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Manifesto i

Manifesto

Integrable discretizations yield an efficient and rather straightforward
way to discretize a theory, not just its objects. At the core of this
approach is an (integrable) transformation theory that replicates itself in
a discrete setting. On the one hand, this yields an effective discretization
scheme and, on the other hand, it provides deeper insights about the
integrable nature of a smooth theory:

“Since the existence of Backlund-like transformations with per-
mutability properties is associated with integrability of the underly-
ing differential equations, one is led to regard the multidimensional
consistency of their discretizations as the core of integrability itself.”
[Bobenko/Suris (2008) Chap 2]

Early instances of this type of discretization date back to the mid 1900's
(e.g., Sauer & Wunderlich), though these are based on great geometric
intuition rather than a systematic approach based on integrable systems.

The fundamental papers by Bobenko & Pinkall (mid 1990's) laid the base
for the systematic approach presented here. The principles presented
here crystalized during the early 2000's and are probably most clearly
formulated in [Bobenko/Suris (2008)].

Integrable discretization is a very active field of research since the late
1990’s; besides the discretizations of various theories, also the relations
between those different theories through integrable reductions or sym-
metry breaking have been intensively studied.

Organization. A large part of these introductory lectures will be devoted
to the background of one integrable theory: the (smooth) differential
geometry of pseudospherical surfaces and their Backlund transformations,
as an example (Sects 1 & 3). Before turning to an integrable discretization
scheme (Sect 4) we address some “intuitive discretizations” in differential
geometry, and the issues/problems they raise (Sect 2).
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Literature

Though discrete differential geometry is not a new area of research there
has been much interest and progress over the past two decades, since a
relation with integrable systems has been established through the publi-
cations by Bobenko/Pinkall.

A Bobenko, Y Suris: Discrete differential geometry, Integrable
structure; AMS Grad Stud Math 98, Providence (2008)

Currently the authoritive source for this branch of mathematics,
where also most of the material presented here may be found.

T Hoffmann: Discrete differential geometry of curves and sur-
faces; COE Lect Notes 18, Kyushu Univ (2009)

This is a very approachable and perhaps less overwhelming source
to start from when first learning about integrable discretization.

C Rogers, W Schief: Bdcklund and Darboux transformations; Cam-
bridge Univ Press, Cambridge (2002)

This book provides a wealth of background information, covering
the material from differential geometry as well as integrable systems
viewpoints — it is a good source for the material of Sect 3.

U Hertrich-Jeromin: Introduction to Mobius differential geometry;
Cambridge Univ Press, Cambridge (2003)
This source focuses on transformations and discretization in a higher
(M&bius) geometry framework, hence deals in depth with principal
and isothermic nets and their subclasses.

There is a notable number of publications that model certain aspects
of smooth differential geometry (in Euclidean space) in a discrete set-
ting, often in a somewhat “intuitive” way. The following are related to
integrable discretization:

R Sauer: Differenzengeometrie; Springer, Berlin (1970)

A classic, that also takes account of physical models of discrete
curves and surfaces (sadly only in German). A work of formidable
vision.
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A Bobenko, H Pottmann, J Wallner: A curvature theory for dis-
crete surfaces based on mesh parallelity;, Math Ann 348, 1-24
(2010)

Integrable and intuitive discretizations are closely related.

T Hoffmann, A Sageman-Furnas, M Wardetzky: A discrete parame-
trized surface theory in IR3; Math Res Notices 14, 4217-4258 (2017)

Informed by integrable discretization, certain effects that could not
be handled before are treated.

Since the mid 1990ies a wealth of research papers has been published in
the area of integrable discretization. In what follows we give pointers to
those papers that we consider useful as seminar topics for the present
course.

Pseudospherical surfaces.

A Bobenko, U Pinkall: Discrete surfaces with constant negative
Gaussian curvature and the Hirota equation; J Differ Geom 43,
527-611 (1996)

The original paper: a large amount of material is covered, most
relevant in the context of this course are Sects 1-8.

L Bianchi: Lezioni di geometria differenziale (3rd ed); Enrico Spo-
erri, Pisa (1923)

The classical textbook: this is the source on surfaces and their trans-
formations from a viewpoint of the classical differential geometry
of curves and surfaces, including the Backlund transformations of
pseudospherical and constant mean curvature surfaces as well as the
Darboux transformation for isothermic surfaces. The second volume
contains a comprehensive discussion of the Ribaucour transforma-
tion.

