A distance space on Cayley's ruled surface

Hans Havlicek
Joint work with Johannes Gmainer

DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN

Basic notions

Let $\mathbb{P}_3(K)$ be the 3-dimensional projective space over a commutative field K.

Given a homogeneous polynomial $g(\mathbf{X}) \in K[\mathbf{X}] = K[X_0, X_1, X_2, X_3]$ then

$$\mathcal{V}(g(\boldsymbol{X})) := \{ K\boldsymbol{p} \in \mathbb{P}_3(K) \mid g(\boldsymbol{p}) = 0 \}$$

denotes the set of K-rational points of the variety given by this form.

We regard $\omega := \mathcal{V}(X_0)$ as the *plane at infinity*.

Cayley's ruled cubic surface

The Cayley surface is given by $F := \mathcal{V}(f(X))$, where

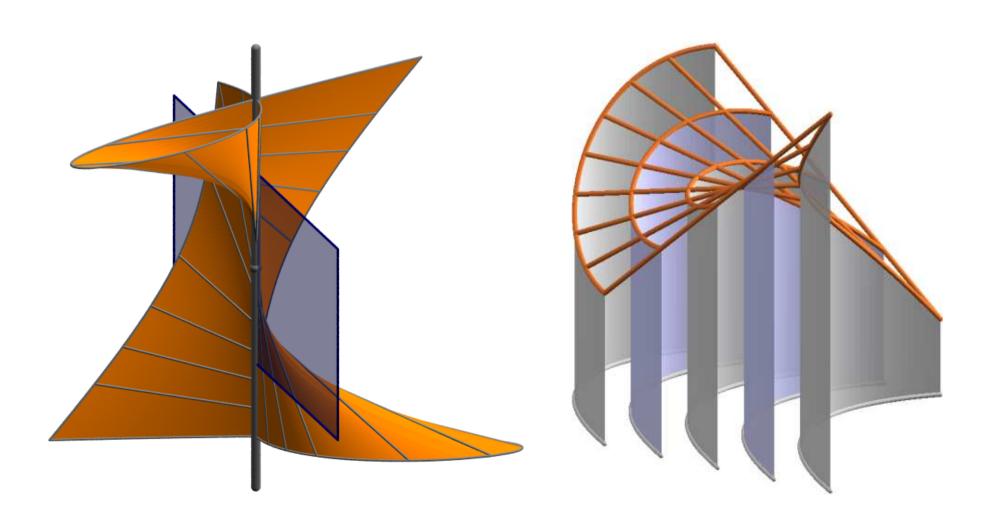
$$f(\mathbf{X}) := X_0 X_1 X_2 - X_1^3 - X_0^2 X_3. \tag{1}$$

The parametrization

$$K^2 \to \mathbb{P}_3(K) : (u_1, u_2) \mapsto K(1, u_1, u_2, u_1 u_2 - u_1^3)^{\mathrm{T}} =: P(u_1, u_2)$$
 (2)

is injective, and its image coincides with $F \setminus \omega$ (the affine part of F).

Two pictures



Automorphic collineations

The set of all matrices

$$M_{a,b,c} := \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & c & 0 & 0 \\ b & 3ac & c^2 & 0 \\ ab - a^3 & bc & ac^2 & c^3 \end{pmatrix}$$
 (3)

where $a, b \in K$ and $c \in K \setminus \{0\}$ is a group, say G(F), under multiplication.

Each matrix in G(F) leaves invariant the cubic form f(X) to within the factor c^3 . Consequently, the group G(F) acts on F as a group of projective collineations.

Theorem 1. There are no automorphic projective collineations of the Cayley surface F other than the ones given by (3) if, and only if, $|K| \geq 4$.

A distance function on $F \setminus \omega$

From now on we shall assume $|K| \ge 4$.

We define a function

$$\delta: (F \setminus \omega) \times (F \setminus \omega) \to K \cup \{\infty\}$$

as follows. Let $A = P(u_1, u_2)$ and $B = P(v_1, v_2)$, where $u_1, u_2, v_1, v_2 \in K$.

- $u_1 = v_1 \Leftrightarrow A, B$ are on a common generator of $F: \delta(A, B) := \infty$ $(A \parallel B \dots parallel points)$
- $u_1 \neq v_1$, $AB \cap F =: \{A, B, C\}$, $AB \cap \omega := \{I\}$:

$$\delta(A,B) := \operatorname{CR}(C,B,A,I) = \frac{2u_1^2 - u_2 - u_1v_1 + v_2 - v_1^2}{(u_1 - v_1)^2}$$

Properties of the distance function

The following properties hold for all $A, B \in F \setminus \omega$:

- $\delta(A,A) = \infty$.
- There exists a point $C \in F \setminus \omega$ with $C \neq A$ and $\delta(A, C) = \infty$.
- $\delta(A, B) = 1 \delta(B, A)$ (with $1 \infty := \infty$).
- $\delta(A,B) \in \{0,1\} \Leftrightarrow AB$ is a tangent of F.

