Uber die Schmiegtangentenkongruenz der Cayley-Fläche

gemeinsam mit Rolf Riesinger (Wien)

GEOMETRISCHE STRUKTUREN

HANS HAVLICEK

FORSCHUNGSGRUPPE
DIFFERENTIALGEOMETRIE UND
GEOMETRISCHE STRUKTUREN
INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE
TECHNISCHE UNIVERSITÄT WIEN
havlicek@geometrie.tuwien.ac.at

Faserungen

Sei $\mathbb{P}_3(K)$ der 3-dimensionale projektive Raum über einem Körper K. Es bezeichne \mathcal{L} seine Geradenmenge.

Definition. Sei $S \subset \mathcal{L}$ eine Menge von Geraden, die einige der folgenden Bedingungen erfüllt:

- 1. Je zwei verschiedene Geraden von S sind windschief.
- 2. Jeder Punkt inzidiert mit mindestens einer Geraden von S.
- 3. Jede Ebene inzidiert mit mindestens einer Geraden von S.

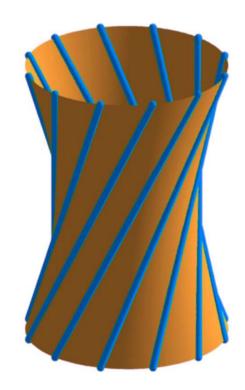
Eine partielle Faserung ist durch Bedingung 1 gekennzeichnet.

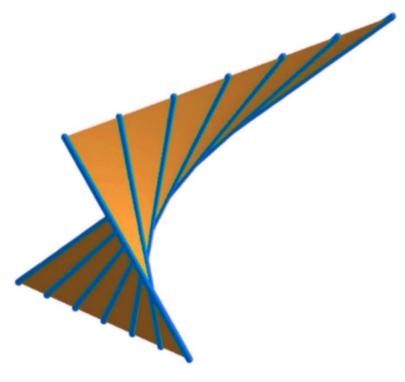
Eine Faserung ist durch die Bedingungen 1 und 2 gekennzeichnet.

Eine duale Faserung ist durch die Bedingungen 1 und 3 gekennzeichnet.

Reguli

Auf jeder hyperbolischen Quadrik liegen zwei Familien von Erzeugenden. Jede bildet einen Regulus. Für einen Regulus R gibt es, affin gesehen, folgende Möglichkeiten:





Hyperbolisches Paraboloid: \mathcal{R} hat genau eine Ferngerade.

Zusätzliche Bedingungen

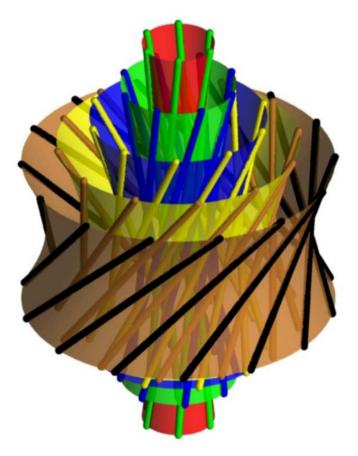
Wenn K unendlich ist, können mit transfiniter Induktion sehr bizarre Faserungen konstruiert werden. Daher lässt sich über Faserungen im Allgemeinen wenig sagen.

- Eine reguläre Faserung ist gegenüber Reguli abgeschlossen.
- Eine Faserung heißt algebraisch, falls ihr Bild auf der Klein-Quadrik eine algebraische Varietät ist.
- Eine Faserung von $\mathbb{P}_3(\mathbb{R})$ oder $\mathbb{P}_3(\mathbb{C})$ heißt stetig, falls die Abbildung

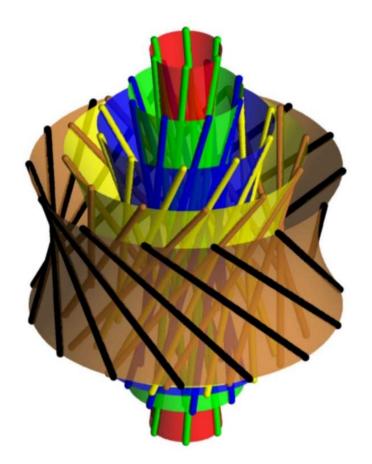
$$\mathbb{P}_3(K) \to \mathcal{L}: \mathsf{Punkt} \; \mapsto \; \mathsf{inzidente} \; \mathsf{Gerade} \; \mathsf{von} \; \mathcal{S}$$

stetig ist.

