Mobius differential geometry

(Version: July 17, 2003; letter format)

Basics

Mobius geometry is the geometry of the group of Mébius transfor-
mations, that is, hypersphere preserving (point) transformations,
acting on the n-sphere S™ as a base manifold. The elements of
Mobius geometry are points (elements of the first kind) and hy-
perspheres (elements of the second kind).

Models

Models serve a uniform description of the elements of (M&bius) ge-
ometry (points, hyperspheres) and derived objects (for example,
k-spheres) as well as a description of the M&bius transformations
as linear, fractional linear, or spin transformations.

The classical (projective) model: the conformal n-sphere as
an absolute quadric S™ = {Rv C ZR;H'Z | |v|2 = 0} C RP™T1, the
space of hyperspheres as the “outer space” Sf"’l/il C RP™t1;
the Lorentz sphere S;erl ={ve R;“LQ |[v|2 = 1} can be inter-
preted as the space of oriented hyperspheres. Mobius transfor-
mations become Lorentz transformations, resp. projective trans-
formations that preserve S™ C RP™*1.

The quaternionic approach: the conformal 4-sphere as the
quaternionic projective line, S* = HP!, and the space of quater-
nionic Hermitian forms $(H?) =2 RS with |h|? = —deth (w.r.t.
some basis) so that 3-spheres are quaternionic Hermitian forms.
Mobius involutions S € &(H?), S?2 = —id, are 2-spheres. Ori-
entation preserving Mobius transformations are fractional linear
transformations, or special linear transformations (on homoge-
neous coordinates v € H?).

A Clifford algebra model: the coordinate Minkowski space
lPJlLJr2 of the projective model is embedded into its Clifford algebra
.AZR;HQ. Mbobius transformations are (s)pin transformations.
The Vahlen matrix approach: the Clifford algebra .,ZUR;H"2 is
described in terms of 2 X 2-matrices with entries from the Clifford
algebra AR™ of Euclidean n-space. Mobius transformations are
fractional linear transformations, given by Vahlen matrices.

Points

‘We consider ZR?+2 = RxR"t! = RxR"™ x R with the Minkowski
product {(yo,¥), (v0,y)) = —yg +|y|2. The following are descrip-
tions of points in different models.

As points of the absolute quadric in the projective model:
RIS 3y < R(1,y)

1
Thle2 1—|z|2 € S™ c RP™T1.
R'>z — R(HEL g, =0 )}

As quaternionic Hermitian forms, in the quaternionic approach
(R* = H can be identified with the affine slice vy = 1):

St HP' s (M)H o R(12F Tn) co(H?).

v1
vy —v2v1  |up|?
As 2 x 2-Clifford algebra matrices in the Vahlen matrix approach:
R'>z — R(? %) CARP™? = M(2x 2, AR™).

T

Hyperspheres

A hypersphere with center m € S* C R™*! and radius ¢ € (0, 7):

_ 1 +1.
S = SinQ(cosg,m) SECHENE
a change to —m and m — p reverts the orientation.

A hypersphere with center m € R™ and radius r # 0:
2_ 2 _ 2 2
S = 1 (l+(\m2\ T >,’I’)’L, 1 (\m2| T )) c S;H»l’

T

and a hyperplane with normal n € S»~1 C R™ and (directed)
distance d € R from the origin:

T = (d,n,—d) € S?Jrl;
as Vahlen matrices:
2 2
S=L(m oY), T= () ) e AR

s 1 —m 0 —n
and as quaternionic Hermitian forms:

S=1 () T= (0 5) < o)

r m |m|2—r2 —n
2-spheres (or planes) in R? = ImH as Mobius involutions:

s=1(m |m|;—r2)7 T=(7%) es(m?).
01

Note that S (and T) are symmetric w.r.t. R3 ~ (1 0
generally, a 2-sphere S € G(H?) lies inside a 3-sphere S? € $(H?)
iff S is symmetric w.r.t. S3, S3(.,S.) = S3(S.,.).

) ;. more

Incidence and intersection angle

A point p € S C RP" 1! lies on a hypersphere S € S{Hl iff pisin
the polar hyperplane of S w.r.t. S™; in homogeneous coordinates,
this is orthogonality:

p=RveS & (v,5)=0.

