Harmonicity Preservers

Hans Havlicek

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology Research Group Differential Geometry and Geometric Structures Institute of Discrete Mathematics and Geometry

Giornate di Geometria Caserta, September 17, 2015

Von Staudt, Geometrie der Lage (1847)

Zwei einförmige Grundgebilde heissen zu einander projektivisch (π), wenn sie so auf einander bezogen sind, dass jedem harmonischen Gebilde in dem einen ein harmonisches Gebilde im andern entspricht.

Next, after defining perspectivities, the following theorem is established:

Any projectivity is a finite composition of perspectivities and vice versa.

It was noticed later that there is a small gap in von Staudt's reasoning.

Any result in this spirit now is called a *von Staudt's theorem*.

The projective line over a ring

- Let *R* be a ring with unity $1 \neq 0$.
- Let *M* be a free left *R*-module of rank 2, i. e., *M* has a basis with two elements.
- We say that a ∈ M is admissible if there exists b ∈ M such that (a, b) is a basis of M (with two elements).
 (We do not require that all bases of M have the same number of elements.)

Definition

The *projective line* over *M* is the set $\mathbb{P}(M)$ of all cyclic submodules *Ra*, where $a \in M$ is admissible. The elements of $\mathbb{P}(M)$ are called *points*.

The distant relation

Definition

Two points *p* and *q* of $\mathbb{P}(M)$ are called *distant*, in symbols $p \triangle q$, if $M = p \oplus q$.

Harmonic quadruples

Definition

A quadruple $(p_0, p_1, p_2, p_3) \in \mathbb{P}(M)^4$ is *harmonic* if there exists a basis (g_0, g_1) of M such that

$$p_0 = Rg_0, \quad p_1 = Rg_1, \quad p_2 = R(g_0 + g_1), \quad p_3 = R(g_0 - g_1).$$

Given four harmonic points as above we obtain:

- $p_0 \triangle p_1$ and $\{p_0, p_1\} \triangle \{p_2, p_3\}$.
- $p_2 \neq p_3$ if, and only if, $2 \neq 0$ in *R*.
- $p_2 \triangle p_3$ if, and only if, 2 is a unit in *R*.

Harmonicity preservers

Let M' be a free left module of rank 2 over a ring R'.

Definition

A mapping $\mu : \mathbb{P}(M) \to \mathbb{P}(M')$ is said to be a *harmonicity preserver* if it takes all harmonic quadruples of $\mathbb{P}(M)$ to harmonic quadruples of $\mathbb{P}(M')$.

No further assumptions, like injectivity or surjectivity of μ will be made.

Main problem

Give an algebraic description of all harmonicity preservers between projective lines over rings R and R'.

Solutions and Contributions

Many authors addressed our main problem :

- (Skew) Fields with characteristic \neq 2:
 - O. Schreier and E. Sperner [19],
 - G. Ancochea [1], [2], [3],
 - L.-K. Hua [10], [11].
- (Non) Commutative Rings subject to varying extra assumptions:
 - W. Benz [6], [7],
 - H. Schaeffer [18],
 - B. V. Limaye and N. B. Limaye [12], [13], [14],
 - N. B. Limaye [15], [16],
 - B. R. McDonald [17],
 - C. Bartolone and F. Di Franco [5].

A wealth of articles is concerned with generalisations.

Jordan homomorphisms of rings

Definition

A mapping $\alpha : R \to R'$ is a *Jordan homomorphism* if for all $x, y \in R$ the following conditions are satisfied:

$$(x+y)^{\alpha}=x^{\alpha}+y^{\alpha},$$

2
$$1^{\alpha} = 1'$$
,

$$(xyx)^{\alpha} = x^{\alpha}y^{\alpha}x^{\alpha}.$$

Examples

- All homomorphisms of rings, in particular $id_R : R \rightarrow R$.
- The mapping 𝔄 × 𝔄 → 𝔄 × 𝔄 : (z, w) ↦ (z̄, w) which is neither homomorphic nor antihomomorphic.

Assumption

Let $\mu : \mathbb{P}(M) \to \mathbb{P}(M')$ be a harmonicity preserver. Furthermore, we assume that *R* contains "sufficiently many" units; in particular 2 has to be a unit in *R*.

Step 1: A local coordinate representation of μ

There are bases (e_0, e_1) of *M* and (e'_0, e'_1) of *M'* such that

 $(\textit{Re}_0)^{\mu} = \textit{R}' \textit{e}'_0, \quad (\textit{Re}_1)^{\mu} = \textit{R}' \textit{e}'_1, \quad (\textit{R}(\textit{e}_0 \pm \textit{e}_1))^{\mu} = \textit{R}'(\textit{e}'_0 \pm \textit{e}'_1).$

Then there exists a unique mapping $\beta : \mathbf{R} \to \mathbf{R}'$ with the property

$$\left(R(\mathbf{x}\mathbf{e}_0+\mathbf{e}_1)
ight)^\mu=R'(\mathbf{x}^eta\mathbf{e}_0'+\mathbf{e}_1') \quad ext{for all} \quad x\in R.$$

This β is additive and satisfies $1^{\beta} = 1'$.