Beispiele

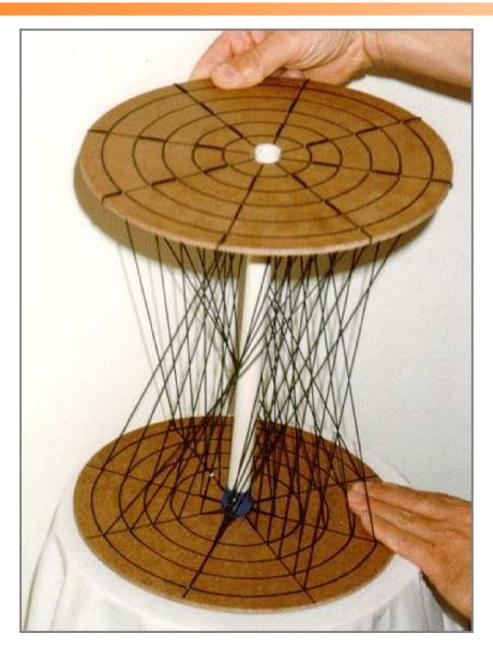


Eine reguläre Faserung ist eine elliptische lineare Geradenkongruenz.



Eine *subreguläre Faserung* entsteht, indem "einige" Reguli durch ihre ergänzenden Reguli ersetzt werden.

Beispiele



Dieses Modell einer regulären Faserung wurde von R. Riesinger gebaut.

Reguläre Faserungen

- Im reellen projektiven Raum $\mathbb{P}_3(\mathbb{R})$ gibt es reguläre Faserungen, weil es reelle Zahlen ohne Quadratwurzel in \mathbb{R} gibt.
- In $\mathbb{P}_3(\mathbb{R})$ gibt es (bis auf Kollineationen) genau eine reguläre Faserung, weil \mathbb{C} die einzige quadratische Erweiterung von \mathbb{R} ist.
- Die reguläre Faserung von $\mathbb{P}_3(\mathbb{R})$ ist algebraisch und daher auch stetig. Sie ist auch eine duale Faserung.
- In $\mathbb{P}_3(\mathbb{C})$ gibt es keine regulären Faserungen, weil jede komplexe Zahl mindestens eine Quadratwurzel in \mathbb{C} besitzt. (Eine hyperbolische Quadrik in $\mathbb{P}_3(\mathbb{C})$ hat keine Passanten.)

Anwendungen

Anwendungen von Faserungen:

Grundlagen der Geometrie.

Konstruktion von Translationsebenen. Dabei wird eine Faserung in der Fernhyperebene eines 4-dimensionalen affinen Raumes verwendet . . .

J. André (1956), R. H. Bruck und R. C. Bose (1963), . . .

Parallelismen.

Verallgemeinerungen des Clifford-Parallelismus.

W. K. Clifford (1873), . . .

Darstellende Geometrie, Computer Vision.

Nicht-lineare Abbildungen auf eine Ebene. Parallelprojektion im elliptischen 3-Raum. Non-central cameras, ...

L. Tuschel (1911), ...

Cayley-Fläche

Die *kubische Regelfläche von Cayley*, im Folgenden kurz *Cayley-Fläche* genannt, ist (bis auf Kollineationen) die Punktmenge

$$F := \mathcal{V}(f(\mathbf{X})) := \{ K(p_0, p_1, p_2, p_3)^{\mathrm{T}} \in \mathbb{P}_3(K) \mid f(p_0, p_1, p_2, p_3) = 0 \},$$

wobei

$$f(\mathbf{X}) := X_0 X_1 X_2 - X_1^3 - X_0^2 X_3 \in K[\mathbf{X}] = K[X_0, X_1, X_2, X_3].$$

Wir fassen im Folgenden $\omega := \mathcal{V}(X_0)$ als Fernebene auf. Der affine Teil der Cayley-Fläche hat daher die Parameterdarstellung

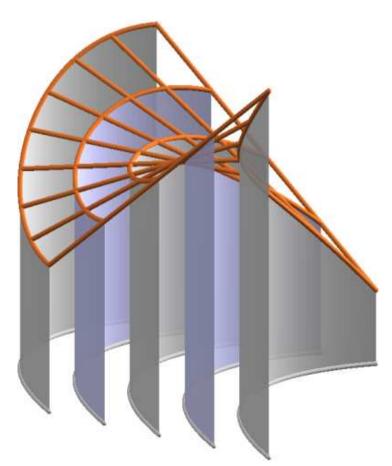
$$K^2 \to \mathbb{P}_3(K) : (u_1, u_2) \mapsto K(1, u_1, u_2, u_1 u_2 - u_1^3)^{\mathrm{T}} =: P(u_1, u_2).$$