Isothermic and minimal surfaces.

A Bobenko, U Pinkall: Discrete isothermic surfaces; J reine angew
Math 475, 187-208 (1996)

The original paper: a nice approach to discrete isothermic surfaces
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is discussed, and applied to a discretization of minimal surfaces and
their Weierstrass representation.

U Hertrich-Jeromin: The surfaces capable of division into infinites-
imal squares by their curves of curvature; Math Intell 22, 54-61
(2000) Erratum in Math Intell 24, 4 (2002)

This complements the introduction of discrete isothermic surfaces
by Bobenko/Pinkall (1996) by drawing a connection to Nonstandard
Analysis.

U Hertrich-Jeromin, E Musso, L Nicolodi: Mdbius geometry of sur-
faces of constant mean curvature 1 in hyperbolic space; Ann Global
Anal Geom 19, 185-205 (2001)

The Darboux transformation of (smooth) isothermic surfaces is dis-
cussed; hence the developed theory is applied to describe horospher-
ical surfaces in hyperbolic space. This relates to a description of
those surfaces first given by Bianchi and Calo.

F Burstall, U Hertrich-Jeromin, C Miiller, W Rossman: Semi-dis-
crete isothermic surfaces; Geom Dedicata 183, 43-58 (2016)
Semi-discrete isothermic surfaces are introduced purely in terms of
(Darboux) transformations of curves: this paper demonstrates the
viewpoint of this course rather clearly.

Surfaces of constant mean curvature.

e U Hertrich-Jeromin, T Hoffmann, U Pinkall: A discrete version of
the Darbouz transform for isothermic surfaces; Oxf Lect Ser Math
Appl 16, 59-81 (1999)

The Darboux transformation of isothermic surfaces is discussed in
terms of quaternions. The paper contains a section on discrete sur-
faces of constant mean curvature, defined in terms of transforma-
tions.

U Hertrich-Jeromin, F Pedit: Remarks on the Darboux transform
of isothermic surfaces; Doc Math J DMV 2, 313-333 (1997)

The Darboux transformation of (smooth) isothermic surfaces is dis-
cussed in terms of quaternions and a Riccati-type PDE; the results
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are then applied to surfaces of constant mean curvature and their
Backlund transformations.

H Pottmann, Y Liu, H Wallner, A Bobenko, W Wang: Geome-
try of multi-layer freeform structures for architecture; ACM Trans
Graphics 26:65 (2007)

The application of discrete surfaces in architecture is discussed; this
paper also discusses Gauss and mean curvatures of discrete surfaces
using the Steiner formula approach.

Surfaces with curvature line coordinates.

P Calapso: Sulla teoria generale delle trasformazioni di Ribau-
cour, e sue applicazioni alla generalizzazione delle trasformazioni
di Darbouz; Ann Mat Pura Appl 29, 17-69 (1921)

A classical paper by an eminent Italian mathematician that discusses
details of the Ribaucour transformation of surfaces, and the Darboux
transformation as a reduction.

F Burstall, U Hertrich-Jeromin, M Lara Miro: Ribaucour coordi-
nates; Beitr Alg Geom (2018)

Discrete and semi-discrete curvature line nets are described in terms
of Ribaucour transformations; several results of interest for applica-
tions are presented, including a method to solve a discrete boundary
value problem and a way of “smoothing” for semi-discrete curvature
line nets. The first half of the paper should be rather accessible.
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1 Curves & Surfaces

We start with a (very condensed) review of some elementary differential
geometry of curves and surfaces: in order to discretize it is paramount
to have a good understanding of the objects to be discretized!

1.1 Parametrization

We will discretize parametrized curves and surfaces:

Def. Amap X : R™ DU — &3 (m = 1,2) is regular if
Ve eU :rkd, X =m;
o a (parametrized) curve is a regular map X : R > I — &3;
e a (parametrized) surface is a regular map X : R? D U — &3.

Ezamples. A curve and its corresponding surface of revolution:
e the tractrix X : R — &3,
t— X(t) =0+ elﬁlht + e3(t — tanht),

is not a curve since X'(t) = (—e1 + egsinh¢) 2555 =0 for t = 0;
however, X|(g o) of X|(—oo,0) are curves.

e after restriction to (0, 00) x R the pseudosphere X : R? — £3,
(z,t) = X(z,t) = O 4 ALETLT | o0y tanh ),

cosh ¢
is a surface, but it is not on R2.

