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iv Introduction

Manifesto

Differential geometry is an area of mathematics that — as the title sug-
gests — combines geometry with methods from calculus/analysis, most
notably, differentiation (and integration). During the 20th century, ge-
ometry and analysis have also swopped roles in this relationship, giving
rise to the closely related area of “global analysis”.

Besides the fact that differential geometry is a beautiful field in math-
ematics it is a key tool in various applications: in the natural sciences,
most notably, in physics — for example, when considering a moving par-
ticle or planet, or when studying the shape of thin plates — and also in
engineering or architecture, where more complicated shapes need to be
modelled — for example, when designing the shape of a car or a building.

This intimate relation of differential geometry to the natural sciences and
other applications is also reflected in its history: for example, Newton’s
approach to calculus was motivated by consideration of the motion of a
particle in space; in fact, analysis, (differential) geometry and applications
in physics or engineering were hardly distinguished at this time. Similarly,
Gauss draws a connection between his geodetic work in Hannover and his
work in differential geometry that, in turn, provided the foundation for
Riemann’s generalization to higher dimensions and hence for Einstein’s
general relativity theory. Note the link to the original meaning of the
word

γεω + µετρία '
{
γη = earth,

µετρώ = measure.

An application of the methods from calculus/analysis requires the inves-
tigated geometric objects to “live” in a space where differentiation can
be employed, e.g., a Euclidean space. Further, the investigated objects
must admit differentiation, i.e., need to be “smooth” in a certain sense.

Most of the key concepts of differential geometry can already be fully
grasped (and easily pictured) in the context of curves and surfaces in a
Euclidean 3-space. To avoid technical difficulties at the beginning we
describe these curves and surfaces as (images of) maps that we assume
to be sufficiently smooth (i.e., arbitrarily often differentiable): a curve
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may be thought of as the path of a particle/point moving in time, and
a surface as the shape created by a 2-parametric motion of a point.
Certain deficiencies of this approach — for example, that a sphere does
not qualify as a surface (cf Sect 2.1), or a cumbersome formulation of
the existence and uniqueness theorem for geodesics (cf Sect 3.2) — will
hint at the necessity for a better foundation of the theory, such as the
notion of a submanifold — which in turn leads to consequences that may
be undesirable, such as the prohibition of self-intersections.

Thus the first two chapters are devoted to a discussion of the basics of
curves and surfaces in Euclidean 3-space: while taking a parametric ap-
proach we shall divert from classical texts in that we shall focus on the key
concepts only — on connections (on vector bundles) and on curvature(s),
with a view to generalizations to submanifolds. As a consequence, beau-
tiful diversions from the main theme, such as the four vertex theorem for
planar curves or the Gauss-Bonnet theorem for surfaces, will be omitted.

The third chapter, devoted to curves on surfaces, does then not only
discuss special curves on (parametrized) surfaces — such as geodesics
or curvature lines — but also discusses the exponential map of surfaces
and special parametrizations, as well as their use in deriving properties of
surfaces, such as Minding’s theorem.

These first three chapters constitute the core of this text.

In the fourth chapter, classes of surfaces that are defined by curvature
properties are investigated: developable surfaces, minimal surfaces and,
more generally, linear Weingarten surfaces. We arrive at some classifi-
cation theorems, completely describing a class of geometric objects. For
example, we present a classification theorem for rotational linear Wein-
garten surfaces that provides explicit parametrizations in terms of Jacobi
elliptic functions. This may provide a glimpse of what research in differ-
ential geometry is about.

In the fifth and final chapter, we then discuss the concept of submanifolds
in a Euclidean space: on the one hand, this yields an approach to deal
with some of the aforementioned deficiencies of discussions in Chaps 1-3;
on the other hand, it clarifies some of the basic concepts of differential
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geometry more clearly. To elaborate the relation between the classical
approach to differential geometry presented in the first chapters and the
modern vector bundle approach more clearly, some of the classical mate-
rial has already been phrased in a vector bundle friendly way; and some
of the classical material is taken up again in a vector bundle incarnation
in the final chapter.

The first three chapters of these notes grew out of a 10-week lecture
course on curves and surfaces, delivered for several years at the University
of Bath: the material was covered in ca 20 50’ lectures, thus in 1000’.

