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Our Segre varieties

Let V 1,V 2, . . . ,V m be m ≥ 1 two-dimensional vector spaces
over a commutative field F .

P(V k ) = PG(1,F ) are projective lines over F for
k ∈ {1,2, . . . ,m}.

The non-zero decomposable tensors of
⊗m

k=1 V k determine the
Segre variety

S1,1,...,1︸ ︷︷ ︸
m

(F ) = S(m)(F ) =
{

Fa1 ⊗ a2 ⊗ · · · ⊗ am | ak ∈ V k \ {0}
}

with ambient projective space P
(⊗m

k=1 V k
)
= PG(2m − 1,F ).
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Bases

Given a basis (e(k)
0 ,e(k)

1 ) for each vector space V k ,
k ∈ {1,2, . . . ,m}, the tensors

E i1,i2,...,im := e(1)
i1

⊗ e(2)
i2

⊗ · · · ⊗ e(m)
im

with (i1, i2, . . . , im) ∈ Im := {0,1}m (1)

constitute a basis of
⊗m

k=1 V k .

For any multi-index i = (i1, i2, . . . , im) ∈ Im the opposite
multi-index i ′ ∈ Im is characterised by

ik 6= i ′k for all k ∈ {1,2, . . . ,m}.
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Examples

S1(F ) = PG(1,F ).
S1,1(F ) is a hyperbolic quadric of PG(3,F ).
S1,1,1(2) has 27 points and contains precisely 27 lines
(three through each point). The ambient PG(7,2) has 255
points.
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Collineations

The subgroup of GL
(⊗m

k=1 V k
)

preserving decomposable
tensors is generated by the following transformations:

f1 ⊗ f2 ⊗ · · · ⊗ fm with fk ∈ GL(V k ) for k ∈ {1,2, . . . ,m}. (2)

fσ with E (i1,i2,...,im) 7→ E(i
σ−1(1),iσ−1(2),...,iσ−1(m)

) for all i ∈ Im, (3)

where σ ∈ Sm is arbitrary.

This subgroup induces the stabiliser GS(m)(F ) of the Segre

S(m)(F ) within the projective group PGL
(⊗m

k=1 V k
)
.
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Bilinear forms

Each of the vector spaces V k admits a symplectic bilinear form

[·, ·] : V k × V k → F .

Consequently,
⊗m

k=1 V k is equipped with a bilinear form which
is given by

[
a1 ⊗ a2 ⊗ · · · ⊗ am,b1 ⊗ b2 ⊗ · · · ⊗ bm

]
:=

m∏

k=1

[ak ,bk ]

for ak ,bk ∈ V k , (4)

and extending bilinearly.

All these bilinear forms are unique up to a non-zero factor in F .
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Bilinear forms (cont.)

Given i , j ∈ Im we have

[E i ,E i ′] =

m∏

k=1

[e(k)
ik

,e(k)
i ′k

] = (−1)m[E i ′ ,E i ] 6= 0, (5)

[E i ,E j ] = 0 for all j 6= i ′. (6)

Hence the form [·, ·] on
⊗m

k=1 V k is non-degenerate.
Furthermore, it is

symmetric when m is even and Char F 6= 2;

alternating otherwise (i. e., when m is odd or Char F = 2).
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The fundamental polarity

In projective terms the form [·, ·] on
⊗m

k=1 V k (or any
proportional one) determines the fundamental polarity of the
Segre S(m)(F ), i. e., a polarity of P(

⊗m
k=1 V k ) which sends

S(m)(F ) to its dual.

This polarity is

associated with a regular quadric when m is even and
Char F 6= 2;

null otherwise (i. e., when m is odd or Char F = 2).
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The associated quadric

Let m be even and Char F 6= 2.

The mapping

Q :
m⊗

k=1

V k → F : X 7→ [X ,X ]

is a quadratic form with Witt index 2m−1 and rank 2m.

The fundamental polarity of the Segre S(m)(F ) is the polarity of
the regular quadric given by Q.

The Segre coincides with this quadric precisely when m = 2.
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Characteristic two

Let Char F = 2.

Here [·, ·] is a symplectic bilinear form on
⊗m

k=1 V k for all
m ≥ 1, whence the fundamental polarity of the Segre S(m)(F ) is
always null.

Furthermore, (5) simplifies to

[E i ,E i ′ ] =

m∏

k=1

[e(k)
0 ,e(k)

1 ] = [E i ′ ,E i ] 6= 0. (7)
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A quadratic form

Proposition

Let m ≥ 2 and Char F = 2. Then there is a unique quadratic
form

Q :

m⊗

k=1

V k → F

satisfying the following two properties:

1 Q vanishes for all decomposable tensors.
2 The symplectic bilinear form

[·, ·] :
m⊗

k=1

V k ×
m⊗

k=1

V k → F

is the polar form of Q.
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Proof

We denote by Im,0 the set of all multi-indices (i1, i2, . . . , im) ∈ Im
with i1 = 0.

In terms of our basis (1) a quadratic form is given by

Q :

m⊗

k=1

V k → F : X 7→
∑

i ∈ Im,0

[E i ,X ][E i ′ ,X ]

[E i ,E i ′]
. (8)
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Proof (cont.)