Remark. A reparametrization of a curve/surface X : U — £3 is a new

curve/surface - .
X=Xo& where £: U —>U

is a diffeomorphism, i.e., £ is bijective and & and ¢! are smooth. This

changes the parametric description of a curve/surface but not its shape

in space.

Ezample. With (u,v) = (Zf, Z31), hence (z,t) = (u + v,u — v), a

reparametrization -
P X(u,v) = X(u+v,u—0)
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of the pseudosphere, defined on U = {(u,v) |u > v}, is obtained.

Arc length. The arc length s( f | X7 ()| dt of a curve X measures

the length of the curve X\[Oﬁt] we denote the arc length differential by
ds|ly = | X'(t)| dt.

Def. The induced metric or first fundamental form of a surface X is the
pull back of the Euclidean inner product on &3,

ds? = (dX,dX) = E du? + 2F dudv + G dv?
with E = | X, ?, F = (X4, Xy), G = | X,|?.

Remark. ds2\(u,1,) is an inner product on R? for every (u,v) € U.

Ezample. The pseudosphere X (z,t) has induced metric
ds? = Eda® + G df? with E(,t) = and G(x,t) = Soit

cosh2 t cosh? ¢’
note that E+G = 1. With (z,t)(u,v) = (u-+v,u—v) its reparametriza-
tion X = X o (z,t) has induced metric

4 = du? + F dudv + dv® with F(u,v) = =802t

cosh? t

Thus the parameter curves u — X (u,v) and v — X(u,v)Nare para-
metrized by arc length and their intersection angle is given by F' = cos 4,
where

9 1
_ G COS 7 = oshi
1972arctan\/g & {smtanht

In particular, the parameter lines form a Chebyshev net.

1.2 Curvature

Curvature of a curve can be measured by “how fast” its tangent direction
changes:

Lemma & Def. T L T for the unit tangent field 7 := £ X = of
a curve t — X (t); and the curvature of X is

T
ko= 4T = T

IX'\
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Ezample. The tractrix t + O + e1 47 + e3(t — tanht) has unit tangent

field ’ .
T(t) = %(t) =(—e1+e3 smht)ﬁ
and curvature
| _ legsinht+es] 1
K‘(t) - \X/\(t) - céshttanhg ~ sinht”

Remark (Frenet equations). If T’ # 0 we may use unit normal fields

Ni=2 and B.=TxN
= =

to frame the curve X : T — &3 by the map (T, N, B) : I — SO(3); then

d _ 1. 4d _ 0 —x 0
L(T,N,B) = b 4(T,N,B) = (T,N.B) (£ ©

with the curvature k and torsion 7T of the curve X. The “best fitting"

osculating circle has radius % and centre X + NV % Note that

(N',x")

N'+ X'k =B|X'|7 and K= =557

Def. The second fundamental form of a surface X is the symmetric

bilinear form
—(dN,dX) with N := 5250
the normal curvature of a curve t — X (u(t), v(t)) on the surface is

_ (X))
=Xy

the curve is
e asymptotic line if N’ 1 X/, i.e., k = 0;
e curvature line if N’ + X’k = 0 (Rodrigues’ equation).

Ezample. The pseudosphere X (z,t) has unit normal field
N(z,t) = (e1cosz + ep sinz) tanh ¢ + e3 =1,
hence the parameter lines are curvature lines,
Nz — Xpsinht = Ny + Xy o = 0;

since 1

(Ny % Ni, Xy £ X)) = Esinht — Gy =0
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the parameter lines of its reparametrization X (u,v) = X (u + v, u — v)
are asymptotic lines.
Remark. Analogous to the first fundamental form ds? of X (u,v) we

it
wnte —{dN,dX) = edu? + 2f dudv + g dv?

with e = (N, Xyu), f = (N, Xuv) and g = (N, X,,,); if the parameter
lines of X (u,v) are asymptotic and form a Chebyshev net,

e=g=0and E=G=1,

we find that
qu :le\/%7 X’U’U = 1/2\/%7 Xu'u = ny
N —v,—=f N, =Y, -
u 1 \/ﬁv P 2 mv
with the unit tangent vector fields
. = Xu F4 Xy e Xu—Xy F
Vi= O 1 X, and Yy 1= MeZie L X,
Using Yip = Yoy = — \/ffT the integrability conditions yield the

e Codazzi equations ﬁ = ¢ = const, from (Ny)y = (Ny)u,

hence the surface has constant Gauss curvature

2
. oeg=f° _ _ 2.
K = Bo—pr = ¢

2
e Gauss equation 0 = (\/27)0 + ﬁ from (Xuw)v = (Xuw)u;
with F' = cos®, hence f = c¢sin®, the Gauss equation becomes the
sine-Gordon equation

0= 'lgu'u - C2 sin .