The last two chapters were developed for two different units, a BSc level
unit in our teacher training programme resp an MSc level unit for math-
ematics students. Typically, selected material from one of these chapters
was delivered during the last 3-4 weeks of a 14 week lecture course at
TU Wien, thus in ca 500’ total.

Disclaimer. These lecture notes are not a textbook. In particular, they
are not meant for self-study, as can for example be detected from the
lack of figures that illustrate the topics/objects described in the text.

Also, parts of these notes were written late at night and have only swiflty
(or not at all!) been proof read, hence may contain misprints as well as
mathematical errors. Therefore I expressively welcome blunder alerts, see
the copyright note for my current address.
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1 Curves

Curves provide an entry point to differential geometry, where most of
the key concepts of the theory can be understood without the added
difficulty that arises from the appearance of “integrability conditions” for
differential equations on higher dimensional domains. We shall focus on
the basic concepts of differential geometry: metric/arc length — which
could be considered as analysis — and shape/curvature — which is at
the core of (differential) geometry.

Thus, focusing on the core of the theory, we will omit many interesting
and beautiful topics, most notably issues of the global theory of planar
curves, e.g., the four and six vertex theorems or an investigation of the
winding of curves around a point.

1.1 Parametrization & Arc length

We shall discuss the geometry of curves in a Euclidean ambient space
E , over a Hilbert space (V, 〈., .〉), where differentiation can be employed.
Therefor, to introduce the key concepts, it suffices to work in a 3-
dimensional ambient geometry E3, over the standard Euclidean vector
space V = R3. We may thus describe a curve in various ways:

• as the path (t0, t1) 3 t 7→ X(t) ∈ E3 of a point moving in time;

• as the solution of an equation F (x1, x2, x3) = 0 ∈ R2 for the (affine,

or cartesian) coordinates xi of a point X = O +
∑3

i=1
eixi ∈ E3.

For a start, the first of these descriptions will be more convenient:

Def. A (parametrized) curve is a map X : R ⊃ I → E3 on an open
interval I ⊂ R that is regular, i.e.,

∀t ∈ I : X ′(t) 6= 0;

We also say: X is a parametrization of the curve C = X(I) ⊂ E3.

Agreement. In this course, all maps will be C∞ (unless stated otherwise).

Problem 1. Find parametrizations for the conic sections

C = {O + e1x+ e2y + e3z |x2 + y2 = z2, x cosα + z sinα = d},



2 1 Curves

α ∈ [0, π2 ] and d 6= 0. [Hint: distinguish α < π
4 , α = π

4 and α > π
4 .]

Problem 2. Prove that t 7→ X(t) is a straight line if X ′(t) and X ′′(t)
are linearly dependent for all t.

Example. A cirular helix with radius r > 0 and pitch h ∈ R is the curve

R 3 t 7→ X(t) := O + e1r cos t+ e2r sin t+ e3ht ∈ E3,

where (O; e1, e2, e3) denotes a cartesian reference system.

Note: if h 6= 0 then X(R) is the solution of the equation

(x1 − r cos x3
h , x2 − r sin x3

h ) = (0, 0).

Example. A Neile parabola C = {O + e1x+ e2y ∈ E2 | y2 = x3} is not
a curve: there is no (regular) parametrization X with C = X(I).

Def. A reparametrization of a parametrized curve I 3 t 7→ X(t) ∈ E3

is a new parametrized curve

X̃ = X ◦ t : Ĩ → E3, where t : Ĩ → I is onto and regular.

Rem. Regularity of t guarantees that X̃ is regular: by chain rule

∀s ∈ Ĩ : X̃ ′(s) = X ′(t(s)) · t′(s) 6= 0 since ∀s ∈ Ĩ : t′(s) 6= 0.

Motivation. For the path t 7→ X(t) of a point/particle moving in time

• the vector X ′(t) ∈ R3 is its velocity a time t, and

• the number |X ′(t)| ∈ R its speed at time t;

The path of the particle resp its distance travelled from X(o) can be
recovered by integration:

X(t) = X(o) +
∫ t
o
X ′(t) dt and s(t) =

∫ t
o
|X ′(t)| dt.

Def. The arc length of a curve X : I → E3, measured from X(o) for
some o ∈ I, is

s(t) :=
∫ t
o
|X ′(t)| dt.

Rem. The arc length is indeed the length of the curve between X(o) and
X(t), as can be proved by polygonal approximation of the curve.
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Hence, the arc length does not depend the parametrization.

