Harmonicity Preservers of Projective Lines

Hans Havlicek

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology Research Group Differential Geometry and Geometric Structures Institute of Discrete Mathematics and Geometry

Combinatorics 2016 Maratea, May 31, 2016

The projective line over a ring

- Let *R* be a ring with unity $1 \neq 0$.
- Let *M* be a free left *R*-module of rank 2, i. e., *M* has a basis with two elements.
- We say that *a* ∈ *M* is *admissible* if there exists *b* ∈ *M* such that (*a*, *b*) is a basis of *M* (with two elements).
 (We do not require that all bases of *M* have the same number of elements.)

Definition

The *projective line* over *M* is the set $\mathbb{P}(M)$ of all cyclic submodules *Ra*, where $a \in M$ is admissible. The elements of $\mathbb{P}(M)$ are called *points*.

Distant pairs and harmonic quadruples

Definition

A pair $(p_0, p_1) \in \mathbb{P}(M)^2$ are called *distant*, in symbols $p_0 \triangle p_1$, if there exists a basis (g_0, g_1) of *M* such that

$$p_0 = Rg_0, \quad p_1 = Rg_1.$$

Definition

A quadruple $(p_0, p_1, p_2, p_3) \in \mathbb{P}(M)^4$ is *harmonic* if there exists a basis (g_0, g_1) of M such that

$$p_0 = Rg_0, \quad p_1 = Rg_1, \quad p_2 = R(g_0 + g_1), \quad p_3 = R(g_0 - g_1).$$

Jordan homomorphisms of rings

Definition

A mapping $\alpha : R \to R'$ is a *Jordan homomorphism* if for all $x, y \in R$ the following conditions are satisfied:

$$(x+y)^{\alpha}=x^{\alpha}+y^{\alpha},$$

2
$$1^{\alpha} = 1'$$
,

$$(xyx)^{\alpha} = x^{\alpha}y^{\alpha}x^{\alpha}.$$

Examples

- Any homomorphism of rings.
- Any antihomomorphism of rings; e. g. the transposition $\mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$: $A \mapsto A^T$, where \mathbb{F} is a commutative field.
- 𝔅^{n×n} × 𝔅^{n×n} → 𝔅^{n×n} × 𝔅^{n×n} : (𝔄₁, 𝔄₂) → (𝔄₁, 𝔄₂^T) which is neither homomorphic nor antihomomorphic for any n ≥ 2.

Basic assumptions

Let $\mu : \mathbb{P}(M) \to \mathbb{P}(M')$ be a *harmonicity preserver*. Furthermore, we assume that *R* contains "sufficiently many" units; in particular 1 + 1 = 2 has to be a unit in *R*.

We may choose bases (e_0, e_1) of *M* and (e'_0, e'_1) of *M'* such that

 $(Re_0)^{\mu} = R'e'_0, \quad (Re_1)^{\mu} = R'e'_1, \quad (R(e_0 \pm e_1))^{\mu} = R'(e'_0 \pm e'_1).$

Step 1: A local coordinate representation of μ

Then there exists a unique mapping $\beta: \mathbf{R} \to \mathbf{R}'$ with the property

$$(R(\mathbf{x}e_0+e_1))^{\mu}=R'(\mathbf{x}^{\beta}e_0'+e_1')$$
 for all $x\in R$.

This β is additive and satisfies $1^{\beta} = 1'$.

Step 2: Change of coordinates

We may repeat Step 1 for the new bases

$$(f_0, f_1) := (te_0 + e_1, -e_0)$$
 and $(f'_0, f'_1) := (t^{\beta}e'_0 + e'_1, -e'_0),$

where $t \in R$ is arbitrary. So the transition matrices are

$$E(t) := \begin{pmatrix} t & 1 \\ -1 & 0 \end{pmatrix}$$
 and $E(t^{\beta}) := \begin{pmatrix} t^{\beta} & 1 \\ -1 & 0 \end{pmatrix}$.

Then the new local representation of μ yields the same mapping β as in Step 1.

Step 3: β is a Jordan homomorphism

By combining Step 1 and Step 2 (for t = 0) one obtains:

The mapping β from Step 1 is a Jordan homomorphism.

Part of the proof relies on previous work.

Step 4: Induction

Suppose that a point $p \in \mathbb{P}(M)$ can be written as

$$p=R(x_0e_0+x_1e_1)$$

with

$$(x_0, x_1) = (1, 0) \cdot E(\underline{t_1}) \cdot E(\underline{t_2}) \cdots E(\underline{t_n})$$
 for some $t_1, t_2, \dots, t_n \in R$,

where *n* is variable.

Then the image point of p under μ is

 $R'(x'_0e'_0+x'_1e'_1)$

with

$$(x'_0, x'_1) = (1', 0') \cdot E(t_1^\beta) \cdot E(t_2^\beta) \cdots E(t_n^\beta).$$

Concluding remarks

- For a wide class of rings in order to reach all points of $\mathbb{P}(M)$ it suffices to let $n \leq 2$ in Step 4.
- There are rings where the the description from Step 4 will not cover the entire line ℙ(M), but only a connected component of the *distant graph* (ℙ(M), △). Here μ can be described in terms of several Jordan homomorphisms.
- Any Jordan homomorphism R → R' gives rise to a harmonicity preserver. This follows from work of C. Bartolone, A. Blunck, and others.
- For precise statements and further references see:
 H. H., Von Staudt's theorem revisited. *Aequationes Math.* 89 (2015), 459–472.