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Basics
Möbius geometry is the geometry of the group of Möbius transfor-
mations, that is, hypersphere preserving (point) transformations,
acting on the n-sphere Sn as a base manifold. The elements of
Möbius geometry are points (elements of the first kind) and hy-
perspheres (elements of the second kind).

Models
Models serve a uniform description of the elements of (Möbius) ge-
ometry (points, hyperspheres) and derived objects (for example,
k-spheres) as well as a description of the Möbius transformations
as linear, fractional linear, or spin transformations.

The classical (projective) model: the conformal n-sphere as
an absolute quadric Sn ∼= {Rv ⊂ Rn+2

1 | |v|2 = 0} ⊂ RPn+1, the

space of hyperspheres as the “outer space” Sn+1
1 /±1 ⊂ RPn+1;

the Lorentz sphere Sn+1
1 = {v ∈ Rn+2

1 | |v|2 = 1} can be inter-
preted as the space of oriented hyperspheres. Möbius transfor-
mations become Lorentz transformations, resp. projective trans-
formations that preserve Sn ⊂ RPn+1.

The quaternionic approach: the conformal 4-sphere as the
quaternionic projective line, S4 ∼= HP1, and the space of quater-
nionic Hermitian forms H(H2) ∼= R6

1 with |h|2 = − det h (w.r.t.
some basis) so that 3-spheres are quaternionic Hermitian forms.
Möbius involutions S ∈ S(H2), S2 = −id, are 2-spheres. Ori-
entation preserving Möbius transformations are fractional linear
transformations, or special linear transformations (on homoge-
neous coordinates v ∈ H2).

A Clifford algebra model: the coordinate Minkowski space
Rn+2

1 of the projective model is embedded into its Clifford algebra

ARn+2
1 . Möbius transformations are (s)pin transformations.

The Vahlen matrix approach: the Clifford algebra ARn+2
1 is

described in terms of 2×2-matrices with entries from the Clifford
algebra ARn of Euclidean n-space. Möbius transformations are
fractional linear transformations, given by Vahlen matrices.

Points
We considerRn+2

1 = R×Rn+1 = R×Rn×R with the Minkowski
product 〈(y0, y), (y0, y)〉 = −y2

0 + |y|2. The following are descrip-
tions of points in different models.

As points of the absolute quadric in the projective model:

Rn+1 ⊃ Sn 3 y ↔ R (1, y)

Rn 3 x 7→ R
(

1+|x|2
2

, x,
1−|x|2

2

)}
∈ Sn ⊂ RPn+1.

As quaternionic Hermitian forms, in the quaternionic approach
(R4 ∼= H can be identified with the affine slice v2 = 1):

S4 ∼= HP1 3
(

v1
v2

)
H ↔ R

( |v2|2
−v2v̄1

−v1v̄2
|v1|2

)
⊂ H(H2).

As 2×2-Clifford algebra matrices in the Vahlen matrix approach:

Rn 3 x 7→ R
(

x
1
−x2

−x

)
⊂ ARn+2

1
∼= M(2× 2,ARn).

Hyperspheres
A hypersphere with center m ∈ Sn ⊂ Rn+1 and radius % ∈ (0, π):

S = 1
sin %

(cos %, m) ∈ Sn+1
1 ;

a change to −m and π − % reverts the orientation.

A hypersphere with center m ∈ Rn and radius r 6= 0:

S = 1
r

(
1+(|m|2−r2)

2
, m,

1−(|m|2−r2)
2

)
∈ Sn+1

1 ,

and a hyperplane with normal n ∈ Sn−1 ⊂ Rn and (directed)
distance d ∈ R from the origin:

T = (d, n,−d) ∈ Sn+1
1 ;

as Vahlen matrices:

S = 1
r

(
m
1
−m2−r2

−m

)
, T =

(
n
0

2d
−n

)
∈ ARn+2

1 ;

and as quaternionic Hermitian forms:

S = 1
r

(
1
−m̄

−m
|m|2−r2

)
, T =

(
0
−n̄

−n
2d

)
∈ H(H2).

