Twelve points in PG(5,3) with 95040 self-transformations

Remarks on a paper by Coxeter

Hans Haulicek Vienna University of Technology.

http://www.geometrie.tuwien.ac.at/havlicek/

Designs:

Examples: <u>Projective planes</u>: $2 - (n^{2} + n + 1, n + 1, 1)$ <u>Affine planes</u>: $2 - (n^{2}, n, 1)$ Witt's 5 - (12, 6, 1) design W_{12}

12 points, 132 blocks

Choose 3 points \longrightarrow ... blocks through them \longrightarrow

9 points remaining
12 blocks
$$\rightarrow$$
 12 lines
affine plane AG(2,3)
3 fold extension
 W_{12}

The affine plane AG(2,3)

The projective plane PG(2,3)

Point model of W12 in PG(5,3)

^rK... 12 points 5 points in $R \Rightarrow 3^*$ hyperplane H#(Hn R)=6

H.S.M. Coxeter, G. Pellegrino, J.A. Todd

Veronese surface:

 $\sum_{\substack{i \leq j \\ i \leq j}} a_{ij} x_i x_j = 0$

∑aij yij =0 i≤j

Zanella - H.

Quadrics in PG(2,3):

Equation	Name	Picture	#poivts
$X_0^2 + X_1^2 + X_2^2 = 0$	conic		4 ,
$x_0^2 + x_4^2 = 0$	one point	•	1
$x_0^2 - x_1^2 = 0$	cross of lines		7
$\chi_{0}^{2} = 0$	repeated line		4

H. hyperplane of PG(5,3)

$$C := \#(\mathcal{H}_{n} V) \in \{1, 4, 7\}$$

Thas-Hirschfeld

Conic in the real projective plane: Red: Points (of the conic) and tangents. Blue: An internal point and an exterior line. Green: External points and bisecant lines.

Conic in PG(2,3):

Red: 4 points (of the conic) and 4 tangents. Blue: 3 internal points and 3 exterior lines. Green: 6 external points and 6 bisecant lines.

Replacement :

Los... aline in PG(2,3)

Γ∞ := l_∞^φ ... a conic (cV) Δ∞ ... diagonal triangle of the quadrangle Γ∞ E∞ ... plane of Γ∞

$\mathcal{K} := (\mathcal{V} \setminus \Gamma_{\infty}) \cup \Delta_{\infty}$

井衣=12

Theorem :
$$d := \#(\mathcal{X} \cap \mathcal{K}) \in \{0,3,6\}$$

for all hyperplanes \mathcal{H} of PG(5,3).

Proof:
$$\mathcal{H}n\mathcal{V} \xrightarrow{\varphi^{-1}} Q \dots quaduic$$

 $C := \#(\mathcal{H}n\mathcal{V}) \in \{1, 4, 7\}.$

1. $\mathcal{E}_{\infty} \subset \mathcal{H} \implies d = c - 4 + 3 = c - 1 \in \{0, 3, 6\}$

2. $\mathcal{E}_{\infty} \cap \mathcal{H}$ external line of Γ_{∞} $\Rightarrow \quad \underline{d} = c - 0 + 2 = \underline{c+2}$ Q has no points at infinity $\Rightarrow \quad d \in \{\underline{3,6}\}$ c=1 $\int_{\infty}^{\infty} c=4$

3. Example is a tangent of $\Gamma_{\infty} \Rightarrow d = c - 1 + 0 = c - 1 \in \{0, 3, 6\}$ 4. Example is a bisecant of $\Gamma_{\infty} \Rightarrow d = c - 2 + 1 = c - 1 \in \{0, 3, 6\}$

Model of W12 in PG(5,3)

$$P := \mathcal{K}$$

B := { $\mathcal{H} \cap \mathcal{K} \mid \#(\mathcal{H} \cap \mathcal{K}) \ge 4$, $\mathcal{H} \mid \text{a hyperplane of PG(5,3)}$
 $\#(\mathcal{H} \cap \mathcal{K}) = 6$

Model of W12 in PG(5,3) = (P, L)3 elliptic involutions on l_{∞} 3 , new " points A1, A2, A3 A2

• union of two non-parallel affine lives + <u>that</u> involution which interchanges the points at infinity. (1)

Affine quadric + some a new points" Veronese replacement

Relations to Coding Theory $F := GF(3) \qquad W := F^6$ W1,..., W12 EW representing the points of K. $f \in W^* = L(W,K)$ $(w_1^{f}, ..., w_{42}^{f}) \in F^{42}$ gives ... a linear code $G_{12} = G_{12}$ extended ternery Golay code V1,..., V13 EW representing V $(v_1^{f}, ..., v_{13}^{f}) \in F^{13}$ gives in a linear code C13 C13 ... generated by the lines of PG(2,3) complements of lines ... C₁₃ ... - N--II- differences of lines...