Der Schnitt von F mit ω ist die Gerade

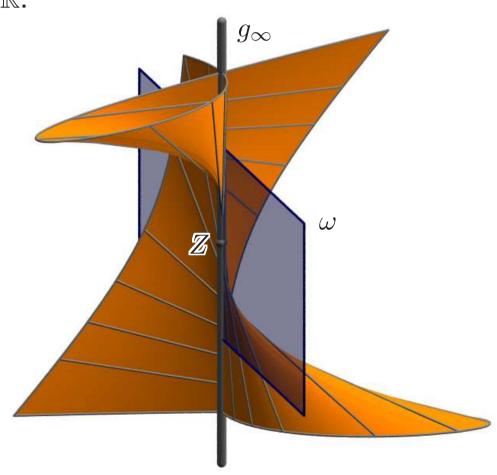
$$\mathcal{V}(X_0, X_1) =: g_{\infty}.$$

Bilder

Wir beschränken uns hier auf den Fall $K = \mathbb{R}$.



Affines Bild. Alle Punkte von $F \setminus \omega$ sind regulär.



Schnitt mit der Fernebene. g_{∞} hat nur Doppelpunkte. $Z:=\mathbb{R}(0,0,0,1)^{\mathrm{T}}$ ist ein Zwickpunkt.

Die Kollineationsgruppe

Die Menge aller Matrizen

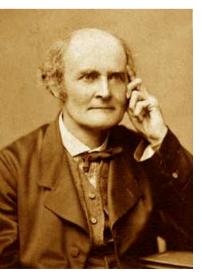
$$M_{a,b,c} := \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ a & c & 0 & 0 \ b & 3\,ac & c^2 & 0 \ ab-a^3 & bc & ac^2 & c^3 \end{array}
ight),$$

wobei $a, b \in \mathbb{R}$ und $c \in \mathbb{R} \setminus \{0\}$, ist bezüglich der Multiplikation eine Gruppe G.

- Jede Matrix aus G läßt die kubische Form $f(\boldsymbol{X}) = X_0 X_1 X_2 X_1^3 X_0^2 X_3$ bis auf den Faktor c^3 invariant.
- Die Gruppe G bestimmt alle automorphen Kollineationen von F.
- Die Punktmenge F zerfällt unter der Wirkung der Gruppe G in drei Bahnen: $F \setminus \omega$, $g_{\infty} \setminus \{Z\}$ und $\{Z\}$.

Literatur

M. Chasles



A. Cayley

Der Name Cayley-Fläche ist nicht vollständig zutreffend, da M. Chasles seine Entdeckung dieser Fläche im Jahr 1861 publizierte, also drei Jahre vor A. Cayley.

Es gibt eine breit gestreute Literatur zur Cayley-Fläche:

- H. Brauner (1964, 1966, 1967, 1967),
- J. Gmainer und H. H. (2005),
- M. Husty (1984),
- R. Koch (1968),
- H. Neudorfer (1925),
- M. Oehler (1969),
- A. Wiman (1936),
- H. Wresnik (1990),
- W. Wunderlich (1935),

und andere.

Schmiegtangenten

Trifft eine Gerade t die Fläche F in einem einfachen Punkt P mit einer Vielfachheit ≥ 3 , so wird sie eine *Schmiegtangente* in P genannt. Jede solche Schmiegtangente ist entweder eine Erzeugende oder sie trifft F nur in P. Im zweiten Fall nennen wir sie eine *echte Schmiegtangente* von F.

Lemma. In jedem Punkt $P(u_1, u_2) \in F \setminus g_{\infty}$ gibt es genau eine echte Schmiegtangente; diese verbindet $P(u_1, u_2)$ mit dem Punkt $\mathbb{R}(0, 1, 3u_1, u_2)^{\mathrm{T}}$.

Beweis. Die Tangentialebene von F in P(0,0) ist $\mathcal{V}(X_3)$; diese Ebene schneidet F entlang der Geraden $\mathcal{V}(X_1,X_3)$ und der Parabel

$$\mathcal{V}(X_1(X_0X_2 - X_1^2), X_3). \tag{1}$$

Die Tangente t dieser Parabel in P(0,0) ist die einzige echte Schmiegtangente in P(0,0). Der Fernpunkt von t ist $K(0,1,0,0)^{\mathrm{T}}$. Lassen wir die Matrix $M_{u_1,u_2,1} \in G$ wirken, so folgt die Behauptung für jeden Punkt $P(u_1,u_2) \in F \setminus g_{\infty}$.