Step 2: Change of coordinates

We may repeat Step 1 for the new bases

$$(f_0, f_1) := (te_0 + e_1, -e_0)$$
 and $(f'_0, f'_1) := (t^{\beta}e'_0 + e'_1, -e'_0),$

where $t \in R$ is arbitrary. So the transition matrices are

$$E(t) := \begin{pmatrix} t & 1 \\ -1 & 0 \end{pmatrix}$$
 and $E(t^{\beta}) := \begin{pmatrix} t^{\beta} & 1 \\ -1 & 0 \end{pmatrix}$.

Then the new local representation of μ yields the same mapping β as in Step 1.

Step 3: β is a Jordan homomorphism

By combining Step 1 and Step 2 (for t = 0) one obtains:

The mapping β from Step 1 is a Jordan homomorphism.

Part of the proof relies on previous work.

Step 4: Induction

Suppose that a point $p \in \mathbb{P}(M)$ can be written as

$$p=R(x_0e_0+x_1e_1)$$

with

$$(x_0, x_1) = (1, 0) \cdot E(\underline{t_1}) \cdot E(\underline{t_2}) \cdots E(\underline{t_n})$$
 for some $t_1, t_2, \dots, t_n \in R$,

where *n* is variable.

Then the image point of p under μ is

 $R'(x'_0e'_0+x'_1e'_1)$

with

$$(x'_0, x'_1) = (1', 0') \cdot E(t_1^\beta) \cdot E(t_2^\beta) \cdots E(t_n^\beta).$$

Concluding remarks

- For a wide class of rings in order to reach all points of *P*(*M*) it suffices to let *n* ≤ 2 in Step 4.
- There are rings where the the description from Step 4 will not cover the entire line P(M). Here μ can be described in terms of several Jordan homomorphisms.
- Any Jordan homomorphism R → R' gives rise to a harmonicity preserver. This follows from previous work of C. Bartolone [4] and A. Blunck, H. H. [8].
- For precise statements and further references see [9].

References

- [1] G. Ancochea, Sobre el teorema fundamental de la geometria proyectiva. *Revista Mat. Hisp.-Amer. (4)* **1** (1941), 37–42.
- G. Ancochea, Le théorème de von Staudt en géométrie projective quaternionienne. *J. Reine Angew. Math.* 184 (1942), 193–198.
- [3] G. Ancochea, On semi-automorphisms of division algebras. *Ann. of Math. (2)* **48** (1947), 147–153.
- [4] C. Bartolone, Jordan homomorphisms, chain geometries and the fundamental theorem. *Abh. Math. Sem. Univ. Hamburg* **59** (1989), 93–99.
- [5] C. Bartolone, F. Di Franco, A remark on the projectivities of the projective line over a commutative ring. *Math. Z.* **169** (1979), 23–29.

References (cont.)

- [6] W. Benz, Das von Staudtsche Theorem in der Laguerregeometrie. *J. Reine Angew. Math.* 214/215 (1964), 53–60.
- [7] W. Benz, *Vorlesungen über Geometrie der Algebren*. Springer, Berlin 1973.
- [8] A. Blunck, H. Havlicek, Jordan homomorphisms and harmonic mappings. *Monatsh. Math.* **139** (2003), 111–127.
- [9] H. Havlicek, Von Staudt's theorem revisited. *Aequationes Math.* 89 (2015), 459–472.
- [10] L.-K. Hua, On the automorphisms of a sfield. *Proc. Nat. Acad. Sci. U. S. A.* **35** (1949), 386–389.

References (cont.)

- [11] L.-K. Hua, Fundamental theorem of the projective geometry on a line and geometry of matrices. In: *Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août–2 Septembre 1950*, 317–325, Akadémiai Kiadó, Budapest 1952.
- [12] B. V. Limaye, N. B. Limaye, Correction to: Fundamental theorem for the projective line over non-commutative local rings. *Arch. Math. (Basel)* **29** (1977), 672.
- [13] B. V. Limaye, N. B. Limaye, The fundamental theorem for the projective line over commutative rings. *Aequationes Math.* 16 (1977), 275–281.
- [14] B. V. Limaye, N. B. Limaye, Fundamental theorem for the projective line over non-commutative local rings. *Arch. Math.* (*Basel*) 28 (1977), 102–109.

References (cont.)

- [15] N. B. Limaye, Projectivities over local rings. *Math. Z.* **121** (1971), 175–180.
- [16] N. B. Limaye, Cross-ratios and projectivities of a line. Math. Z. 129 (1972), 49–53.
- [17] B. R. McDonald, Projectivities over rings with many units. *Comm. Algebra* **9** (1981), 195–204.
- [18] H. Schaeffer, Das von Staudtsche Theorem in der Geometrie der Algebren. *J. Reine Angew. Math.* **267** (1974), 133–142.
- [19] O. Schreier, E. Sperner, *Einführung in die analytische Geometrie und Algebra. Bd. II.* B. G. Teubner, Leipzig 1935.