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Part 1

Rectangular Matrices

The first part deals with some basic notions and results

from the Geometry of Rectangular Matrices. Square ma-

trices are not excluded, and their particular properties will

be exhibited in due course.

Our exposition follows the book of Z.-X. Wan [22].



Basic Notions

• Let F be a field (not necessarily commutative) or, said differently, a division ring.

• We denote by Fn the left vector space of row vectors x = (x1, x2, . . . , xn) with

entries from F .

• Let Fm×n, m, n ≥ 1, be the set of all m × n matrices over a division ring F .

There is yet no structure on the set Fm×n.



A Single Matrix

• Each matrix A ∈ Fm×n determines a linear mapping

fA : Fm → Fn : x 7→ xA.

• All linear mappings Fm → Fn arise in this way.

• The left row space of A is the subspace of Fn which is generated by the rows of

A. It equals the image of the linear mapping fA.

• The dimension of the left row space of A is called the left row rank of A.



The Dual Approach

Each column vector (single column matrix) a∗ ∈ Fm×1 =: Fm∗ determines a linear

form Fm → F : x 7→ x · a∗. The elements of Fm∗ can be identified with the dual

vector space of Fm, which is a right vector space over F .

This yields our second interpretation: Any matrix A ∈ Fm×n determines a linear

mapping between dual vector spaces, viz.

fT
A : Fn∗ → Fm∗ : y∗ 7→ Ay∗

which is known as the transpose (or dual) of the mapping fA : x 7→ xA.

We obtain, mutatis mutandis, the notions right column space and right column rank

of A.



Remarks

For any matrix one may introduce four notions of rank (left / right, row / column).

• The left row rank equals the right column rank of A. Either of these numbers will

simply be called the rank of A, in symbols rk A.

• The right row rank equals the left column rank of A.

We shall not make use of these ranks.

• The left row rank and the right row rank of A may be different.

Example The matrix
(

1 j

i k

)

over the real quaternions H has left row rank 1 and right row rank 2, because

i(1, j) = (i, k), whereas (1, j)i = (i,−k) 6= (i, k).



Vector Space on Fm×n

The sum of two matrices A, B ∈ Fm×n corresponds in a natural way to the sum of

the associated mappings fA + fB (and dually).

Even though a matrix A can be multiplied by a scalar λ ∈ F from the left hand side

(λA) or the right hand (Aλ), these products are in general not useful in terms of our

interpretations of matrices as linear mappings:

“The λ is never where it should be!”

Only when λ is in the centre of F , in symbols λ ∈ Z(F ), then λA = Aλ may be

viewed as the product of λ and either of the two linear mappings given by A:

(λfA) : x 7→ λ(xA) = x(λA), (fT
Aλ) : y∗ 7→ (Ay∗)λ = (λA)y∗.

Hence Fm×n is a (left or right) vector space over Z(F ). This will be of some impor-

tance in what follows.



Rank One Matrices

Given a column vector a∗ = (a∗
1, a

∗
2, . . . , a

∗
m)T (i. e. a linear form on Fm) and a vector

c = (c1, c2, . . . , cn) we obtain the linear mapping

Fm → Fn : x 7→ x · a∗ · c.

Its matrix is therefore

a∗ · c =













a∗
1c1 a∗

1c2 . . . a∗
1cm

a∗
2c1 a∗

2c2 . . . a∗
2cm

. . . . . . . . . . . . . . . . . . . . . .

a∗
nc1 a∗

nc2 . . . a∗
ncm













.

This matrix has rank one provided that a∗ 6= 0 and c 6= 0. All matrices with rank ≤ 1

arise in this way.



Graph on Fm×n

Let Fm×n, m,n ≥ 2, be the set of all m × n matrices over a field F . Hence Fm×n

contains matrices of rank ≥ 2.

• Two matrices A and B are called adjacent if A − B is of rank one.

• We consider Fm×n as the set of vertices of an undirected graph the edges of

which are precisely the (unordered) pairs of adjacent matrices.

• Two matrices A and B are at the graph-theoretical distance k ≥ 0 if, and only if,

rk(A − B) = k.