Def & Thm. A surface X is pseudospherical, i.e., has negative con-
stant Gauss curvature K = —c?, iff it admits (re-)parametrization by
an asymptotic Chebyshev net.

Remark. By a rescaling one can always obtain K = —1.
Ezample. The pseudosphere is a pseudospherical surface.



2.1 Curves 5

2 Intuitive discretization

An intuitive approach to discretize (parametrized) curves or surfaces often
fails quickly or becomes cumbersome — though some approaches proved
successful. We discuss some basic notions, and issues/problems.

2.1 Curves

A discrete curve is thought of as a polygon — though edges need not be
line segments but may be realized as circular arcs (bi-arc curves) or by
polynomial maps (splines). Thus we only encode combinatorial informa-
tion of edges:

Def. A discrete curve is a (regular) map X : Z DV — £3.

Def & Rem. For adjacent i,j = i =1 € V we define the (discrete)
derivative dXi; = X; - Xi.
dX;; # 0 for all edges (ij) € E C Z? is necessary for “regularity”, but
we will wish for more.
Remark. More clarifying: define X on the vertex set V' of a 1-dimensional
cellular complex Z = (V, E).
Tangents. Tangents can be defined on edges or at vertices of the curve:
o [X;X;] for each edge (ij) € E, or
e the tangent line at X; of the circumcircle of X;_1, X;, X;11; if
the curve is “parametrized by arc length”, |[dX|> = 1, then taking

average o AXy i td X X=X
6Xi = 2 = 2

yields a direction vector.

For the vertex tangents to be defined we need the circumcircle, that is,
regularity:

Aty X1, dXii41,0X; # 0.
Curvature. Taking this circumcircle as the osculating circle of X at X,
the law of sines yields for its radius r; and ¢; = £(dX;—1,i,dX; i+1)

10X
sin(m—g;)

sin @,
0X;|"

Ty = hence k; = Ti =
i
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For an arc length parametrized curve, an alternative classical definition
that uses the circle touching the edges in their midpoints was
’_ @i
Ky = 2tan .

Both curvatures are defined at the vertices; and “edge curvature” has
been defined for planar curves, using three consecutive edges.
Frenet equations. The Frenet equations describe the change of a frame
F along a (Frenet) curve, hence two options arise:

e if the frame is vertex-based then transport is along edges,

e if the frame is edge-based transport should be across vertices.
A vertex-based frame can be constructed easily, but we have no edge-
based curvature; for an edge-based frame a (principal) normal is missing.

In fact, no satisfactory Frenet theory is known to this lecturer...

2.2 Surfaces

A discrete surface is thought of as a spacial grid — again, edges and faces
are only encoded in a combinatorial way; in fact, there is no sensible a-
priori way to “embed” (generally non-planar) faces.

Def. A discrete surface is a (regular) map X : 72OV — &5

Remark. Again, using a quadrilateral cell complex Z = (V,E,F),
or “quadgraph”, as a domain helps to clarify notions — and allows to
consider topology.

Also, “regularity” is less clear than in the smooth setting, as before.

Tangent plane. For any edge (ij) € E one may consider, as before,
dX;; = X; — Xy;

however, the partial derivatives dX;; at a vertex i € V are generally not

coplanar, hence do not defined a tangent plane.