Problem 3. Use substitution to show that the arc length is invariant
under reparametrization of a parametrized curve.

Lemma & Def. Any curve t 7→ X(t) can be reparametrized by arc
length, i.e., so that it has constant speed 1. This is called an arc length
parametrization of X, and usually denoted by s 7→ X(s).

Proof . Observe that s′(t) = |X ′(t)| > 0 for all t. Hence we can invert s
to obtain t = t(s) and let X̃(s) := X(t(s)). Then

|X̃ ′(s)| = |X ′(t)| t′(s) =
|X′(t)|
s′(t) = 1

has length 1 (note: t′(s) = 1
s′(t) by chain rule).

Rem. An arc length parametrization is unique up to choice of an “initial
point” X(o) and a sense of direction (orientation) of the curve.

Example. A helix t 7→ X(t) = O + e1r cos t + e2r sin t + e3ht has arc
length

s(t) =
∫ t

0

√
r2 + h2 dt =

√
r2 + h2 t;

hence an arc length (re-)parametrization

s 7→ X̃(s) = O + e1r cos s√
r2+h2

+ e2r sin s√
r2+h2

+ e3
hs√
r2+h2

.

Rem & Expl. It is often difficult to determine an arc length parametriza-
tion explicitely: an ellipse t 7→ O + e1a cos t+ e2b sin t has arc length

s(t) =
∫ t

0

√
b2 + (a2 − b2) sin2 t dt,

which is an elliptic integral, hence an arc-length reparametrization can-
not be given in terms of elementary functions.

Problem 4. Consider the curve given implicitely by ( xa )2+( yb )2+( zc )2 = 1

and a
√
b2 − c2 z = c

√
a2 − b2 x, where a > b > c. Compute its arc

length and find an arc length (re)parametrization.
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1.2 Ribbons & Frames

A (regular) curve X : I → E3 has, at every point X(t), a tangent line
and a normal plane,

T (t) = X(t) + [X ′(t)] and N (t) = X(t) + {X ′(t)}⊥;

this corresponds to an orthogonal decomposition

R3 = [X ′(t)]⊕⊥ {X ′(t)}⊥

of R3 into a tangent resp normal space of the curve:

Def. The tangent and normal bundles of a curve X : I → E3 are given
by the maps

t 7→ TtX := [X ′(t)] resp t 7→ NtX := {X ′(t)}⊥;

a map Y : I → R3 is called

• a tangent field along X if ∀t ∈ I : Y (t) ∈ TtX, and

• a normal field along X if ∀t ∈ I : Y (t) ∈ NtX.

Rem & Def. Any curve X : I → E3 comes with a natural unit tangent
field

T : I → R3, t 7→ T (t) :=
X′(t)
|X′(t)| ;

however, there are plentyful (unit) normal fields:

Def. A ribbon is a pair (X,N), consisting of a curve X : I → E3 and
a unit normal field N : I → R3 along X, i.e., N ⊥ T and |N | ≡ 1.

Rem & Def. Thus a ribbon (X,N) can be thought of as a curve with a
sense of “upwards”, e.g., useful to model the movement of an airplane.

Further, a sense of “sideways” can then be encoded by the binormal field

B : I → R3, t 7→ B(t) := T (t)×N(t).

Here we require that E3 has dimension dim E3 = dimR3 = 3 and a
volume form det : R3×3 → R, for the cross product: the corresponding
results do not generalize to higher dimensions.

Motivation. The “curvature” of a curve X : I → E3 can be measured
by how fast its tangent line changes, the “torsion” of a ribbon (X,N) by
how fast the normal field twists around the curve:
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Def & Lemma. The (adapted) frame of a ribbon (X,N) : I → E3×S2

is the map
F = (T,N,B) : I → SO(3);

its structure equations take the form

F ′ = FΦ with Φ = |X ′|
(

0 −κn κg
κn 0 −τ
−κg τ 0

)
,

where

• κn is the normal curvature,

• κg the geodesic curvature, and

• τ the torsion of the ribbon (X,N).

Proof . Since F : I → SO(3) we have F tF ≡ id, hence

0 = (F tF )′ = (F tF ′) + (F tF ′)t = Φ + Φt,

that is, Φ : I → o(3) is skew symmetric; consequently, there are unique
functions κn, κg , τ : I → R so that Φ is of the above form.