Hauptergebnis

Satz. Die Menge $\mathcal{O} := \{t \in \mathcal{L} \mid t \text{ ist echte Schmiegtangente von } F\} \cup \{g_{\infty}\}$ ist eine Faserung.

Beweis. (a) Alle echten Schmiegtangenten sind zu g_{∞} windschief. Die Schmiegtangenten in $P(0,0) \neq P(u_1,u_2)$ sind genau dann windschief, falls

$$\Delta(u_1, u_2) := \det \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & u_1 & 1 \\ 0 & 0 & u_2 & 3u_1 \\ 0 & 0 & u_1u_2 - u_1^3 & u_2 \end{pmatrix} = u_2^2 - 3u_1^2u_2 + 3u_1^4 \neq 0.$$

Für $u_1 = 0$ gilt $u_2 \neq 0$, was $\Delta(u_1, u_2) \neq 0$ ergibt.

Für $u_1 \neq 0$ substituieren wir $u_2 = (2+y)u_1^2$ mit $y \in \mathbb{R}$ und erhalten die äquivalente Bedingung $u_1^4(y^2+y+1) \neq 0$. Das Polynom

$$X^2 + X + 1 \in \mathbb{R}[X]$$

hat aber keine reellen Nullstellen, sodass $\Delta(u_1, u_2) \neq 0$.

Hauptergebnis

Satz. Die Menge $\mathcal{O} := \{t \in \mathcal{L} \mid t \text{ ist echte Schmiegtangente von } F\} \cup \{g_{\infty}\}$ ist eine Faserung.

Beweis. (a) ... O ist partielle Faserung!

(b) Jeder Fernpunkt inzidiert mit einer Geraden von \mathcal{O} .

Ein Punkt $K(1, p_1, p_2, p_3)$ liegt genau dann auf einer Geraden von \mathcal{O} , falls es ein Paar $(u_1, u_2) \in \mathbb{R}^2$ und ein $s \in \mathbb{R}$ so gibt, dass

$$(1, p_1, p_2, p_3)^{\mathrm{T}} = (1, u_1, u_2, u_1u_2 - u_1^3)^{\mathrm{T}} + s(0, 1, 3u_1, u_2)^{\mathrm{T}}.$$

Wir erhalten also folgendes Gleichungssystem in den Unbekannten u_1, u_2, s :

$$u_1 = p_1 - s$$
, $u_2 = p_2 - 3s(p_1 - s)$, $s^3 = p_3 - (p_1p_2 - p_1^3)$.

Dieses System ist lösbar, weil $p_3 - (p_1p_2 - p_1^3)$ eine Kubikwurzel in $\mathbb R$ besitzt. \square

Bemerkungen

Die Geradenmenge \mathcal{O} hat folgende Eigenschaften.

- \mathcal{O} ist eine partielle Faserung von $\mathbb{P}_3(\mathbb{R})$, da \mathbb{R} keine dritte Einheitswurzel ungleich 1 besitzt bzw. da jedes Element von \mathbb{R} höchstens eine Kubikwurzel in \mathbb{R} besitzt.
- \mathcal{O} ist eine Überdeckung von $\mathbb{P}_3(\mathbb{R})$, weil jedes Element von \mathbb{R} mindestens eine Kubikwurzel in \mathbb{R} besitzt.
- \mathcal{O} ist auch eine duale Faserung, weil es eine Korrelation gibt, die \mathcal{O} (als Menge) invariant lässt.

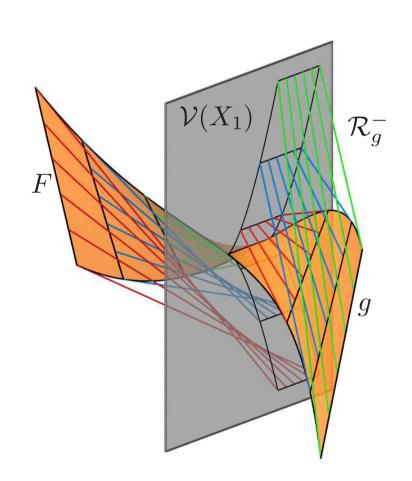
Diese Eigenschaften gelten, mutatis mutandis, über jedem Grundkörper K mit Charakteristik $\operatorname{Char} K \neq 3$.

