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Cayley’s ruled surface

Cayley’s (ruled cubic) surface is, to within collineations of P3(R), the surface F

with equation
3x0x1x2 − x3

1
− 3x3x

2

0
= 0.

The line t : x0 = x1 = 0 is a torsal genera-

tor of second order and a directrix for all other
generators of F .

U = R(1, 0, 0, 0)T is the cuspidal point on t.

The plane ω : x0 = 0 is the tangent plane at U .
We consider it as plane at infinity (but not in all
figures).

Affine chart for figure: x3 6= 0.
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U
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Twisted cubics

Each triple (α, β, γ) ∈ R
3 with β 6= 0 gives rise to a function

Φα,β,γ : R
2×1 → R

4×1 : (u0, u1)
T 7→

(

u3

0
, u2

0
(u1 − γu0),

u0(u
2
1
+ αu2

0
)

β
,
(u1 − γu0)

3β

(

3(u2

1
+ αu2

0
) − β(u1 − γu0)

2
)

)T

.

In projective terms we obtain a curve cα,β,γ on the Cayley surface, lying on the
parabolic cylinder with equation αx2

0
− βx0x2 + (x1 + γx0)

2 = 0.

β 6= 3: cubic parabola cα,β,γ ⊂ F .

β = 2, γ = 0 : asymptotic curves cα,2,γ of F .

β = 3 : Φα,3,γ((1, u1)
T) . . . affine part of a parabola cα,3,γ ⊂ F .
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A one-parameter family of cubic parabolas

Cubic parabolas cα,β,0, where α ranges in {−3

2
,−3

4
, 0, 3

4
, 3

2
}, and β = 3

2
.
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Claims on higher order contact

H. Neudorfer (1925): The asymptotic curves of F (other than generators)
have fourth order contact at U .

H. Brauner (1964): Given cubic parabolas cα,β,γ and cα,β,γ the following

assertions hold:

• β = β ⇒ second order contact at U ;

• β = β and γ = γ ⇒ third order contact at U ;

• contact of order four at U ⇒ curves are identical.
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Higher order contact

Theorem. Distinct cubic parabolas cα,β,γ and cα,β,γ on Cayley’s ruled sur-

face have

• second order contact at U ⇔ β = β or β = 3 − β;

• third order contact at U ⇔ β = β and γ = γ, or β = β = 3

2
;

• fourth order contact at U ⇔ β = β = 3

2
and γ = γ.

Proof. A long, even though straightforward calculation (Maple).
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Two examples

Affine chart for figures: x3 6= 0.

t

U

F

cα,β,γ

cα,β,γ

Second order contact at U :
(α, β, γ) = (0, 1

10
, 0),

( α, β, γ ) = (1, 3 − 1

10
, 1

10
).

t

F

Fourth order contact at U .
α = −3,−2, . . . , 3,

β = 3

2
, γ = 0.
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What means β = 3
2 ?

ω . . . isotropic plane with absolute flag (U, t).

P3(R) . . . two-fold isotropic space with absolute flag (U, t, ω).

Theorem. Among all cubic parabolas cα,β,γ on the Cayley surface F , the

cubic parabolas with β = 3

2
are precisely those with maximal twofold isotropic

conical curvature.

Proof. The tangent surface of a cubic parabola cα,β,γ meets the plane ω in t and
in an isotropic circle with isotropic curvature

1

2
β(3 − β) ≤

9

8
.

Hence cα,β,γ has the twofold isotropic conical curvature 1

2
β(3 − β) ≤ 9

8
.
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The dual Cayley surface

A plane with coordinates R(y0, y1, y2, y3) is tangent to the Cayley surface if, and
only if,

3y0y
2

3
− 3y1y2y3 + y3

2
= 0.

So, all tangent planes comprise a Cayley surface in the dual space.

All osculating planes of a twisted cubic form a twisted cubic in the dual space.

Dual contact of order k ⇔ contact of order k of the dual curves.
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Higher order dual contact

Theorem. Distinct cubic parabolas cα,β,γ and cα,β,γ on Cayley’s ruled sur-

face have

• second order dual contact at ω ⇔ β = β;

• third order dual contact at ω ⇔ β = β and γ = γ, or β = β = 5

2
;

• fourth order dual contact at ω ⇔ β = β = 7

3
and γ = γ.

In particular, two cubic parabolas of this kind, with fourth order contact at U and
fourth order dual contact at ω, are identical.
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Dual contact vs. contact

Theorem. Let β 6= 0, 3 be a fixed real number. The image of the affine part

of the Cayley surface F under the mapping

P ∈ cα,β,0 \ {U}
Σ

7−→ osculating plane of cα,β,0 at P

consists of tangent planes of a Cayley surface F ′ for β 6= 0, 3, 8

3
, and of

tangent planes of a hyperbolic paraboloid for β = 8

3
.

Each cα,β,0
Σ

−→ Dβ(cα′,β′,0) with Dβ a duality,

α′ := α(β − 3), and β′ :=
3β − 8

β − 3
,

whence

β =
7

3
7→ β′ =

3

2
.
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A final remark

There remains the problem to find a geometric interpretation of the value

β = β =
5

2

which guarantees third order dual contact at U .
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