#### Pencilled regular parallelisms

# Hans Havlicek (joint work with Rolf Riesinger)



Forschungsgruppe Differentialgeometrie und Geometrische Strukturen Institut für Diskrete Mathematik und Geometrie

Conference on Geometry: Theory and Applications Innsbruck, 5 June 2019



To the memory of Rolf Riesinger (1946–2018), teacher, colleague, and friend.

#### **Basic notions**

- Let  $PG(n, \mathbb{K})$  be the *n*-dimensional projective space over a (commutative) field  $\mathbb{K}$ ; its point set is written as  $\mathcal{P}_n$  and the line set is denoted by  $\mathcal{L}_n$ .
- A *spread* of PG(3,  $\mathbb{K}$ ) is a partition of  $\mathcal{P}_3$  by (disjoint) lines.
- A *parallelism* on PG(3,  $\mathbb{K}$ ) is a partition of  $\mathcal{L}_3$  by (disjoint) spreads.
- The spreads of a parallelism are called parallel classes.

See, among others, Hirschfeld [14], Johnson [15], [16], Karzel and Kroll [17], and Knarr [18].

## Additional properties

In PG(3,  $\mathbb{K}$ ), we shall only be concerned with spreads and parallelisms that satisfy some additional properties.

- A spread is are called regular if it is closed under reguli.
- Regular spreads are precisely the elliptic linear congruences of lines.
- A parallelism is called regular if all its parallel classes are regular spreads.

# Regular spreads of PG(3, $\mathbb{K}$ ) and external lines to $H_5$

Let  $\mathcal{C}$  be a regular spread of PG(3,  $\mathbb{K}$ ).

- The Klein correspondence λ sends C to an elliptic subquadric λ(C) of the Klein quadric H<sub>5</sub>.
- The **polarity**  $\pi_5$  of the Klein quadric sends the solid spanned by  $\lambda(\mathcal{C})$  to

$$\gamma(\mathcal{C}) := \pi_5(\operatorname{span} \lambda(\mathcal{C})),$$

which is an external line to the Klein quadric.

In this way one obtains a **bijection**  $\gamma$  from the set of regular spreads of PG(3,  $\mathbb{K}$ ) to the set of lines that are external to the Klein quadric  $H_5$ .

### Hfd line sets (Betten and Riesinger [3])

Let **P** be a regular parallelism on  $PG(3, \mathbb{K})$ .

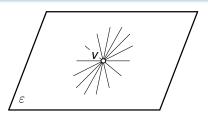
- The λ-image of P is a hyperflock of the Klein quadric H<sub>5</sub>, that is, a partition of H<sub>5</sub> by (disjoint) elliptic subquadrics.
- The  $\gamma$ -image of **P** is a *hyperflock determining line set* (shortly: an *hfd line set*) with respect to the Klein quadric, that is, a set  $\mathcal{H}$  with the following properties:
  - ①  $\mathcal{H} \subset \mathcal{L}_5$  consists of lines that are external to the Klein quadric.
  - 2 Each tangent hyperplane of the Klein quadric contains exactly one line of  $\mathcal{H}$ .

In this way one obtains a **bijection** from the set of regular parallelisms of  $PG(3, \mathbb{K})$  to the set of hfd line sets w. r. t.  $H_5$ .

### Pencilled regular parallelisms (H. and Riesinger [13])

#### Notation.

For any incident point-plane pair  $(v, \varepsilon)$  we denote by  $\mathcal{L}[v, \varepsilon]$  the pencil of lines with vertex v and plane  $\varepsilon$ .



#### Definition 1.

An hfd line set  $\mathcal{H}$  is said to be *pencilled* if each element of  $\mathcal{H}$  belongs to at least one pencil of lines contained in  $\mathcal{H}$ .

#### **Definition 2.**

A regular parallelism P on PG(3,  $\mathbb{K}$ ) is called *pencilled* if the hfd line set  $\gamma(P)$  is pencilled.

#### Construction of pencilled hfd line sets

#### Theorem 1.

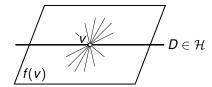
In PG(5,  $\mathbb{K}$ ), let D be a line such that

$$\mathcal{E}_D := \big\{ \varepsilon \subset \mathcal{P}_5 \mid D \subset \varepsilon \text{ and } \varepsilon \text{ is an external plane to } H_5 \big\}$$

is non-empty. Then, upon choosing any mapping  $f: D \to \mathcal{E}_D$ , the union

$$\bigcup_{v \in D} \mathcal{L}[v, f(v)] =: \mathcal{H}$$

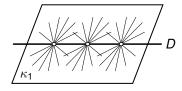
is a pencilled hfd line set.



### Example

Suppose that the mapping  $f: D \to \mathcal{E}_D$  in Theorem 1 is constant.

- The image of f contains a single plane, say  $\kappa_1$ .
- $\mathcal{H}$  is the plane of lines in  $\kappa_1$ .



•  $\gamma^{-1}(\mathcal{H})$  is a *Clifford parallelism*. These parallelisms are commonly defined in various ways; see Betten and Riesinger [4], Blunck, Pianta and Pasotti [6], Giering [8], Karzel and Kroll [17], or H. [9], [10], [11], [12].

Cf. also Blunck, Knarr, Stroppel and Stroppel [5].

### Example

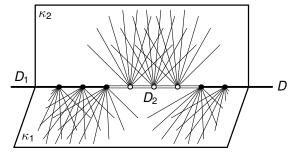
Let the image of the mapping f in Theorem 1 consist of two distinct planes  $\kappa_1$  and  $\kappa_2$ .