2-spheres (or planes) in R3 ∼= ImH as Möbius involutions:

S = 1
r

(
m
1
|m|2−r2

m̄

)
, T =

(
n
0

2d
n̄

)
∈ S(H2).

Note that S (and T ) are symmetric w.r.t. R3 '
(

0
1

1
0

)
: more

generally, a 2-sphere S ∈ S(H2) lies inside a 3-sphere S3 ∈ H(H2)
iff S is symmetric w.r.t. S3, S3(., S.) = S3(S., .).

Incidence and intersection angle
A point p ∈ Sn ⊂ RPn+1 lies on a hypersphere S ∈ Sn+1

1 iff p is in
the polar hyperplane of S w.r.t. Sn; in homogeneous coordinates,
this is orthogonality:

p = Rv ∈ S ⇔ 〈v, S〉 = 0.

In the Vahlen matrix description or the description of 2-spheres
in HP1 as involutions, incidence can be expressed as

p ∈ S ⇔ p = S · p
that is, p ∈ Rn ∪ {∞} (or p ∈ H ∪ {∞}) is a fixed point of the
inversion at S; in case p = vH ∈ HP1 this can also be written

p = vH ∈ S ⇔ ∃λ ∈ H : Sv = vλ,

that is, v ∈ H2 is an eigenvector of S ∈ S(H2). Incidence of a
point p = vH ∈ HP1 and a 3-sphere S ∈ H(H2) is isotropy,

p = vH ∈ S ⇔ S(v, v) = 0.

The intersection angle α of two hyperspheres S1, S2 ∈ Sn+1
1 is

given by
cos α = 〈S1, S2〉 = − 1

2
{S1, S2},

where {., .} is the anti-commutator in ARn+2
1 ; in particular, or-

thogonal intersection becomes orthogonality.

Inversions
The inversion at a hypersphere S ⊂ Sn is the polar reflection at
S ∈ RPn+1; in homogeneous coordinates, p = Rv and S ∈ Sn+1

1 :

Rn+1
1 3 v 7→ v − 2〈v, S〉S = SvS ∈ Rn+1

1 ⊂ ARn+1
1 .

In terms of Vahlen matrices,

Rn ∪ {∞} 3 p 7→ S · p =

{
m− r2(p−m)−1

npn + 2dn

}
∈ Rn ∪ {∞}.

Sl(2,H) does not provide (orientation reversing) inversions.

The Möbius group
The Möbius group Möb(Sn) is the conformal group Conf(Sn)
of Sn; in the classical (projective) picture, this is the group of
projective transformations that map Sn ⊂ RPn+1 to itself.

O1(n+2) is a (trivial) double cover of Möb(Sn) with kernel {±id};
its identity component SO+

1 (n + 2) is isomorphic to the group

Möb+(Sn) of orientation preserving Möbius transformations.

Pin1(n+2) is a double cover of O1(n+2) via the twisted adjoint
action

Pin1(n + 2)×Rn+2
1 3 (s, v) 7→ svŝ−1 ∈ Rn+2

1 ,

where .̂ is the order involution on ARn+2
1 ,

ŝ = (−1)ks for s = s1 · · · sk, sj ∈ Rn+1
1 ;

Spin+
1 (n+2) is the universal cover of SO+

1 (n+2) ∼= Möb+(Sn); in
terms of Vahlen matrices, Möbius transformations are fractional
linear:

Rn ∪ {∞} 3 p 7→
(

a
c

b
d

)
· p = (ap + b)(cp + d)−1 ∈ Rn ∪ {∞}.

Sl(2,H) is the double universal cover of Möb+(S4); its action on
HP1 ∼= H ∪ {∞} is by fractional linear transformations,

Sl(2,H)×HP1 3 (µ, vH) 7→ (µv)H ∈ HP1,

and on H(H2) it is given by

Sl(2,H)× H(H2) 3 (µ, S) 7→ S(µ−1., µ−1.) ∈ H(H2).