Almost a “Middle Product”
Given a∗ ∈ Fm∗ \ {0}, c ∈ Fn \ {0}, and λ ∈ F one may “multiply the rank one matrix

A := a∗c by λ ∈ F from the middle” as follows:

(a∗λ)c = a∗(λc) =: a∗λc

This “product” in general depends on the vectors which are chosen to factorise A.

Indeed, we have

A = (a∗α)(α−1c) for all α ∈ F \ {0},

and

(a∗α)λ(α−1c) = a∗(αλα−1)c.

Nevertheless, the set of matrices

{a∗λc | λ ∈ F}

depends only on the rank one matrix A and the ground field F .



Lines
Given a∗ ∈ Fm∗ \ {0}, c ∈ Fn \ {0} and any matrix R ∈ Fm×n the set

{a∗λc + R | λ ∈ F}

is called a LINE of Fm×n.

Let L be the set of all such lines. Then
(

Fm×n,L
)

is a partial linear space, called

the space of m × n matrices over F .

In this context the elements of Fm×n will also be called POINTS.

Two matrices A and B are adjacent if, and only if, they are distinct and COLLINEAR.

In this case the unique LINE joining A and B equals {A, B}∼∼, where

M∼ := {X | ∀Y ∈ M : X is adjacent or equal to Y }.



Example

We consider the real quaternions H. The LINE joining the 2 × 2 zero matrix and the

matrix
(

1

i

)

(

1 i
)

=

(

1 i

i −1

)

=: A

equals the set of all matrices

(

1 · λ · 1 1 · λ · i

i · λ · 1 i · λ · i

)

=

(

λ λi

iλ iλi

)

,

where λ ranges in H. The matrices (POINTS) of this LINE are in general neither left

proportional nor right proportional to A.



Example
We consider the space of 2× 2 matrices over the Galois field GF(2). All its rank one

matrices can be read off from the following table:

(

1 0
) (

0 1
) (

1 1
)

(

1

0

) (

1 0

0 0

) (

0 1

0 0

) (

1 1

0 0

)

(

0

1

) (

0 0

1 0

) (

0 0

0 1

) (

0 0

1 1

)

(

1

1

) (

1 0

1 0

) (

0 1

0 1

) (

1 1

1 1

)

Thus there are nine LINES through the zero matrix, each comprising two POINTS.

The space of 2×2 over GF(2) matrices is a partial affine space, viz. the affine space

on GF(2)2×2 with six parallel classes of lines removed.



Summary

• The space (Fm×n,L) is a connected partial linear space.

• If F is a proper skew field then Fm×n can be considered as a vector space (affine

space) over F from the left and right hand side, and (more naturally) as a vector

space over the centre Z(F ). The LINES of L are in general not lines of any of

these affine spaces.

• If F is a commutative field then Fm×n can be considered as a (left or right) vector

space (affine space) over F = Z(F ). The LINES of L comprise some of the

parallel classes of lines of this affine space.



Automorphisms

An automorphism of the space (Fm×n,L) is a bijection

ϕ : Fm×n → Fm×n : X 7→ Xϕ

preserving adjacency in both directions. Consequently, LINES are mapped onto

LINES under ϕ and ϕ−1.

Examples

• Translations: X 7→ X + R, where R ∈ Fm×n.

• Equivalence transformations: X 7→ PXQ, where P ∈ GLm(F ) and Q ∈ GLn(F ).

• Field automorphisms: X 7→ Xσ, where σ is an automorphism of F acting on the

entries of X .

• σ-Transpositions: X 7→ (Xσ)T, where σ is an antiautomorphism of F acting on

the entries of X . (Only for n = m provided that such a σ exists.)



Remarks on Automorphisms

• If m = n and F is a commutative field then the transposition X 7→ XT is an

automorphism.

• If m = n and F is a proper skew field then X 7→ XT need not be automorphism.

E. g., over the real quaternions H we already saw that

rk

(

1 j

i k

)

= 1, whereas rk

(

1 j

i k

)T

= rk

(

1 i

j k

)

= 2.

• If m = n, F is a proper skew field, and σ is an antiautomorphism then X 7→ Xσ

need not be an automorphism. E. g., letting σ = to be the conjugation of H

gives

rk

(

1 j

i k

)

= 1, whereas rk

(

1 j

i k

)

= rk

(

1 −j

−i −k

)

= 2.