In the Vahlen matrix description or the description of 2-spheres
in HP! as involutions, incidence can be expressed as

peES & p=S-p

that is, p € R™ U {oo} (or p € H U {oo}) is a fixed point of the
inversion at S; in case p = vIH € HP! this can also be written

p=vHES & 3INEH:Sv=uv),

that is, v € H? is an eigenvector of S € &(H?). Incidence of a
point p = vIH € HP! and a 3-sphere S € $(IH?) is isotropy,
p=vHeS & S(,v)=0.
The intersection angle o of two hyperspheres S1,S2 € SIL'H is
iven b,
& v cosa = (51,5) = —%{51732},

where {.,.} is the anti-commutator in .AZR?"%; in particular, or-
thogonal intersection becomes orthogonality.
Inversions

The inversion at a hypersphere S C S™ is the polar reflection at
S € RP™*1; in homogeneous coordinates, p = Rv and S € S{LJA:

R 3 v v —2(v,8)S = SvS € R € ARTT.
In terms of Vahlen matrices,

R"U{oo}apb—»Sm:{ }GIR"U{OO}.

S1(2, H) does not provide (orientation reversing) inversions.

m—r3(p—m)~!
npn + 2dn

The Mobius group
The Mobius group Mob(S™) is the conformal group Conf(S™)

of S™; in the classical (projective) picture, this is the group of
projective transformations that map S™ C RP™*! to itself.
O1(n+2) is a (trivial) double cover of Mb(S™) with kernel {+id};
its identity component SOir(n + 2) is isomorphic to the group
Mébt(S™) of orientation preserving Mobius transformations.
Ping (n+2) is a double cover of O1(n+ 2) via the twisted adjoint
action

Piny(n+2) x RT2 3 (s,v) = svs~1 € R}2,
where  is the order involution on .AZR?JFQ,

§=(-1)*s for s=ws1-- s, s;€ JR’IA‘H;
Spinir(n—&—Q) is the universal cover of SOf(n—l—Q) =~ MGbT(S™); in
terms of Vahlen matrices, Mobius transformations are fractional
linear:

RP"U{oo} 3p (¢ ) - p=(ap+b)(ecp+d)~t € R" U{oo}.
SI(2, H) is the double universal cover of MébT (S%); its action on
HP! = H U {oo} is by fractional linear transformations,

Sl(2,H) x HP! > (p,vH) — (uv)H € HP?,
and on $(H?2) it is given by

SU2, H) x H(H?) 5 (1, 8) > S(u~t w7 1) € H(H2).
Any (orientation preserving) Mdobius transformation is the com-
position of (an even number of) inversions at hyperspheres.

Spheres of arbitrary dimension

A sphere S C S™ of dimension k < n can be identified with

— the projective (k + 1)-plane that intersects S™ in the k-sphere:
this plane is spanned by k+2 points p; = Rv; € S™ in “general
osition,”

P ’ S:’U1/\.../\’Uk+2€.AR”+2.

— the space of all hyperspheres that contain S, or the projective
(n—k—1)-plane that contains these hyperspheres, respectively:
this plane does not intersect S™ and can be spanned by n — k
orthogonal hyperspheres S, that is, S is the orthogonal inter-
section of the Sj,

S=S81A...ASp_j =51+ Sy_j € Pin(R}™") C AR},
S can be interpreted as a Mobius involution with
3"
SeAFRM? and S?2=(-1) ? ',
which conforms with the identification of G(IH?) with the space
of 2-spheres in §% = HP!.

The passage from one description to the other is

— by polarity w.r.t. S* C RP™*! in the projective picture,

— by taking orthogonal complements in R?Jﬂ, or

. . . 42
— by taking the Clifford dual (or, the Hodge dual) in ART™~.
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Sphere pencils and complexes

A sphere pencil consists of all spheres on a line in RP™*1; it is

— elliptic if the line does not intersect S™ (< |S1 A S2|2 > 0
for any two hyperspheres S1 # S in the pencil), that is, all
spheres intersect in a codimension 2 sphere;

— parabolic if the line touches S™ (< |S1 A S2|2 = 0 for S1, S2
in the pencil), that is, all spheres touch in a point (the point
of contact with S™) and form a “contact element”

— hyperbolic if the line intersects S™ (& |S1 A S2|? < 0 for any
two hyperspheres S1 # Sz in the pencil), that is, all spheres
have one intersection point of the line with S™ as their center
when interpreting the other as oo, S™ \ {oo} = R™, and the
pencil can be identified with this “point pair.”