Given an arbitrary decomposable tensor we have

Q(a1 ⊗ · · · ⊗ am) =
∑

i ∈ Im,0

[E i ,a1 ⊗ · · · ⊗ am][E i ′ ,a1 ⊗ · · · ⊗ am]

[E i ,E i ′]

=
∑

i ∈ Im,0

[e(1)
0 ,a1][e

(1)
1 ,a1] · · · [e

(m)
0 ,am][e

(m)
1 ,am]

[e(1)
0 ,e(1)

1 ] · · · [e(m)
0 ,e(m)

1 ]

= 2m−1 [e(1)
0 ,a1][e

(1)
1 ,a1] · · · [e

(m)
0 ,am][e

(m)
1 ,am]

[e(1)
0 ,e(1)

1 ] · · · [e(m)
0 ,e(m)

1 ]

= 0,

where we used (7),#Im,0 = 2m−1, m ≥ 2, and Char F = 2. This
verifies property 1.
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Proof (cont.)

Let j ,k ∈ I be arbitrary multi-indices. Polarising Q gives

Q(E j + Ek ) + Q(E j) + Q(Ek ) = Q(E j + Ek ) + 0 + 0

=
∑

i ∈ Im,0

[E i ,E j + Ek ][E i ′ ,E j + Ek ]

[E i ,E i ′]
.

The numerator of a summand of the above sum can only be
different from zero if

i ∈ {j ′,k ′} and i ′ ∈ {j ′,k ′}.

These conditions can only be met for k = j ′, whence in fact at
most one summand, namely the one with i ∈ {j , j ′} ∩ Im,0 can
be non-zero.
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Proof (cont.)

So

Q(E j + Ek ) + Q(E j) + Q(Ek ) = 0 = [E j ,Ek ] for k 6= j ′.

Irrespective of whether i = j or i = j ′, we have

Q(E j+E j ′)+Q(E j)+Q(E j ′) =
[E j ,E j + E j ′][E j ′ ,E j + E j ′ ]

[E j ,E j ′ ]
= [E j ,E j ′ ].

This implies that the quadratic form Q polarises to [·, ·], i. e.,
also the second property is satisfied.
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Proof (cont.)

Let Q̃ be a quadratic form satisfying properties 1 and 2. Hence
the polar form of Q − Q̃ = Q + Q̃ is zero.

We consider F as a vector space over its subfield F�

comprising all squares in F . So

(Q + Q̃) :

m⊗

k=1

V k → F

is a semilinear mapping with respect to the field isomorphism
F → F� : x 7→ x2.

The kernel of Q + Q̃ is a subspace of
⊗m

k=1 V k which contains
all decomposable tensors and, in particular, our basis (1).
Hence Q + Q̃ vanishes on

⊗m
k=1 V k , and Q = Q̃ as required. �
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Explicit equation

From (8) and (7), the quadratic form Q can be written in terms
of tensor coordinates xj ∈ F as

Q
( ∑

j ∈ Im

xjE j

)
=

∑

i ∈ Im,0

[E i ,E i ′ ]xixi ′ =

m∏

k=1

[e(k)
0 ,e(k)

1 ] ·
∑

i ∈ Im,0

xixi ′ .

(9)
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Remarks

The previous results may be slightly simplified by taking
symplectic bases, i. e.,

[e(k)
0 ,e(k)

1 ] = 1 for all k ∈ {1,2, . . . ,m},

whence also
[E i ,E i ′] = 1 for all i ∈ Im.

Proposition 1 fails to hold for m = 1: A quadratic form Q
vanishing for all decomposable tensors of V 1 is necessarily
zero, since any element of V 1 is decomposable. Hence the
polar form of such a Q cannot be non-degenerate.
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Main result

Theorem

Let m ≥ 2 and Char F = 2. There exists in the ambient space
of the Segre S(m)(F ) a regular quadric Q(F ) with the following
properties:

1 The projective index of Q(F ) is 2m−1 − 1.
2 Q(F ) is invariant under the group of projective collineations

stabilising the Segre S(m)(F ).
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Proof

Any fk ∈ GL(V k ), k ∈ {1,2, . . . ,m}, preserves the symplectic
form [·, ·] on V k up to a non-zero factor.

Any linear bijection fσ as in (3) is a symplectic transformation of⊗m
k=1 V k .

Hence any transformation from the stabiliser group GS(m)(F )

preserves the symplectic form (4) up to a non-zero factor.

By the proposition, also Q is invariant up to a non-zero factor
under the action of GS(m)(F ).



Notation and background results The invariant quadric References

Proof (cont.)

From (9) the linear span of the tensors E j with j ranging in Im,0

is a singular subspace with respect to Q.

So the Witt index of Q equals #Im,0 = 2m−1, because [·, ·] being
non-degenerate implies that a greater value is impossible.

We conclude that the quadric with equation Q(X ) = 0 has all
the required properties. �
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Conclusion

We call Q(F ) the invariant quadric of the Segre S(m)(F ).

The case m = 2 deserves special mention, as the Segre
S1,1(F ) coincides with its invariant quadric Q(F ) given by

Q
(∑

j∈I2

xjE j
)
= x00x11 + x01x10 = 0.

This result parallels the situation for Char F 6= 2.

Problem: Is there a “better” definition of the quadratic form Q?
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