• There are proper skew fields without any antiautomorphism [4].



Fundamental Theorem
Theorem (L. K. Hua 1951 et al.) Every bijective mapping

ϕ : Fm×n → Fm×n : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ PXσQ + R,

where P ∈ GLm(F ), Q ∈ GLn(F ), R ∈ Fm×n, and σ is an automorphism of F .

If m = n, then we have the additional possibility that

X 7→ P (Xσ)TQ + R

where P,Q,R are as above, σ is an antiautomorphism of F , and T denotes transpo-
sition.

The assumptions in Hua’s fundamental theorem can be weakened.

W.-l. Huang and Z.-X. Wan [18], P. Šemrl [20].



Avoiding Matrices

From a theoretical viewpoint one may define the space of m × n matrices over F in

a coordinate free way.

with coordinates / matrices without coordinates / matrices

Fm V . . . m-dimensional left vector space over F

Fn W . . . n-dimensional left vector space over F

Fm×n HomF (V, W ) ∼= V ∗ ⊗F W . . . tensor product

a∗ · c a∗ ⊗ c . . . pure tensor

rank of a matrix rank of a linear mapping



Part 2

Grassmannians

We establish an embedding of any space of rectangular

matrices in an appropriate Grassmann space. For square

matrices this embedding will reveal neat connections with

the projective lines over matrix rings.



Projective Space on F s+1

Let PG(s, F ) be the projective space over the left vector space F s+1, where F is a

field.

• In what follows we do not distinguish between subspaces of F s+1 and subspaces

of PG(s, F ).

• The dimension dimW of a subspace W is always understood as the “projective

dimension”, which is one less than the vector space dimension.

• Subspaces of dimension 0, 1, 2, 3, and s−1 are called points, lines, planes, solids,

and hyperplanes, respectively.

• We use the shorthand d-subspace for a d-dimensional subspace.



Grassmann Graph on Gs,d

Let Gs,d(F ) be the Grassmannian of all d-subspaces of PG(s, F ). We assume 1 ≤

d ≤ s − 2 in order to avoid trivial cases.

• Two d-subspaces W1 and W2 are called adjacent if dimW1 ∩ W2 = d − 1.

• We consider Gs,d(F ) as the set of vertices of an undirected graph the edges of

which are the (unordered) pairs of adjacent d-subspaces.

• Two d-subspaces W1 and W2 are at graph theoretical distance k ≥ 0 if, and only

if,

dimW1 ∩ W2 = d − k.

• For any subset M ⊂ Gs,d(F ) we define

M∼ := {X | ∀Y ∈ M : X is adjacent or equal to Y }.



Grassmann Space on Gs,d

Given a (d − 1)-subspace U and a (d + 1)-subspace V of PG(s, F ) with U ⊂ V the

set

{W ∈ Gs,d(F ) | U ⊂ W ⊂ V }

is called a pencil.

The set Gs,d(F ), considered as a set of POINTS, together with the set P of all its pen-

cils, considered as its set of LINES, is called the Grassmann space of d-subspaces

of PG(s, F ).

The Grassmann space (Gs,d(F ),P) is a connected partial linear space.

Two d-subspaces W1 and W2 are adjacent if, and only if, they are distinct and

COLLINEAR. In this case the unique LINE joining W1 and W2 equals {W1,W2}
∼∼.



Fundamental Theorem

(W. L. Chow 1949) Every bijective mapping

ϕ : Gs,d(F ) → Gs,d(F ) : X 7→ Xϕ

preserving adjacency in both directions is of the form

X 7→ {xσP | x ∈ X ⊂ F s+1},

where P ∈ GLm(F ) and σ is an automorphism of F .

If s = 2d + 1, then we have the additional possibility that

X 7→ {y ∈ F s+1 | yP (xσ)T = 0 for all x ∈ X ⊂ F s+1},

where P is as above, σ is an antiautomorphism of F , and T denotes transposition.

The assumptions in Chow’s fundamental theorem can be weakened.

W.-l. Huang [11].