Similarly, for a face (ijkl) € F' the vertices X;, X;, X3, X; € &3 do not

need be coplanar, hence the faces of a surface do generally not define a

tangent plane. One approach is to consider “face partial derivatives”

L dXg+dXpy L dX+dX gy
X = —45—= and X = ——F—1=.
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In integrable discretization of special (parametrized) surfaces these issues
often resolve themselves:

e discrete asymptotic nets have planar vertex stars;

o discrete conjugate nets have planar facets.
Curvature. Circular nets (or discrete curvature line nets) admit a
consistent assignment of vertex normals, hence vertex tangent planes.
For such a discrete Legendre map

(X,N):V = & x 52
face-based Gauss and mean curvatures can be defined via (vectorial)
mixed areas A(XvX)(ijkl) . %5Xik X X1,
using Steiner’s formula for the parallel surfaces X* = X + Nt,
AXE X)) = (1 —2tH + 1?K) A(X, X)

or equivalently

AX,N) o A(N.N)
axx) T AXX):

This approach is closely related to integrable discretization.
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3 Transformations & Permutability

Transformations and their permutability can be considered as the core of
“integrable discretization”: a thorough understanding of those transfor-
mations is required for any class of curves or surfaces to be discretized.
We discuss the Backlund transformation of pseudospherical surfaces as
an example.

3.1 Bécklund transformation

Recall. A pseudospherical surface, with Gauss curvature K = —12, may
be parametrized by an asymptotic Chebyshev net (u,v) — X (u, v),

E=G=1, F=cos? and e=g=0, f=sind.
We seek to produce a new surface X’ from X, of the same kind, and
with X'~ X LN,N" and | X' — X| = const.
In particular, we ask that the lines [X X’] form a W-congruence.
Derivation. (Xy,Y1,N): U — SO(3) with Y1 = 7)(1‘17\/%?” frames X
conveniently; the structure equations read

0 0
(Xu,Y1,N)y = (Xy, Y1, N) (7190“ 0 7(1)) ,
g

0 0 *
(X'1L7Y17N)'UZ(X1L7}/1-,N)( ,O, 0 ; *)'
siny —cosd 0
Now the condition for X’ with X’ — X L N and | X' — X| =,
X' =X + Xyccosp + Yiesinp,
to form a Chebyshev net, E/ = G’ = 1, computes to

1 = 14(c(p =)y —sing)? —(1—c?)sin®p
1+ (cpy —sin(ip — ) — (1 — @) sin(p — )
or, taking suitable roots and with ¢ = ”9/7“9
(v’;ﬁ)u _ lEVi- 52 . 19 +g — bsin 19%197
(252), = 1%/7 sin 2 = lgn229 )

The sine-Gordon equation 19uv =sindis the integrability condition of the
system (), hence it is completely integrable.
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Def & Thm. If (u,v) — X (u,v) is an asymptotic Chebyshev net with
angle ¥ then any solution of (*) deﬁnes a Backlund transform
X' =X+ 5 {X, sin 222 +XU sin ‘9'“9 }

of X, an asymptotic Chebyshev net at constant dlstance X'—X|=c¢
with common tangent lines [X X'].

Remark. The asymptotic angle of X' is ¢', satisfying ¥/, = sin?’; and
the tangent planes of X and X' intersect at a constant angle
(N,N')y = (1—bc) = Fv1— 2
Remark. The Backlund transformation is symmetric.
Ezample. For 9 = 2arctansinht with ¢(u,v) = u—v of the pseudosphere
X = O+ gcoseieysing +€3(t—tanht), z(u,v) = u+v,

cosh ¢
we have sm = tanht and cos 2 = Coslhf = 'ﬂzu = 19“ that reduce (%)
to (%) Cosht{ler(sm 7 + sinhtcos 4 2 )}
9’ 9’
(%)= =1+ 1 (smT—smhtcosT)},
then, for b = ¢ = —1, the trivial sine-Gordon solution ¥/ = 7 yields the

axis as a degenerate Backlund transform:
X=X+ smﬂ {X sin 25 19 +X sin ﬂJﬂ’ }
X+ slnﬁ {X sin gCOS 2 -X'tCOSgSIr‘lﬂ2 } = O+63t‘

3.2 Bianchi permutability

Crucial for the discretization scheme presented here is the following:

Bianchi permutability theorem. Given two b;-Bécklund transforms
X;,i=1,2, of X with by # by, there is a unique surface X' that is

e by-Béacklund transform of X7 and

e bi-Bécklund transform of X5, at the same time.

Assuming existence of X’ the system (x) for the transformations yields

P 91—9 P 9=V
0 = ( il 1)u+(lT)u_(T2)u_( 22 Ju
9’ +191 + b sin 191+19 bl sin 19/_5192 ﬂ2+qﬂ

= bysin by sin R
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hence r_ _
tan 2 7 o — Ib’ﬁbl tan Y2291 191 (%x)
2

Thus, if X’ exists then it is uniquely and a]gebrawa]]y determined by,
say,

91 +9’
1+ }7

X' =X+ smﬂ {Xlusm +X1vsm 5

2b2

where ¢ is given by (%) and c¢» = -=2;.
g Y () 1762

To prove existence, one verifies that 9, hence X’ thus defined, yields a
simultaneous Backlund transform.