Any (orientation preserving) Möbius transformation is the com-
position of (an even number of) inversions at hyperspheres.

Spheres of arbitrary dimension
A sphere S ⊂ Sn of dimension k < n can be identified with

– the projective (k + 1)-plane that intersects Sn in the k-sphere:
this plane is spanned by k+2 points pi = Rvi ∈ Sn in “general
position,”

S = v1 ∧ . . . ∧ vk+2 ∈ ARn+2.

– the space of all hyperspheres that contain S, or the projective
(n−k−1)-plane that contains these hyperspheres, respectively:
this plane does not intersect Sn and can be spanned by n− k
orthogonal hyperspheres Sj , that is, S is the orthogonal inter-
section of the Sj ,

S = S1 ∧ . . . ∧ Sn−k = S1 · · ·Sn−k ∈ Pin(Rn+1
1 ) ⊂ ARn+1

1 ;

S can be interpreted as a Möbius involution with

S ∈ Λn−kRn+2
1 and S2 = (−1)

( n−k
2 )

,

which conforms with the identification of S(H2) with the space
of 2-spheres in S4 ∼= HP1.

The passage from one description to the other is

– by polarity w.r.t. Sn ⊂ RPn+1 in the projective picture,

– by taking orthogonal complements in Rn+2
1 , or

– by taking the Clifford dual (or, the Hodge dual) in ARn+2
1 .
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Sphere pencils and complexes
A sphere pencil consists of all spheres on a line in RPn+1; it is

– elliptic if the line does not intersect Sn (⇔ |S1 ∧ S2|2 > 0
for any two hyperspheres S1 6= S2 in the pencil), that is, all
spheres intersect in a codimension 2 sphere;

– parabolic if the line touches Sn (⇔ |S1 ∧ S2|2 = 0 for S1, S2

in the pencil), that is, all spheres touch in a point (the point
of contact with Sn) and form a “contact element”;

– hyperbolic if the line intersects Sn (⇔ |S1 ∧ S2|2 < 0 for any
two hyperspheres S1 6= S2 in the pencil), that is, all spheres
have one intersection point of the line with Sn as their center
when interpreting the other as ∞, Sn \ {∞} ∼= Rn, and the
pencil can be identified with this “point pair.”

A (linear) sphere complex consists of all spheres S in the polar
hyperplane of a point RK ∈ RPn+1, S ⊥ K; it is called

– elliptic if K lies outside Sn, |K|2 > 0;

– parabolic if K lies on Sn, |K|2 = 0; and

– hyperbolic if K lies inside Sn, |K|2 < 0.

These sphere complexes describe the hyperplanes of the hyper-
bolic, Euclidean, and spherical subgeometries of Möbius geome-
try, respectively.

Quadrics of constant curvature
Given K ∈ Rn+2

1 \ {0}, the quadric

Qκ = {p ∈ Rn+2
1 | |p|2 = 0 and 〈p,K〉 = −1}

has constant sectional curvature κ = −|K|2. The standard ball

models Bn
κ = ({x ∈ Rn | 1 + κ|x|2 > 0}, 4|dx|2

(1+κ|x|2)2
) of constant

curvature κ spaces are isometrically embedded by

Bn
κ 3 x 7→

(
1+|x|2
1+κ|x|2 , 2x

1+κ|x|2 ,
1−|x|2
1+κ|x|2

)
∈ Qκ,

where K = (κ+1
2

, 0, κ−1
2

); the spheres Sn(r) embed via

Rn+1 ⊃ Sn(r) 3 y 7→ (r, y) ∈ Q1/r2 , K = ( 1
r
, 0, 0).

The (mean) curvature H of a hypersphere S ∈ Sn+2
1 is given by

H = −〈S,K〉,
in particular, S is a hyperplane in Qκ iff S is a sphere of the
sphere complex K, S ⊥ K.

A k-sphere S = S1 ∧ . . . ∧ Sn−k is a k-plane in Qκ iff all

Sj ⊥ K ⇔ K ∈ span{vi | i = 1, . . . , k + 2}
for k + 2 points pi = Rvi ∈ S in general position.

