is a line of P(A) and |X ∩ P| ≥ 2}.
The product on P is given as Fp · Fq := F (pq) for all
p,q ∈ A∗.
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Examples

Any quaternion skew field is a 4-dimensional quadratic
algebra over its centre.
The algebra of 2× 2 matrices over any commutative field
F , in symbols F 2×2, is a 4-dimensional quadratic
F -algebra.
Study’s quaternions are a 4-dimensional quadratic
R-algebra with basis {1, i , ε1, ε2}; multiplication is given by:

i ε1 ε2
i −1 ε2 −ε1
ε1 −ε2 0 0
ε2 ε1 0 0

The corresponding kinematic space is the one of Blaschke
and Grünwald.
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Algebraic properties of a kinematic space

All lines through e constitute a fibration F of the group
(P, ·), that is, each x ∈ P \ {e} belongs to precisely one
subgroup from F .

This fibration F is invariant under all inner automorphisms
of (P, ·); in symbols: a−1Fa = F for all a ∈ P.

Some authors use the term group partition rather than group
fibration.
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Geometric properties of a kinematic space

Under the action of the group {λa | a ∈ P} of all left

translations the line set L splits into orbits. The

corresponding equivalence relation is a parallelism, which

is called the left parallelism ‖`.

The right parallelism ‖r is defined in an analogous way.
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Geometric properties of a kinematic space

If |F| > 1, then there exists “mixed” parallelograms:
M ‖r Mb, N ‖` aN.

e M a

aN

abMbb

N

Each kinematic space (P,L, ·) determines the geometric
structure

(P,L, ‖`, ‖r ),

that is, a linear space with two parallelisms (not necessarily
distinct).
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A geometric problem

A crucial problem is to describe the group, say Γ, comprising
those collineations of (P,L) which preserve ‖` and ‖r (in both
directions).

The group {λa | a ∈ P} of all left translations is easily seen to
be a subgroup of Γ, and it acts regularly on P.

Thus, in order to describe Γ, it suffices to determine the
stabiliser of e in Γ, in symbols:

Γe := {κ ∈ Γ | κ(e) = e}.
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Algebra vs. geometry

Theorem (S. Pianta [25])

If |F| > 1, then Γe comprises precisely those automorphisms of

the group (P, ·) that stabilise the fibration F as a set.

Corollary (S. Pianta [25])

If |F| > 1, then the group {λa | a ∈ P} of all left translations is a

normal subgroup of Γ. Furthermore,

Γ = {λa | a ∈ P}o Γe.
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Applications

Pianta’s theorem (Γ = {λa | a ∈ P}o Γe) turned out as a
powerful tool in order to explicitly describe the group Γ for
specific classes of kinematic spaces:

S. Pianta, Non-commutative affine kinematic spaces and
their automorphism group [26].
Background: near vector spaces.

S. Pianta and E. Zizioli, Collineations of geometric
structures derived from quaternion algebras [27].
Among other results, Γe is determined for the kinematic
space on any matrix algebra F 2×2.

S. Pianta and E. Zizioli, Split extensions of kinematic
spaces and their automorphisms [28].
Background: planar nearfields.
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Outlook
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Real quaternions

The kinematic space on the real quaternions H provides a point
model for the motion group of the elliptic plane. Lines of this
kinematic space are left or right parallel precisely when they are
parallel in the sense of W. K. Clifford [7].

A classical way to understand the properties of this kinematic
space makes use of its embedding in a complex projective
space:

1 Complexification of H gives a 4-dimensional quadratic
C-algebra, which is isomorphic (as a C-algebra) to C2×2.

2 The kinematic space on C2×2 is, loosely speaking, a
three-dimensional projective space over C from which one
hyperbolic quadric Φ has been removed.
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F. Klein’s perspective of Clifford’s parallelism [21]

Φ

Two distinct lines of the kinematic space on H are left or right
parallel if, and only if, the corresponding lines of P(C2×2) meet
complex conjugate (and hence skew) generators of Φ.
One regulus of Φ yields the left parallelism, the other one the
right parallelism; see, among others, D. Betten and
R. Riesinger [2], A. Cogliati [8].
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Clifford-like parallelisms

Finally, let us take a glance at the following paper:

A. Blunck, S. Pasotti and S. Pianta, Generalized Clifford
parallelisms [5].

It is shown there that left and right parallelism in a kinematic
space on an arbitrary quaternion skew field can be described in
the spirit of the previous slides. However, in general it is no
longer enough to consider a single quadratic extension in order
to accomplish this task.

The last observation paves the way for the notion of a
Clifford-like parallelism, which fails to have a (non-trivial)
analogue in the case of real quaternions.

See also H. H., S. Pasotti and S. Pianta [11], [12], [13].
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