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Von Staudt, Geometrie der Lage (1847)

Zwei einformige Grundgebilde heissen zu einander
projektivisch (=), wenn sie so auf einander bezogen sind, dass
jedem harmonischen Gebilde in dem einen ein harmonisches
Gebilde im andern entspricht.

Next, after defining perspectivities, the following theorem is
established:

Any projectivity is a finite composition of perspectivities and ‘
vice versa.

It was noticed later that there is a small gap in von Staudt’s
reasoning.

Any result in this spirit now is called a von Staudt’s theorem. |
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The projective line over a ring

@ Let R be a ring with unity 1 # 0.

@ Let M be a free left R-module of rank 2, i. e., M has a basis
with two elements.

@ We say that a € M is admissible if there exists b € M such
that (a, b) is a basis of M (with two elements).
(We do not require that all bases of M have the same
number of elements.)

Definition

The projective line over M is the set P(M) of all cyclic
submodules Ra, where a € M is admissible. The elements of
P(M) are called points.
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The distant relation

Definition

Two points p and g of P(M) are called distant, in symbols p A g,
fM=pa&q.
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Examples

The projective line over some rings can be modelled as
surfaces with a system of distinguished curves that illustrate the
non-distant relation.

Cylinder: Torus:

Real dual numbers R(¢). Real double numbers R x R.
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Harmonic quadruples

Definition

A quadruple (po, p1, P2, p3) € P(M)* is harmonic if there exists
a basis (go, 91) of M such that

Po=Rg, p1=Rg, p2=AR(Go+91), p3=R(9 — %)

Given four harmonic points as above we obtain:
® po A pyand {po, p1} A{p2,P3}-
@ po #psif,andonly if,2 A0 in R.
@ po A ps if, and only if, 2 is a unit in R.
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Harmonicity preservers

Let M’ be a free left module of rank 2 over a ring R’.

Definition
A mapping i : P(M) — P(M’) is said to be a harmonicity

preserver if it takes all harmonic quadruples of P(M) to
harmonic quadruples of P(M').

No further assumptions, like injectivity or surjectivity of n will be
made.



Give an algebraic description of all harmonicity

preservers between projective lines over rings R
and R'.
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Solutions and Contributions

Many authors addressed our main problem :

@ (Skew) Fields with characteristic + 2:
O. Schreier and E. Sperner [19],
G. Ancochea [1], [2], [3],
L.-K. Hua [10], [11].

@ (Non) Commutative Rings subject to varying exira
assumptions:
W. Benz [6], [7],
H. Schaeffer [18],
B. V. Limaye and N. B. Limaye [12], [13], [14],
N. B. Limaye [15], [16],
B. R. McDonald [17],
C. Bartolone and F. Di Franco [5].

A wealth of articles is concerned with generalisations.
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Jordan homomorphisms of rings

A mapping o : R — R’ is a Jordan homomorphism if for all
X,y € R the following conditions are satisfied:

O (x-+y)" =X+
Q1°=1,
Q (xyx)™ = x“yx.

Examples
@ All homomorphisms of rings, in particular idg : R — R.
@ All antihomomorphisms of rings; e. g. the conjugation of
real quaternions: H — H with z — Z.
@ The mapping H x H — H x H : (z, w) — (Z, w) which is
neither homomorphic nor antihomomorphic.
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Beware of Jordan homomorphisms

Let o : R — R’ be a Jordan homomorphism.
Given bases (&g, 1) of M and (e}, €}) of M’ the
mapping M — M’ defined by

Xo€ + X161 — x§€y + x{'ey forall xo,x1 € R

need not take submodules to submodules
(let alone points to points).



Background Main Problem A Sketch of an Algebraic Description References

Assumption

Let n : P(M) — P(M’) be a harmonicity preserver. Furthermore,
we assume that R contains “sufficiently many” units; in
particular 2 has to be a unitin R.
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Step 1: A local coordinate representation of

There are bases (eg, e1) of M and (e, €)) of M’ such that
(Reo)" = R'ey, (Rei)" =R'e|, (R(eoter))" =R(ehxé).
Then there exists a unique mapping 5 : R — R’ with the
property

(R(xeo + €1))" = R'(x ey + €}) forall xeR.

This 3 is additive and satisfies 17 = 1.




Background Main Problem A Sketch of an Algebraic Description References

Step 2: Change of coordinates

We may repeat Step 1 for the new bases
(fy, fy) = (teo + €1, —€0) and (£, f]) = (t°e) + €, —€}),

where t € R is arbitrary. So the transition matrices are
_( t 1 s [ 101
E(t) := (_1 0> and E(t"):= (_1 0) .

Then the new local representation of y yields the same
mapping S as in Step 1. \
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Step 3: 5 is a Jordan homomorphism

By combining Step 1 and Step 2 (for { = 0) one obtains:

The mapping g from Step 1 is a Jordan homomorphism.

References

Part of the proof relies on previous work.
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Step 4: Induction

Suppose that a point p € P(M) can be written as
p = R(xoeo + x1€1)
with
(x0,x1) = (1,0)-E(t)-E(t2)--- E(t;) forsome t,b,...,tIh € R,
where nis variable.
Then the image point of p under (. is
R (e + X&)

with

(0, x7) = (1,0) - E(t)) - E(5) -+ E(ty).
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Concluding remarks

@ For a wide class of rings in order to reach all points of
P(M) it suffices to let n < 2 in Step 4.

@ There are rings where the the description from Step 4 will
not cover the entire line P(M). Here 1. can be described in
terms of several Jordan homomorphisms.

@ Any Jordan homomorphism R — R’ gives rise to a
harmonicity preserver. This follows from previous work of
C. Bartolone [4] and A. Blunck, H. H. [8].

@ For precise statements and further references see [9].
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