Daher sind etwa die Schmiegtangenten der Cayley-Fläche in $\mathbb{P}_3(\mathbb{C})$ nicht paarweise windschief, sie bilden aber eine Überdeckung.

Überdeckung von O mit Reguli

Die folgenden Behauptungen lassen sich allesamt leicht nachrechnen:

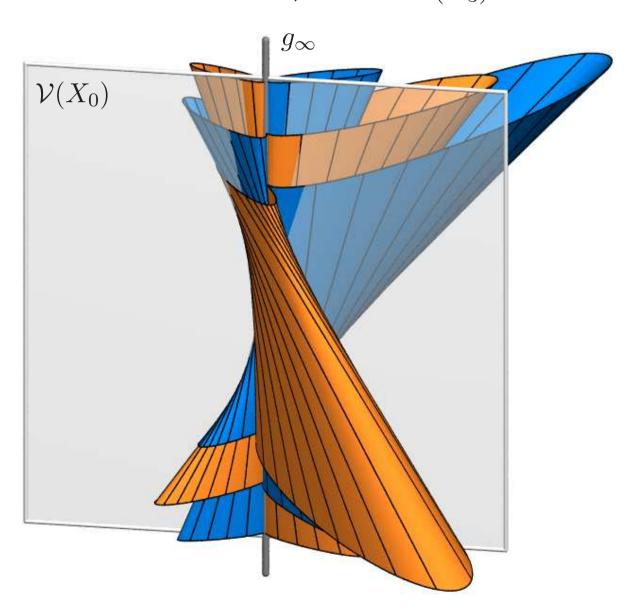
- Alle Schmiegtangenten in den Punkten einer Erzeugenden $g \neq g_{\infty}$ bilden gemeinsam g_{∞} einen Regulus \mathcal{R}_g^- . Affin gesehen liegt dieser auf einem hyperbolischen Paraboloid \mathcal{H}_g .
- Das hyperbolische Paraboloid \mathcal{H}_g ist die Lie-Quadrik von F entlang g.
- Die zu Erzeugenden $g,g'\neq g_{\infty}$ gehörigen Reguli \mathcal{R}_g^- und $\mathcal{R}_{g'}^-$ haben nur die Gerade g_{∞} gemeinsam.
- Die zu Erzeugenden $g, g' \neq g_{\infty}$ gehörigen Lie-Quadriken \mathcal{H}_g und $\mathcal{H}_{g'}$ haben in allen Punkten von g_{∞} übereinstimmende Tangentialebenen.



M. Walker (1976) verwendete die Reguli \mathcal{R}_g^- und ihre ergänzenden Reguli \mathcal{R}_g^+ um die Faserung \mathcal{O} über gewissen endlichen Körpern zu konstruieren.

Überdeckung von O mit Reguli

Hier sehen wir nochmals dieselbe Situation, aber mit $\mathcal{V}(X_3)$ im Unendlichen:



Die Konstruktion von Betten

Wir wählen die Ebene $\pi = \mathcal{V}(X_1)$ und die Fernebene $\omega = \mathcal{V}(X_0)$ aus. Die Geraden von \mathcal{O} ungleich g_{∞} definieren (über ihre Schnittpunkte) eine Bijektion

$$\tau:\omega\setminus g_\infty\to\pi\setminus g_\infty.$$

Umgekehrt kann $\mathcal{O} \setminus g_{\infty}$ durch Verbinden von unter τ zugeordneten Punkten erzeugt werden.

D. Betten (1973) verwendete einen dazu dualen Ansatz zur Konstruktion von \mathcal{O} .

Schlussbemerkungen

- Die Betten-Walker Faserung O erscheint in der Literatur unter verschiedenen Namen.
- Die Betten-Walker Faserung in $\mathbb{P}_3(\mathbb{R})$ ist stetig (D. Betten).
- Die Vereinigung von \mathcal{O} mit dem Geradenbüschel $\mathcal{L}(Z,\omega)$ ist die kleinste algebraische Menge, die \mathcal{O} enthält.
 - Daher ist die Betten-Walker Faserung in $\mathbb{P}_3(\mathbb{R})$ keine algebraische Faserung, aber sie hat "fast" diese Eigenschaft.
- Es sind nur wenige algebraische Faserungen von $\mathbb{P}_3(\mathbb{R})$ bekannt. Nicht reguläre Beispiele stammen von R. Riesinger.
- H. H. und R. Riesinger, The Betten-Walker Spread and Cayley's ruled cubic surface, Beiträge zur Algebra und Geometrie, im Druck.