H. Brauner (1964), $K = \mathbb{R}$ using differential geometry and Lie groups:

$$\widehat{\delta}(A,B):=\tfrac{3}{2}\left(\tfrac{1}{2}-\delta(A,B)\right)^{-1}\text{, }\widehat{\delta}(A,A)=0\text{, and }\widehat{\delta}(A,B)=-\widehat{\delta}(B,A).$$

Circles

Given a point $A \in F \setminus \omega$ and an element $\rho \in K \cup \{\infty\}$ we define the *circle with midpoint* A and radius ρ in the obvious way as

$$\mathcal{C}(A,\rho) := \{ Y \in F \setminus \omega \mid \delta(A,Y) = \rho \}.$$

By the extended circle $\mathcal{E}(A,\rho)$ we mean the circle $\mathcal{C}(A,\rho)$ together with its midpoint A.

A family of curves

For all $\alpha, \beta, \gamma \in K$ the rationally parameterized curve

$$\mathcal{R}_{\alpha,\beta,\gamma} := \left\{ K(1,t,\alpha+\beta t + (\gamma+1)t^2, \alpha t + \beta t^2 + \gamma t^3)^{\mathrm{T}} \mid t \in K \cup \{\infty\} \right\}$$
 (4)

is lying on F. It is

- a parabola for $\gamma = 0$,
- a planar cubic for $\gamma = -1$,
- a *twisted cubic parabola* (i.e. a twisted cubic having the plane at infinity as an osculating plane) otherwise.

Remark. $F \setminus \omega$ together with the affine traces of the curves (4) is isomorphic to the affine chain geometry on the ring $K[\varepsilon]$ of dual numbers over K. An isomorphism is given by $P(u_1, u_2) \mapsto u_1 + \varepsilon u_2$.

Description of extended circles

Proposition 2. Suppose that a point $A = P(a_1, a_2), a_1, a_2 \in K$, and an element $\rho \in K \cup \{\infty\}$ are given.

• If $\rho \in K$ then the extended circle $\mathcal{E}(A, \rho)$ equals the set of affine points of $\mathcal{R}_{\alpha,\beta,\gamma}$, where

$$\alpha := (\rho - 2)a_1^2 + a_2, \ \beta := (1 - 2\rho)a_1, \ \gamma := \rho.$$

• If $\rho = \infty$ then $C(A, \rho) = \mathcal{E}(A, \rho)$ is the unique generator of F through A, but without its point at infinity.

Proposition 3. Given a curve $\mathcal{R}_{\alpha,\beta,\gamma}$, with $\alpha,\beta,\gamma \in K$, there are three possibilities.

(a) $1-2\gamma \neq 0$: $\mathcal{R}_{\alpha,\beta,\gamma} \setminus \omega$ coincides with the extended circle $\mathcal{E}(A,\rho)$, where

$$A := P\left(\frac{\beta}{1 - 2\gamma}, \alpha - \frac{(\gamma - 2)\beta^2}{(1 - 2\gamma)^2}\right) \text{ and } \rho := \gamma.$$

- (b) $1 2\gamma = 0 \neq \beta : \mathcal{R}_{\alpha,\beta,\gamma} \setminus \omega \text{ is not an extended circle.}$
- (c) $1 2\gamma = 0 = \beta : \mathcal{R}_{\alpha,\beta,\gamma} \setminus \omega$ is an extended circle $\mathcal{E}(A, \frac{1}{2})$ for all points $A \in \mathcal{R}_{\alpha,\beta,\gamma} \setminus \omega$.

 $\operatorname{Char} K \neq 2$: All cases occur.

 $\operatorname{Char} K = 2$: $1 - 2\gamma = 1 \neq 0$. There are no circles with more than one midpoint.

Transitivity of G(F)

Theorem 4. The matrix group G(F) has the following properties:

- (a) G(F) acts on $F \setminus \omega$ as a group of isometries.
- (b) G(F) acts regularly on the set of antiflags of $F \setminus \omega$.
- (c) For each $d \in K$ the group G(F) acts regularly on the set

$$\Delta_d := \{ (A, B) \in (F \setminus \omega)^2 \mid \delta(A, B) = d \}.$$

(d) Given $A = P(u_1, u_2) \parallel B = P(u_1, v_2)$ and $A' = P(u'_1, u'_2) \parallel B' = P(u'_1, v'_2)$, with $u_1, u_2, \ldots, v'_2 \in K$, the number of matrices in G(F) mapping (A, B) to (A', B') equals the number of distinct elements $c \in K \setminus \{0\}$ such that

$$c^{2}(v_{2}-u_{2})=(v_{2}'-u_{2}').$$

All isometries

Following W. Benz an *isometry* of $F\setminus\omega$ is just a mapping $\mu:F\setminus\omega\to F\setminus\omega$ such that

$$\delta(A,B) = \delta(\mu(A),\mu(B))$$
 for all $A,B \in F \setminus \omega$.

Theorem 5. Each isometry $\mu: F \setminus \omega \to F \setminus \omega$ is induced by a unique matrix in G(F). Consequently, μ is bijective and it can be extended in a unique way to a projective collineation of $\mathbb{P}_3(K)$ fixing the Cayley surface F.