A (linear) sphere complex consists of all spheres S in the polar
hyperplane of a point RK € RP"*1, S 1 K; it is called

— elliptic if K lies outside S™, |K|? > 0;

— parabolic if K lies on S™, |K|? = 0; and

— hyperbolic if K lies inside S™, |K|? < 0.

These sphere complexes describe the hyperplanes of the hyper-

bolic, Euclidean, and spherical subgeometries of Mobius geome-
try, respectively.

Quadrics of constant curvature

Given K € ZR?Jr2 \ {0}, the quadric
Qx={p € Ry™?||p]> = 0 and (p,K) = ~1}

has constant sectional curvature x = —|KC|2. The standard ball
2

models B? = ({z € R" |1+ x|z|? > 0}, %

curvature k spaces are isometrically embedded by

|| 2z 1—|x|
Bgsz (1+m\ 2 THnla2’ Ttnlz |2) € Qx,
where K = (”TH, 0, *5= £=1Y: the spheres S™(r) embed via
Rl o8 (ryoy — (ny)€ Qi/r2, K= (%,0,0).

n+2
Sl

) of constant

The (mean) curvature H of a hypersphere S €
—(5,K),
in particular, S is a hyperplane in Q iff S is a sphere of the
sphere complex IC, S L K.
A k-sphere S =S1 A...AS,_k is a k-plane in Q iff all
S; LK & Kespanf{v;|i=1,...,k+2}
for k 4+ 2 points p; = Rv; € S in general position.
A 2-sphere S € G(H?) is a 2-plane in Q, given by K € H(H?) iff
S is skew w.r.t. K; more generally, its mean curvature is given by
|H|? = |Ks|?, where Kg=21(K(,S.)+K(S.,.)).

is given by

A Mobius transformation that fixes the sphere complex K (the
hyperplanes of Q) is an isometry of Qx if kK # 0 or a similarity
of Qo, respectively;

Isom(Qx) = {p € O1(n +2) | p(K) = K}

is the group of isometries of @), — in case k < 0, it is the group of
isometries that extend smoothly through the infinity sphere RK.

Stereographic projection
Let Ko = (1,0,—1) € Q1 be the “south pole” in the round n-
sphere S™ = Q1 given by K1 = (1,0,0);
1+|z|? 1—|z|? 1—|x|
Qo> (F-e =)~ (L TH el 1+\x|2) €
1 _Y1
@\ {’CU} > (Lyip2) (v T Tha) € @0
then yields the classical stereographic projection. More generally,
§" 3 Rv— —rky € Qx

can be considered as a stereographic projection from (part of) the
conformal n-sphere onto a quadric of constant curvature.

With veo, vo € (H2)* a notion of stereographic projection is given

by HPI \ {OO} Sp= vH — (l/[)’ll)(l/oov)_

where 0o = voo H is the unique point with veovee = 0.

l=peH,

The cross ratio

Four points p; € S™ always lie on a 2-sphere S that can be con-
sidered as a Riemann sphere, so that their complex cross ratio
[p1;p2;p3;pa] can be defined up to complex conjugation (orien-
tation of S). In the following [p1;p2;p3;pa] € C is obtained by
taking [p1;p2;p3;pa] = Req + ¢ |Im g| where appropriate.
Expressing the cross ratio in terms of the distances

(H\;k\"’

s They

2
1—|zg] )
2

|z; — ]2 = —2(v;,v;), where vy =
of the four points in R™, one arrives at
_ (w1,v2)(v3,04) —(v1,v3) (v2,v4)+(v1,v4) (v2,v3)+/det({vi,v;))
N 2{v1,v4) (v2,03)
Using the Clifford algebra setup, the cross ratio is obtained from
_ V1V2V3V4—V4V3V2V] 0 Rn+2 4mn+2
9= Grvitvav))(vzvgtosvg) © ARy @ ARy,
and the direction of the A4]Rf+2—part defines the 2-sphere S of
the four points; for z; € R",
q=(z1 — x2)(x2 — CC3)71($3 —x4) (x4 — 1)~ € OR"® APR™
provides the cross ratio, and the same formula holds true for four
points z; € H in the quaternionic setup; if p; = v; H € HP! then
q = (v1v2)(v3v2) " H(vsvs)(r1va) "t € H
gives their cross ratio, where v1,v3 € (H?2)*\ {0} are quaternionic
linear forms with v;v; = 0.