- The mapping f decomposes the line D into two non-empty subsets  $D_1$  and  $D_2$ , namely the pre-images of  $\kappa_1$  and  $\kappa_2$ , respectively.
- The corresponding hfd line set can be written in the form

$$\Big(\bigcup_{v\in D_1}\mathcal{L}[v,\kappa_1]\Big)\cup\Big(\bigcup_{v\in D_2}\mathcal{L}[v,\kappa_2]\Big).$$

# Example (cont.)

• Over the real numbers, f can be chosen in such a way that  $D_1$  is a connected component of D with respect to the standard topology in  $PG(5,\mathbb{R})$ . Then  $D_2$  is also connected.



### Main theorem on pencilled hfd line sets

#### Theorem 2.

In  $PG(5, \mathbb{K})$ , any hfd line set admits at least one construction as in Theorem 1.

### Existence of pencilled regular parallelisms

#### Theorem 3.

Given any field  $\mathbb{K}$  the following assertions are equivalent.

- **1** In  $PG(3, \mathbb{K})$  there exists a Clifford parallelism.
- There exists an algebra ℍ over the field ℍ such that one of the following conditions, (A) or (B), is satisfied:
  - (A)  $\mathbb{H}$  is a quaternion skew field with centre  $\mathbb{K}$ .
  - (B)  $\mathbb{H}$  is an extension field of  $\mathbb{K}$  with degree  $[\mathbb{H} : \mathbb{K}] = 4$  and such that  $a^2 \in \mathbb{K}$  for all  $a \in \mathbb{H}$ .
- In  $PG(3, \mathbb{K})$  there exists a pencilled regular parallelism that is not Clifford.

#### Conclusion

- Hirschfeld [14, p. 69], who follows Conwell [7], uses hfd line sets to construct regular parallelisms of PG(3, 2). (Hirschfeld's terminology is different from ours.)
  These parallelisms give rise to solutions of Kirkman's Fifteen Schoolgirls problem (1850).
- Further examples of hfd line sets (pencilled or not) in PG(5,ℝ) can be found in Betten and Riesinger [1], [2, Ex. 16 and 22], [3], and Löwen [20]. Many of these hfd line sets satisfy additional topological conditions.
- See Kroll and Vincenti [19] for results on partitions of the Klein quadric.

#### References

- [1] D. Betten, R. Riesinger, Topological parallelisms of the real projective 3-space. *Results Math.* **47** (2005), 226–241.
- [2] D. Betten, R. Riesinger, Constructing topological parallelisms of  $PG(3,\mathbb{R})$  via rotation of generalized line pencils. *Adv. Geom.* **8** (2008), 11–32.
- [3] D. Betten, R. Riesinger, Hyperflock determining line sets and totally regular parallelisms of  $PG(3, \mathbb{R})$ . *Monatsh. Math.* **161** (2010), 43–58.
- [4] D. Betten, R. Riesinger, Clifford parallelism: old and new definitions, and their use. *J. Geom.* **103** (2012), 31–73.

- [5] A. Blunck, N. Knarr, B. Stroppel, M. J. Stroppel, Clifford parallelisms defined by octonions. *Monatsh. Math.* 187 (2018), 437–458.
- [6] A. Blunck, S. Pasotti, S. Pianta, Generalized Clifford parallelisms. *Innov. Incidence Geom.* 11 (2010), 197–212.
- [7] G. M. Conwell, The 3-space PG(3,2) and its group. *Ann. of Math.* (2) **11** (1910), 60–76.
- [8] O. Giering, *Vorlesungen über höhere Geometrie*. Vieweg, Braunschweig, Wiesbaden 1982.
- [9] H. Havlicek, On Plücker transformations of generalized elliptic spaces. *Rend. Mat. Appl. (7)* **15** (1995), 39–56.

- [10] H. Havlicek, A characteristic property of elliptic Plücker transformations. *J. Geom.* **58** (1997), 106–116.
- [11] H. Havlicek, A note on Clifford parallelisms in characteristic two. Publ. Math. Debrecen 86 (2015), 119–134.
- [12] H. Havlicek, Clifford parallelisms and external planes to the Klein quadric. *J. Geom.* **107** (2016), 287–303.
- [13] H. Havlicek, R. Riesinger, Pencilled regular parallelisms. *Acta Math. Hungar.* **153** (2017), 249–264.
- [14] J. W. P. Hirschfeld, *Finite Projective Spaces of Three Dimensions*. Oxford University Press, Oxford 1985.
- [15] N. L. Johnson, Parallelisms of projective spaces. *J. Geom.* **76** (2003), 110–182.

- [16] N. L. Johnson, Combinatorics of Spreads and Parallelisms, volume 295 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton 2010.
- [17] H. Karzel, H.-J. Kroll, Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt 1988.
- [18] N. Knarr, *Translation Planes*, volume 1611 of *Lecture Notes in Mathematics*. Springer, Berlin 1995.
- [19] H.-J. Kroll, R. Vincenti, Partitions of the Klein quadric. In: Combinatorics 2006, volume 26 of Electron. Notes Discrete Math., 151–157, Elsevier Sci. B. V., Amsterdam 2006.

[20] R. Löwen, Regular parallelisms from generalized line stars in  $P_3\mathbb{R}$ : a direct proof. *J. Geom.* **107** (2016), 279–285.