Remark. Opposite “edges” in a Bianchi quadrilateral (X, X1, X', X>)
have equal (constant) lengths,

‘X’ —Xz‘ = |X1 —X| =C1 and |X/—X1| = ‘XQ —X‘ = C2,
similar to a reparametrization (u,v) = (c1@, c2¥) of a Chebyshev net,
du? + 2F dudv + dv® = dii? + 2c162F diidd + c3di2.

Note that a reciprocal rescaling, (u,v) = (bi, %T)), is a symmetry of the
sine-Gordon equation and eliminates/changes the parameter in ().

3.3 Other transformations

Similar transformations are attached to a number of other surface classes.

Further background: Every surface admits (locally, away from umbilics)
a (re-)parametrization X (z,y) by curvature lines,
Ny + Xypr1 = Ny + Xyr2 =0;
K are its principal curvatures, its Gauss and mean curvature are
K = Kikp resp H := %

By Bonnet’s theorem any surface X of constant positive Gauss curvature
K = ¢? has two parallel surfaces of constant mean curvature H* = :I:zlc,

Xt=xzx1lnN
A linear Weingarten surface is a surface with a non-trivial relation
0=aK+2bH +c;
for parallel surfaces X* = X 4 N ¢ this type of condition is preserved.
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These notions allow to formulate a number of examples:

Spherical surfaces. K = +c?, admit (complex) Béicklund transforma-
tions; two complex conjugate Backlund transformations produce a real
transformation that also satisfy Bianchi permutability, by 4D-consistency
of the Backlund transformation.

Linear Weingarten surfaces. Employing parallel surfaces, the Biacklund
transformations for (pseudo-)spherical surfaces are extended to surfaces
with

0=akK +2bH + ¢, where b?> —ac,c#0.

In particular, constant mean curvature (cmc) H # 0 surfaces admit
Backlund transformations.

Isothermic surfaces. Surfaces with conformal curvature line coordinates,
Ny + Xgk1 = Ny + Xyro =0 and ds? = E (da? + dy?)

admit Darboux transformations, that also depend on a spectral param-
eter and satisfy a Bianchi permutability theorem.

The real (double) Backlund transformations of cmc surfaces appears as
an integrable reduction.

£-surfaces. Surfaces that envelop (a pair of) isothermic sphere congru-
ences admit Darboux transformations, induced by those of the enveloped
sphere congruences.

The real (double) Backlund transformations of linear Weingarten surfaces
and the Darboux transformations of isothermic and Guichard surfaces
occur as integrable reductions.

Principal nets. Any surface X admits Ribaucour transformations X’,
where X and X’ envelop a common sphere congruence so that curvature
lines of both surfaces correspond.

Its Bianchi permutability theorem differs from those of Backlund-Darboux
transformations: the fourth surface is not determined algebraically but by
an integration, the constant of integration yields a 1-parameter Demoulin
family of solutions whose points lie on common circles.

Any of the aforementioned Darboux transformations is a reduction.
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4 Integrable discretization

Using the Backlund transformation of pseudospherical surfaces (Sect 3)
we discuss a discretization for these surfaces, parametrized by an asymp-
totic Chebyshev net (Sect 1).

4.1 Discrete pseudospherical nets

Idea. Starting from a pseudospherical surface X, : U — &3 the Bicklund
transformation can be used to generate a “net of surfaces” (X;);cz2 of
pseudospherical surfaces X; : U — &3, by repeatedly employing Bianchi

permutability.
7% 30— Xi(u,v) € 3,

with fixed (u,v) € U, then defines a discrete pseudospherical surface:

Def. A pseudospherical net is a discrete surface X : V — £3 so that
e every vertex star S; = {X;} U {X; + dX;;|(ij) € E} is planar,
that is, X is an asymptotic net, and
e opposite edges of faces have the same lengths, for (ijkl) € F
|[dXs5] = |[dXp| and |dX;| = |[dX ],
that is, X is a Chebyshev net.

Tangent plane. By definition any asymptotic net, hence any pseudo-
spherical net, comes with vertex-based tangent planes, of its vertex stars.
In particular, “a line is tangent to an asymptotic net X at X;" is a sensible
statement.

