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Part 1

Introduction

The first part deals with some basic notions and results

from the geometry of matrices.



Rectangular Matrices

Let Mm,n(D), m,n ≥ 2, be the set of all m × n matrices over a division ring D.

• Two matrices (linear operators) A, B ∈ Mm,n(D) are adjacent if A − B is of rank

one. (Rank always means left row rank.)

• We consider Mm,n(D) as an undirected graph the edges of which are precisely

the (unordered) pairs of adjacent matrices.

• Two matrices A, B ∈ Mm,n(D) are at the graph-theoretical distance k ≥ 0 if, and

only if,

rank(A − B) = k.



Grassmannians

Let Gm+n,m(D) be the Grassmannian of all m-dimensional subspaces of Dm+n,

where m, n ≥ 2.

• Two subspaces V, W ∈ Gm+n,m(D) are adjacent if dim(V ∩ W ) = m − 1 .

• We consider Gm+n,n(D) as an undirected graph the edges of which are precisely

the (unordered) pairs of adjacent subspaces.

• Two subspaces V,W ∈ Gm+n,m(D) are at the graph-theoretical distance k ≥ 0 if,

and only if,

dim(V ∩ W ) = m − k.



Connection

Mm,n(D) can be embedded in Gm+n,m(D) as follows:

Mm,n(D) → Mm,m+n(D) → Gm+n,m(D)

A 7→ (A|Im) 7→ left rowspace of (A|Im)

Note that (X |Y ) and (TX |TY ) have the same left row space for all T ∈ GLm(D).

Gm+n,m(D) may be viewed as the projective space of m × n matrices over D.

Many authors consider projective dimensions which are one less than dimensions of

vector spaces.

E. g.: G4,2(D) is the space of lines (1-subspaces) in the 3-dimensional projective

space over D.



Part 2

Adjacency Preservers

In the second part we present two classical results about

adjacency preservers.



Hua’s Theorem

Fundamental Theorem (1951). Every bijective map ϕ : Mm,n(D) → Mm,n(D) :

A 7→ Aϕ preserving adjacency in both directions is of the form

A 7→ TAσS + R,

where T is an invertible m × m matrix, S is an invertible n × n matrix, R is an m × n

matrix, and σ is an automorphism of the underlying division ring.

If m = n, then we have the additional possibility that

A 7→ T (Aσ)tS + R

where T, S, R are as above, σ is an anti-isomorphism of D, and At denotes the
transpose of A.

The assumptions in Hua’s fundamental theorem can be weakened.

W.-l. Huang and Z.-X. Wan (2004), P. Šemrl (2004).



Chow’s Theorem

Fundamental Theorem (1947). Every bijective map ϕ : Gm+n,n(D) → Gm+n,n(D) :

X 7→ Xϕ preserving adjacency in both directions is induced by a semilinear mapping

f : Dm+n → Dm+n : x 7→ xσT such that Xϕ = Xf ,

where T is an invertible (m + n) × (m + n) matrix and σ is an automorphism of the

underlying division ring.

If m = n, then we have the additional possibility that ϕ is induced by a sesquilinear

form

g : Dm+n ×Dm+n → D : (x, y) 7→ xL(yσ)t such that Uϕ = U⊥g,

where T is as above and σ is an anti-isomorphism of D.

The assumptions in Chow’s fundamental theorem can be weakened.

W.-l. Huang (1998).



Geometries of Matrices

Similar fundamental theorems (subject to technical restrictions) hold for:

• Spaces of Hermitian matrices (D a division ring with involution ).

• Spaces of symmetric matrices (D commutative).

• Spaces of alternate matrices (D commutative)

(with a different definition of adjacency: rank A − B = 2).

• The associated projective matrix spaces (dual polar spaces).

In all cases the fundamental theorem is essentially a result on isomorphisms of

graphs with finite diameter.



Part 3

Diameter Preservers

In the third part we exhibit diameter preservers in a purely

graph-theoretic setting. Then we shall apply the results to

several matrix spaces.



Diameter Preservers

Recent work focusses on diameter preservers between matrix spaces and related

structures.

P. Abramenko, A. Blunck, D. Kobal, M. Pankov, P. Šemrl, H. Van Maldeghem, H. H.

In this lecture we aim at pointing out the common features.



Conditions (A1)–(A5)
We focus our attention on graphs Γ satisfying the following conditions:

(A1) Γ is connected and its diameter diamΓ is finite.

(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.

(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.

(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



Conditions (A1)–(A5)
We focus our attention on graphs Γ satisfying the following conditions:

(A1) Γ is connected and its diameter diamΓ is finite.

(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.

(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.

(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



Condition (A2)
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(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.



Conditions (A1)–(A5)
We focus our attention on graphs Γ satisfying the following conditions:

(A1) Γ is connected and its diameter diamΓ is finite.