An Embedding

We adopt the assumptions from Part 1. The m × m identity matrix will be denoted

by Im. Horizontal augmentation of (suitable) matrices A, B is written as A|B.

Fm×n can be embedded in the Grassmannian Gm+n−1,m−1(F ) as follows:

Fm×n → Fm×(m+n) → Gm+n−1,m−1(F )

X 7→ X |Im 7→ left rowspace of X |Im

• Matrices X,Y ∈ Fm×n are adjacent if, and only if, their images in Gm+n−1,m−1(F )

are adjacent.

• LINES of matrices are mapped to LINES (pencils) of the Grassmann space with

one element removed.



Projective Matrix Spaces

Each element of the Grassmannian Gm+n−1,m−1(F ) can be viewed as the left row

space of a matrix X |Y with rank m, where X ∈ Fm×n and Y ∈ Fm×m.

• X |Y and X ′|Y ′ have the same left row space, if and only if, there is a T ∈ GLm(F )

with X ′ = TX and Y ′ = TY .

• One may consider a pair (X,Y ) ∈ Fm×n × Fm×m as left homogeneous coordi-

nates of an element of Gm+n−1,m−1(F ) provided that rk(X |Y ) = m.

This means that X |Y possesses an invertible m × m submatrix. (This submatrix

need not be Y ).

The Grassmann space on Gm+n−1,m−1(F ) is often called the projective space of

m × n matrices over F , even though it is not a projective space in the usual sense.



Points at Infinity
• A subspace with coordinates (X,Y ) is in the image of the embedding

Fm×n → Gm+n−1,m−1(F )

if, and only if, Y is invertible. In this case its only preimage is the matrix Y −1X ∈

Fm×n.

• All subspaces with coordinates (X,Y ), where Y /∈ GLm(F ), are called POINTS

at infinity of the Grassmann space.

Clearly, this notion depends on the chosen embedding.

• There is a distinguished (n − 1)-subspace of PG(m + n − 1, F ) given by the left

row space of the n × (m + n) matrix In|0.

• An element of Gm+n−1,m−1(F ) is at infinity, precisely when it has at least one

common point with this (n − 1)-subspace.

See also R. Metz [19].



Example

The space of 2×2 matrices over GF(2) comprises 16 elements. It can be embedded

in the Grassmann space of lines in PG(3, 2). Note that #G3,1(GF(2)) = 35.

There is a unique distinguished line, viz. the row space of I2|0. There are

3 · 6 + 1 = 19

lines which have at least one common point with this line. These are the POINTS at

infinity of the Grassmann space.

The 35 − 19 = 16 lines which are skew to the line with coordinates (I2, 0) are in

one-one correspondence with the 16 matrices of GF(2)2×2.



Example

The space of 2×3 matrices over GF(2) comprises 64 elements. It can be embedded

in the Grassmannian of lines in PG(4, 2). Note that #G4,1(GF(2)) = 155.

There is a unique distinguished plane, viz. the row space of I3|0. There are

7 · 12 + 7 = 91

lines which have at least one common point with this plane. They are the POINTS

at infinity of the Grassmann space.

The 155 − 91 = 64 lines which are skew to the plane with coordinates (I3, 0) are in

one-one correspondence with the 64 matrices of GF(2)2×3.



Square Matrices

We consider square matrices (m = n ≥ 2) and the full matrix algebra R :=

(Fn×n, +, ·) over Z(F ).

In terms of our left-homogeneous coordinates (X,Y ) ∈ R2 the POINT set of the

Grassmannian G2n−1,n−1(F ) is the same as the POINT set of the projective line

P(R) over the full matrix algebra R (up to irrelevant differences). Cf. [2].

There is one difference though:

• The basic notion in the Grassmann space is adjacency: dimW1 ∩ W2 = n − 2.

• The basic notion in ring geometry is being distant: dimW1 ∩ W2 = −1.

Each of these relations can be expressed in terms of the other. A. Blunck, H. H. [1],

W.-l. Huang, H. H. [15].

Hence the two structural approaches are essentially the same.
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[16] W.-l. Huang, R. Höfer, and Z.-X. Wan. Adjacency preserving mappings of sym-
metric and Hermitian matrices. Aequationes Math., 67(1-2):132–139, 2004.
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