A 2-sphere S ∈ S(H2) is a 2-plane in Qκ given by K ∈ H(H2) iff
S is skew w.r.t. K; more generally, its mean curvature is given by

|H|2 = |KS |2, where KS = 1
2
(K(., S.) +K(S., .)).

A Möbius transformation that fixes the sphere complex K (the
hyperplanes of Qκ) is an isometry of Qκ if κ 6= 0 or a similarity
of Q0, respectively;

Isom(Qκ) = {µ ∈ O1(n + 2) |µ(K) = K}
is the group of isometries of Qκ — in case κ < 0, it is the group of
isometries that extend smoothly through the infinity sphere RK.

Stereographic projection
Let K0 = (1, 0,−1) ∈ Q1 be the “south pole” in the round n-
sphere Sn ∼= Q1 given by K1 = (1, 0, 0);

Q0 3
(

1+|x|2
2

, x,
1−|x|2

2

)
7→

(
1, 2x

1+|x|2 ,
1−|x|2
1+|x|2

)
∈ Q1

Q1 \ {K0} 3 (1, y1, y2) 7→
(

1
1+y2

, y1
1+y2

, y2
1+y2

)
∈ Q0

then yields the classical stereographic projection. More generally,

Sn 3 Rv 7→ − v
〈v,K〉 ∈ Qκ

can be considered as a stereographic projection from (part of) the
conformal n-sphere onto a quadric of constant curvature.

With ν∞, ν0 ∈ (H2)∗ a notion of stereographic projection is given
by

HP1 \ {∞} 3 p = vH 7→ (ν0v)(ν∞v)−1 = p ∈ H ,

where ∞ = v∞H is the unique point with ν∞v∞ = 0.

The cross ratio
Four points pi ∈ Sn always lie on a 2-sphere S that can be con-
sidered as a Riemann sphere, so that their complex cross ratio
[p1; p2; p3; p4] can be defined up to complex conjugation (orien-
tation of S). In the following [p1; p2; p3; p4] ∈ C is obtained by
taking [p1; p2; p3; p4] = Re q + i |Im q| where appropriate.

Expressing the cross ratio in terms of the distances

|xi − xj |2 = −2〈vi, vj〉, where vk =
(

1+|xk|2
2

, xk,
1−|xk|2

2

)
of the four points in Rn, one arrives at

q =
〈v1,v2〉〈v3,v4〉−〈v1,v3〉〈v2,v4〉+〈v1,v4〉〈v2,v3〉+

√
det(〈vi,vj〉)

2〈v1,v4〉〈v2,v3〉
.

Using the Clifford algebra setup, the cross ratio is obtained from

q = v1v2v3v4−v4v3v2v1
(v1v4+v4v1)(v2v3+v3v2)

∈ Λ0Rn+2
1 ⊕ Λ4Rn+2

1 ,

and the direction of the Λ4Rn+2
1 -part defines the 2-sphere S of

the four points; for xi ∈ Rn,

q = (x1 − x2)(x2 − x3)−1(x3 − x4)(x4 − x1)−1 ∈ Λ0Rn⊕Λ2Rn

provides the cross ratio, and the same formula holds true for four
points xi ∈ H in the quaternionic setup; if pi = viH ∈ HP1 then

q = (ν1v2)(ν3v2)−1(ν3v4)(ν1v4)−1 ∈ H
gives their cross ratio, where ν1, ν3 ∈ (H2)∗\{0} are quaternionic
linear forms with νivi = 0.

The cross ratio [p1; p2; p3; p4] ∈ R is real iff the four points are
concircular (form a “conformal rectangle,” which is embedded iff
[p1; p2; p3; p4] < 0) and the cross ratio [p1; p2; p3; p4] = −1 iff
they form an (embedded) “conformal square.”