The cross ratio [p1;pe2;p3;pa] € R is real iff the four points are
concircular (form a “conformal rectangle,” which is embedded iff
[p1;p2;p3;p4] < 0) and the cross ratio [p1;p2;p3;pa] = —1 iff
they form an (embedded) “conformal square.”

The cross ratio cr := [p1; p2; p3; pa] satisfies the following identi-
ties under permutations of the four points (the complex conjugate
cr appears when the imaginary part is chosen to be always posi-
tive):

cr: 1234 2143 3412 4321
1—cr: 1324 2413 3142 4231
1—71” : 1423 2314 3241 4132

% : 1432 2341 3214 4123
1-— % : 1342 2431 3124 4213
% : 1243 2134 3421 4312

Sphere congruences and envelopes

A sphere congruence is a smooth map S : M™ — S{“H/i, and
a smooth map f: M™ — S™ is said to envelope S if

f(p) € S(p) and dpf(TpyM™) C Ty(,yS(p) forallp € M™.
For hypersurfaces, m = n — 1, this reads
0=(f,8)=1S(SfS—f) and 0=(df,S)=15(SdfS — df),
when considering f,S : M™~1 — R;LJFQ C AZR?"LQ; an immersed
congruence S : M" ™! — SIL'H has two envelopes iff (dS,dS) is
positive definite. For f : M2 — H? and S : M3 — $(H?) the
enveloping condition reads
=5(f,f) and 0=S(df, f)+ S(f,df).
A 2-sphere congruence S : M? — &(H?) is enveloped by f iff
S-fllf and dS-f|f

or, equivalently, if f envelopes every hypersphere congruence (sec-
tion) in the congruence of elliptic sphere pencils given by S.
Similarly, an m-sphere congruence S : M™ — A”_"ALZR?"'2 is
enveloped by f: M™ — JR;L+2 iff f envelopes any section of S
(hypersphere congruence in S). With the contact elements

Wp) = f(p) - dpfler) - - dpflem), (e1,...,
of an immersion Rf : M™ — S™, the enveloping condition reads

t]| v(Sf), where ART™? 3w vre AR

is the Clifford dual. Two immersion f and f envelope an m-sphere
congruence iff f ¢ if

The central sphere congruence Z : M™ — A“_’"JR?Jr2 of an
immersion Rf : M™ — S™ is given by

vZ =g (t-Af — (—1)™Af - 1).

em) orthonormal,

Conformal change of metric

Let S™ C M™ be a submanifold, (M™, g) Riemannian, §j = e2%g
a conformal change of the ambient metric; then the geometric
quantities of S™ change as follows:

Vow = Vyw+ (vu)w + (wu)v — g(v,w) - Vu
I(v,w) = [(v,w)—g(v,w)- (grady u)*

A = Apv— (nu)v

Vin = Vin+ (vu)n;

and the real valued curvature quantities:
= s—by (s= ﬁ(ric — 2(s:fll)
= tw (w=r—sAg Weyl tensor)
€2 (r — by A g)

e~ 2u (Kx — trgbulx)
e 2 (K — Au)
where by (v, w) = (V2u)(v,w) — (vu)(wu) +

bi(v,@) b1(v,y) | | | b2(v,@) b2(v,y)
b (w,z) ba(w,y) b1 (w,z) by(w,y)

the Kulkarni-Nomizu product of two bilinear forms.

g) Schouten tensor)

(sect. curv. on m C T'S™)

Nz 51 < & wm
I

(Gauss curv. for m = 2),
59(Vu, Vu)g(v, w)

and (b1 Ab2)(v,w,,y) = "

Important invariants are umbilics, the normal curvature R+, and
the trace free second fundamental form Io = I — H - g with
the mean curvature H = %trgﬂ of S™. A conformal metric is
obtained by geons = h?g, h? = L g(Ilo, Io); this is the induced
metric of the conformal Gauss map in case m = 2 and n = 3.



