Designs:
$t-(v, k, \lambda)$ - design ... (P, B) blocks pert points blocks points per block points number of points

Examples:
Projective planes: $\quad 2-\left(n^{2}+n+1, n+1,1\right)$
Affine planes: $2-\left(n^{2}, n, 1\right)$
Witt's 5-(12, 6,1$)$ design W_{12}
12 points, 132 blocks

Choose 3 points $\longrightarrow 9$ points remaining
... blocks through them \longrightarrow 12 blocks $\longrightarrow 12$ Line.
affine plane $A G(2,3)$ 3 fold extension
W_{12}

The affine plane $\mathrm{AG}(2,3)$

The projective plane $\operatorname{PG}(2,3)$

Point model of W_{12} in $\operatorname{PG}(5,3)$
K... 12 points

5 points in $k \Rightarrow \exists^{*}$ hyperplane \mathscr{H} $\#(\nsim \cap \mathfrak{K})=6$
H.S.M. Coxeter, G.Pellegrino, J.A.Todd

Veronese surface:

Veronese mapping:

$$
\begin{aligned}
& \underbrace{F\left(x_{0}, x_{1}, x_{2}\right)}_{P G(2, F)} \longmapsto \underbrace{F\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)}_{P \in(5, F)} \\
& \operatorname{im} \varphi=: \gamma \ldots \text { Veronese surface }
\end{aligned}
$$

$P G(5, F)$
\longleftrightarrow hyperplane section of v $\sum_{i \leqslant j} a_{i j} y_{i j}=0$

Zanella-H.

The plane of a conic (green) in PG $(2,3)$

$$
\begin{aligned}
& x^{0}=i d \\
& x \ldots(P, t) \text {-elation } \quad \mapsto \Delta \\
& x^{2} \ldots(P, t) \text {-elation } \mapsto
\end{aligned}
$$

General replacement in $P G(5,3)$:

$$
F:=G F(3)=\{0,1,2\}
$$

There are four conic planes of γ through P

$$
\ldots \varepsilon_{i}, i \in F u\{\infty\}
$$

\Rightarrow four collineations $x_{i}(\mapsto \mapsto \Delta)$

$$
\begin{gathered}
(p, q, r, s) \in F^{4} \\
\underbrace{v \backslash\{P\}}_{\text {12 points }} \xrightarrow[\text { Replacement }]{\left(x_{0}^{p}, x_{1}^{q}, x_{2}^{r}, x_{\infty}^{s}\right)} \begin{array}{l}
\|
\end{array} 12 \text { POINTS }
\end{gathered}
$$

81 distinct 12-sets in PG $(5,3)$ each \subset algebraic hypersurface (... points on a chord of ϑ^{-})
$(p, q, r, s) \in\left(F^{4},+\right) \Rightarrow 12$ points

* $p+q+r+s=0$
$x_{0}^{p}, x_{1}^{q}, x_{2}^{r}, x_{\infty}^{s}$ extend to a collineation of $\operatorname{PG}(5,3)$
$\Rightarrow 12$-sets projectively equivalent to $\gamma \backslash\{P\}$
* $p+q+r+s=1$
$\Rightarrow 12$-sets projectively equivalent to \mathbb{K}
* $p+q+r+s=2$
\Rightarrow other 12-sets
$(1,1,1,1)$-replacement in terms of coordinates

Parametric representation of K,

$$
\underbrace{F\left(x_{0}, x_{1} x_{2}\right)}_{\neq F(1,0,0)} \mapsto F\left(x_{0}^{2}+1, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)
$$

Remark:
\Rightarrow generator matrix of G_{12} (Golay code)