The cross ratio cr := [p1; p2; p3; p4] satisfies the following identi-
ties under permutations of the four points (the complex conjugate
cr appears when the imaginary part is chosen to be always posi-
tive):

cr : 1234 2143 3412 4321

1− cr : 1324 2413 3142 4231
1

1−cr
: 1423 2314 3241 4132

1
cr

: 1432 2341 3214 4123

1− 1
cr

: 1342 2431 3124 4213
cr

cr−1
: 1243 2134 3421 4312

Sphere congruences and envelopes
A sphere congruence is a smooth map S : Mm → Sn+1

1 /±, and
a smooth map f : Mm → Sn is said to envelope S if

f(p) ∈ S(p) and dpf(TpMm) ⊂ Tf(p)S(p) for all p ∈ Mm.

For hypersurfaces, m = n− 1, this reads

0 = 〈f, S〉 = 1
2
S(SfS − f) and 0 ≡ 〈df, S〉 = 1

2
S(SdfS − df),

when considering f, S : Mn−1 → Rn+2
1 ⊂ ARn+2

1 ; an immersed

congruence S : Mn−1 → Sn+1
1 has two envelopes iff 〈dS, dS〉 is

positive definite. For f : M3 → H2 and S : M3 → H(H2) the
enveloping condition reads

0 = S(f, f) and 0 ≡ S(df, f) + S(f, df).

A 2-sphere congruence S : M2 → S(H2) is enveloped by f iff

S · f ‖ f and dS · f ‖ f

or, equivalently, if f envelopes every hypersphere congruence (sec-
tion) in the congruence of elliptic sphere pencils given by S.

Similarly, an m-sphere congruence S : Mm → Λn−mRn+2
1 is

enveloped by f : Mm → Rn+2
1 iff f envelopes any section of S

(hypersphere congruence in S). With the contact elements

t(p) = f(p) · dpf(e1) · · · dpf(em), (e1, . . . , em) orthonormal,

of an immersion Rf : Mm → Sn, the enveloping condition reads

t ‖ v(Sf), where ARn+2
1 3 x 7→ vx ∈ ARn+2

1

is the Clifford dual. Two immersion f and f̂ envelope an m-sphere
congruence iff

f̂ · t ‖ t̂ · f.

The central sphere congruence Z : Mm → Λn−mRn+2
1 of an

immersion Rf : Mm → Sn is given by

vZ = 1
2m

(t ·∆f − (−1)m∆f · t).

Conformal change of metric
Let Sm ⊂ Mn be a submanifold, (Mn, g) Riemannian, g̃ = e2ug
a conformal change of the ambient metric; then the geometric
quantities of Sm change as follows:

∇̃vw = ∇vw + (vu)w + (wu)v − g(v, w) · ∇u

ĨI(v, w) = II(v, w)− g(v, w) · (gradMu)⊥

Ãnv = Anv − (nu)v

∇̃⊥v n = ∇⊥v n + (vu)n;
and the real valued curvature quantities:

s̃ = s− bu (s = 1
n−2

(ric− scal
2(n−1)

g) Schouten tensor)

w̃ = e2uw (w = r − s ∧ g Weyl tensor)

r̃ = e2u(r − bu ∧ g)

K̃π = e−2u(Kπ − trgbu|π) (sect. curv. on π ⊂ TSm)

K̃ = e−2u(K −∆u) (Gauss curv. for m = 2),

where bu(v, w) = (∇2u)(v, w) − (vu)(wu) + 1
2
g(∇u,∇u)g(v, w)

and (b1 ∧ b2)(v, w, x, y) =

∣∣∣ b1(v,x)
b2(w,x)

b1(v,y)
b2(w,y)

∣∣∣ +

∣∣∣ b2(v,x)
b1(w,x)

b2(v,y)
b1(w,y)

∣∣∣ is

the Kulkarni-Nomizu product of two bilinear forms.

Important invariants are umbilics, the normal curvature R⊥, and
the trace free second fundamental form II0 = II − H · g with
the mean curvature H = 1

m
trgII of Sm. A conformal metric is

obtained by gconf = h2g, h2 = 1
m

g(II0, II0); this is the induced
metric of the conformal Gauss map in case m = 2 and n = 3.