(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.

(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.

(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



Condition (A3)
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(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.



Conditions (A1)–(A5)
We focus our attention on graphs Γ satisfying the following conditions:

(A1) Γ is connected and its diameter diamΓ is finite.

(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.

(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.

(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



Condition (A4)
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(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.



Conditions (A1)–(A5)
We focus our attention on graphs Γ satisfying the following conditions:

(A1) Γ is connected and its diameter diamΓ is finite.

(A2) For any points x, y ∈ P there is a point z ∈ P with

d(x, z) = d(x, y) + d(y, z) = diamΓ.

(A3) For any points x, y, z ∈ P with d(x, z) = d(y, z) = 1 and d(x, y) = 2 there is a
point w satisfying

d(x, w) = d(y, w) = 1 and d(z, w) = 2.

(A4) For any points x, y, z ∈ P with x 6= y and d(x, z) = d(y, z) = diamΓ there is a
point w with

d(z, w) = 1, d(x,w) = diamΓ − 1, and d(y, w) = diamΓ.

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



Condition (A5)

a b

p

x

(A5) For any adjacent points a, b ∈ P there exists a point p ∈ P \ {a, b} such that for
all x ∈ P the following holds:

d(x, p) = diamΓ ⇒ d(x, a) = diamΓ ∨ d(x, b) = diamΓ.



A Lemma about Adjacency

Lemma. Given a graph Γ which satisfies conditions (A1)–(A4) let

n := diamΓ.

Suppose that a, b ∈ P are distinct points with the following property:

∃ p ∈ P \ {a, b} ∀x ∈ P : d(x, p) = n ⇒ d(x, a) = n ∨ d(x, b) = n. (1)

Then a and b are adjacent.

Geometric idea behind the proof for m = n = 2 from a projective point of view:

a

p

b

x

Condition (A5) just guarantees that (1) holds for any two adjacent points a, b ∈ P.



Main Theorem

Theorem (W.-l. Huang and H. H., 2008). Let Γ and Γ′ be two graphs satisfying the

above conditions (A1)–(A5). If ϕ : P → P ′ is a surjection which satisfies

d(x, y) = diamΓ ⇔ d(xϕ, yϕ) = diamΓ′ for all x, y ∈ P,

then ϕ is an isomorphism of graphs. Consequently, diamΓ = diamΓ′.



Application

The graph on Mm×n(D) satisfies conditions (A1)–(A5) provided that |D| 6= 2.

Theorem. Let D, D′ be division rings with |D|, |D′| 6= 2. Let m, n, p, q ≥ 2 be integers.

If ϕ : Mm×n(D) → Mp×q(D
′) is a surjection which satisfies

rank(A − B) = min{m, n} ⇔ rank(Aϕ − Bϕ) = min{p, q}

for all A,B ∈ Mm×n(D),

then ϕ is bijective. Both ϕ and ϕ−1 preserve adjacency of matrices. Moreover,

min{m, n} = min{p, q}.

The associated projective space of rectangular matrices (Grassmannian) satisfies
conditions (A1)–(A5) for any D.



Hermitian Matrices

Let D be a division ring which possesses an involution, i. e. an anti-automorphism of

D whose square equals the identity map of D. We fix one such involution of D and

denote it by . Also, we assume that the following restrictions are satisfied:

(R1) The set F of fixed elements of has more than three elements in common

with the centre of D.

(R2) When is the identity map, whence D = F is a field, then assume that F

does not have characteristic 2.

Let Hn(D) denote the space of Hermitian n× n matrices over D (with respect to ),

where n ≥ 2.

If is the identity map, then Hn(D) =: Sn(F) is the space of symmetric n × n

matrices over F .



Application

The graph on Hn(D) satisfies conditions (A1)–(A5) provided that the restrictions (R1)
and (R2) are satisfied.

Theorem. Let D,D′ be division rings which possess involutions and
′

, re-

spectively, subject to the restrictions (R1) and (R2). Let n, n′ be integers ≥ 2. If

ϕ : Hn(D) → Hn′(D′) is a surjection which satisfies

rank(A − B) = n ⇔ rank(Aϕ − Bϕ) = n′ for all A,B ∈ Hn(D),

then ϕ is bijective. Both ϕ and ϕ−1 preserve adjacency of Hermitian matrices. More-

over, n = n′.



Final remarks

Characterisations of geometric transformations under mild hypotheses.

W. Benz, Geometrische Transformationen, 1992.

Z.-X. Wan: Geometry of Matrices, 1996.

Preservation theorems can be seen as as consequences of first-order definability,

V. Pambuccian, 2000.

Generalisation from division rings to rings.

L. P. Huang: Geometry of Matrices over Ring, 2006.

M. Pankov, Grassmannians of Classical Buildings, 2008.


