Plücker space (L, \sim) :

L ... any set, \sim ... a binary relation on L such that

1. \sim is reflexive and symmetric,

2. (L, \sim) is connected.

 $a \sim b \dots$ related elements $a \approx b :\Leftrightarrow a \sim b$ and $a \neq b \dots$ adjacent elements.

Isomorphism of Plücker spaces (L, \sim) , (L', \sim') :

A bijection $\varphi : L \to L'$ such that

 $a \sim b \Leftrightarrow a^{\varphi} \sim' b^{\varphi}$ for all $a, b \in L$.

 $A = (\mathcal{P}, \mathcal{L}, \|) \dots$ affine space.

Affine Plücker space:

 (\mathcal{L},\sim) with

 $a \sim b : \iff a \cap b \neq \emptyset \ (a, b \in \mathcal{L})$ Plücker space on A.

Assumptions:

$$A = (\mathcal{P}, \mathcal{L}, ||),$$

$$A' = (\mathcal{P}', \mathcal{L}', ||'), \text{ dim } A' \ge 3,$$

$$\varphi : \mathcal{L} \to \mathcal{L}' \dots \text{ a bijection satisfying}$$

 $a \sim b \Longrightarrow a^{\varphi} \sim' b^{\varphi}$ for all $a, b \in \mathcal{L}$.

Theorem 1 The mapping

 $\lambda \,:\, \mathcal{P}
ightarrow \mathcal{P}', \; a \cap b \mapsto a^{arphi} \cap b^{arphi} \; (a, b \in \mathcal{L}, \; a pprox b)$

is a well-defined injection preserving collinearity and non-collinearity of points. Moreover,

$$\mathcal{L}(Q)^{\varphi} = \mathcal{L}'(Q^{\lambda})$$
 for all $Q \in \mathcal{P}$

and

dim $A \geq 3$.

Theorem 2 If the order of A is not two, then for all $Q \in \mathcal{P}$ the restricted mapping

 $arphi | \mathcal{L}(Q) \ \colon \mathcal{L}(Q)
ightarrow \mathcal{L}'(Q^{\lambda})$

is a semicollineation of the projective space A/Q onto A'/Q^{λ} , i.e. a bijective mapping preserving collinearity of "points".

Theorem 3 Each of the following conditions is sufficient for λ to be a collineation:

- 1. φ is an isomorphism.
- 2. A or A' is finite.
- 3. dim A \leq dim A' $< \infty$.
- 4. The order of A is different from two and every monomorphism of an underlying field of A in an underlying field of A' is surjective.
- 5. A and A' are affine spaces of order two.