Def. Two pseudospherical nets X, X' : V. — £% with the same edge
lengths, B ,

V(lj) (SO ‘dX“‘ = |dXZ‘_7",
are related by a Backlund transformation if

o [XX']; is tangent to X and X' at X; resp X| for every i € V,
that is, X and X' are related by a Weingarten transformation, and
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e | X' — X| =c = const.

Remark. As in the smooth case, a pseudospherical net admits a 2-
parameter family of Backlund transforms. The existence of a transform
can be interpreted as “3D-consistency” of smooth transformations.
Remark. A (sequence of) Backlund transform(s) “extends” a discrete
pseudospherical net into a new dimension: the “vertical” quadrilaterals
(XZ-,Xj,X;.,X;) exhibit the same characteristics as those of either net.
Thus "multi-dimensional” pseudospherical nets can be constructed using
(discrete) Bianchi permutability:

Bianchi permutability theorem. Given two c¢;-Bécklund transforms
X;,i=1,2, of X with ¢; # ¢y, there is a unique surface X' that is

e p-Backlund transform of Xy and

e c1-Bécklund transform of X5, at the same time.

Remark. The proposed discretization of pseudospherical surfaces is not
only well adapted to their transformation theory: for example, smooth
as well as discrete pseudospherical surfaces X are characterized by the
Lorentz-harmonicity of suitable Gauss maps N in 52,

Nuy || N resp 0Njy || 6 Ny

further, X can be reconstructed from N by the Lelieuvre representation

formula
uw=—N XN,

Xy = NXxXN,

This representation is used in [Bobenko/Suris (2008) Sect 5.7] to obtain
an approximation result for pseudospherical surfaces.

} resp (lXij = Nij X dN”

4.2 Discretization principle

Integrable discretization is an efficient (and nearly algorithmic) method
to discretize a theory (not just its objects). In this way, an independent
discrete theory is obtained, which has several benefits:
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o highly efficient and stable numerical algorithms for applications;

e sheds light on the mathematical mechanisms behind algorithms;

e provides insight into the integrable nature of the smooth theory being
discretized.

While integrable discretization yields an independent theory, various ap-
proximation results have been established that link the smooth and dis-
crete theories.

We now summarize the “discretization algorithm™.

Prerequisites. The presented integrable discretization procedure requires
a good understanding of the smooth theory; in particular:

e a Darboux-Backlund type transformation that depend on a (spectral)
parameter;

e a Bianchi permutability theorem, that provides an algebro-geometric
relation across higher dimensional cells.

Remark. Typically, a “lift" to a higher geometry allows to describe the
transformations by parallel sections of a parameter-dependent connection,
that is, the differential equations of the transformation can be linearized.

Procedure. The orbit of a single point under repeated transformations
yields the “model” of a discrete net:

e the algebraic/geometric relations of Bianchi permutability yield a
characterization/definition of a discrete net;

o the higher-dimensional consistency of the smooth transformations
yields existence/permutability of the discrete transformations.

Remark. A “discrete integrable theory” is established through the dis-
crete transformations; as in the smooth case, the introduction of a loop of
(discrete) flat connections may be used to linearize the defining equations.

Semi-discrete theories. In a similar way, semi-discrete theories may be
established: for example,

e a surface is formed by a sequence of (transformations of) curves,

e a transformation is obtained from a net of permuting transforms;
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o their permutability is obtained from the higher dimensional consis-
tency of the transformations of curves.

Thus we obtain the following scheme for a theory of 2-dimensional objects:

definition transformation | permutability
surface classical transformation | permutability
semi-discrete | curve: curve: curve:

surface

discrete
surface

transformation

point:
quad permutab

quad permutab

point:
cube permutab

cube permutab

point:
4D-permutab



16 Epilogue

Epilogue

We discussed one instance of integrable discretization, for pseudospherical
surfaces, in order to demonstrate the discretization scheme/algorithm.

The second part of the lectures by Gudrun Szewieczek will discuss another,
in some sense complementary, instance of integrable discretization, for
isothermic surfaces: this is a more general class of surfaces and also
admits an interesting integrable reduction, or "symmetry breaking”.
To get better acquainted with the discussed integrable discretization
scheme, it will be useful to go beyond these lectures though, and to
work on further topics based on relevant research papers ...



