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The projective line over a ring

Let R be a ring with unity 1 6= 0.

Let M be a free left R-module of rank 2, i. e., M has a basis
with two elements.

We say that a ∈ M is admissible if there exists b ∈ M such
that (a,b) is a basis of M (with two elements).
(We do not require that all bases of M have the same
number of elements.)

Definition
The projective line over M is the set P(M) of all cyclic
submodules Ra, where a ∈ M is admissible. The elements of
P(M) are called points.
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Distant pairs and harmonic quadruples

Definition

A pair (p0,p1) ∈ P(M)2 are called distant, in symbols p04p1, if
there exists a basis (g0,g1) of M such that

p0 = Rg0, p1 = Rg1.

Definition

A quadruple (p0,p1,p2,p3) ∈ P(M)4 is harmonic if there exists
a basis (g0,g1) of M such that

p0 = Rg0, p1 = Rg1, p2 = R(g0 + g1), p3 = R(g0 − g1).
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Jordan homomorphisms of rings

Definition
A mapping α : R → R′ is a Jordan homomorphism if for all
x , y ∈ R the following conditions are satisfied:

1 (x + y)α = xα + yα,
2 1α = 1′,
3 (xyx)α = xαyαxα.

Examples
Any homomorphism of rings.
Any antihomomorphism of rings; e. g. the transposition
Fn×n → Fn×n : A 7→ AT , where F is a commutative field.
Fn×n × Fn×n → Fn×n × Fn×n : (A1,A2) 7→ (A1,AT

2 ) which is
neither homomorphic nor antihomomorphic for any n ≥ 2.
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Basic assumptions

Let µ : P(M)→ P(M ′) be a harmonicity preserver. Furthermore,

we assume that R contains “sufficiently many” units; in

particular 1 + 1 = 2 has to be a unit in R.

We may choose bases (e0,e1) of M and (e′0,e
′
1) of M ′ such that

(Re0)
µ = R′e′0, (Re1)

µ = R′e′1,
(
R(e0±e1)

)µ
= R′(e′0±e′1).
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Step 1: A local coordinate representation of µ

Then there exists a unique mapping β : R → R′ with the
property(

R(xe0 + e1)
)µ

= R′(xβe′0 + e′1) for all x ∈ R.

This β is additive and satisfies 1β = 1′.
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Step 2: Change of coordinates

We may repeat Step 1 for the new bases

(f0, f1) := (te0 + e1,−e0) and (f ′0, f
′
1) := (tβe′0 + e′1,−e′0),

where t ∈ R is arbitrary. So the transition matrices are

E(t) :=
(

t 1
−1 0

)
and E(tβ) :=

(
tβ 1
−1 0

)
.

Then the new local representation of µ yields the same

mapping β as in Step 1.
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Step 3: β is a Jordan homomorphism

By combining Step 1 and Step 2 (for t = 0) one obtains:

The mapping β from Step 1 is a Jordan homomorphism.

Part of the proof relies on previous work.
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Step 4: Induction

Suppose that a point p ∈ P(M) can be written as

p = R(x0e0 + x1e1)

with

(x0, x1) = (1,0)·E(t1)·E(t2) · · ·E(tn) for some t1, t2, . . . , tn ∈ R,

where n is variable.

Then the image point of p under µ is

R′(x ′0e′0 + x ′1e′1)

with
(x ′0, x

′
1) = (1′,0′) · E(tβ1 ) · E(tβ2 ) · · ·E(tβn ).
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Concluding remarks

For a wide class of rings in order to reach all points of
P(M) it suffices to let n ≤ 2 in Step 4.

There are rings where the the description from Step 4 will
not cover the entire line P(M), but only a connected
component of the distant graph (P(M),4). Here µ can be
described in terms of several Jordan homomorphisms.

Any Jordan homomorphism R → R′ gives rise to a
harmonicity preserver. This follows from work of
C. Bartolone, A. Blunck, and others.

For precise statements and further references see:
H. H., Von Staudt’s theorem revisited. Aequationes Math.
89 (2015), 459–472.
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