Rem. The curvatures and torsion are geometric invariants of a ribbon,
i.e., are independent of the position and parametrization of the ribbon:

• if (X̃, Ñ) = (Õ + A(X −O), AN) with O, Õ ∈ E3 and A ∈ SO(3)
is a Eudclidean motion of (X,N), then F̃ = AF , hence Φ̃ = Φ;

• if s 7→ (X̃, Ñ)(s) = (X,N)(t(s)) denotes an orientation preserving
(i.e., t′ > 0) reparametrization of (X,N), then

Φ̃(s) = Φ(t(s)) t′(s) and |X̃ ′(s)| = |X ′(t(s))| |t′(s)|,

consequently κ̃n(s) = κn(t(s)), etc

Problem 5. Let (X,N) be a ribbon and X̃ = X ◦ t a reparametrization
of X with t′ > 0; set Ñ := N ◦ t. Show that (X̃, Ñ) is a ribbon with
κ̃n = κn ◦ t, κ̃g = κg ◦ t and τ̃ = τ ◦ t.
Rem & Def. If a ribbon (X̃, Ñ) is obtained from (X,N) by a normal
rotation, (X̃, Ñ) = (X,N cosϕ+B sinϕ) with ϕ : I → R, then(

κ̃n
κ̃g

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)(
κn
κg

)
and τ̃ = τ + ϕ′

|X′| .
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Problem 6. Determine how the curvatures and torsion of a ribbon are
changed by a normal rotation of the ribbon.

Examples.

(1) Circular helix. Consider the ribbon given by the unit normal field

N(t) = −(e1 cos t+ e2 sin t)

along the circular helix X(t) = O+ e1r cos t+ e2r sin t+ e3ht; thus
we obtain the frame F = (T,N,B) : R→ SO(3) with

T (t) = (−e1r sin t+ e2r cos t+ e3h) 1√
r2+h2

and
B(t) = (e1h sin t− e2h cos t+ e3r) 1√

r2+h2
;

hence the structure equations read

T ′ = N r√
r2+h2

N ′ = T −r√
r2+h2

+ B h√
r2+h2

B′ = N −h√
r2+h2

which yields, with |X ′| ≡
√
r2 + h2,

κn = r
r2+h2 , κg ≡ 0, τ = h

r2+h2 .

(2) Spherical curve. Let s 7→ X(s) ∈ E3 be an arc length parametrized
spherical curve, i.e., with the centre O ∈ E3 and radius r > 0 of the
target sphere

|X −O|2 ≡ r2 and |X ′|2 ≡ 1.

Observe that

〈X ′, X −O〉 = 1
2 (|X −O|2)′ ≡ 0,

showing that N := (X − O) 1
r yields a unit normal field along X;

hence we compute

κn = −〈T,N ′〉 ≡ − 1
r ;

κg = −〈B, T ′〉 = 1
r det(X −O,X ′, X ′′);

τ = 〈N ′, B〉 = 1
r2 〈X ′, X ′ × (X −O)〉 ≡ 0.
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Problem 7. Let X parametrize a straight line, X ′ ×X ′′ ≡ 0, and let F
denote any adapted frame for X. Show that κn = κg = 0. Find a unit
normal field N so that τ ≡ 1.

Problem 8. Prove that an arc length parametrized curve s 7→ X(s) is
planar if and only if it has a unit normal field so that κg = τ ≡ 0.

Rem. Note that κg ≡ 0 in the first example, whereas τ ≡ 0 in the second;
these two conditions characterize two prominent classes of ribbons that
we will discuss in more detail later.

Def. A ribbon (X,N) is called

• an asymptotic ribbon if κn ≡ 0,

• a geodesic ribbon if κg ≡ 0,

• a curvature ribbon if τ ≡ 0.

Fundamental theorem for ribbons. Given three functions

κn, κg , τ : I → R, s 7→ κn(s), κg(s), τ(s),

there is an arc length parametrized curve X and a unit normal field N
along X so that κn, κg and τ are the normal and geodesic curvatures
and the torsion of the ribbon (X,N), respectively.
Moreover, this ribbon (X,N) is unique up to Euclidean motion.

Proof . Fix o ∈ I and Fo ∈ SO(3); by the Picard-Lindelöf Theorem the
initial value problem

F ′ = FΦ, F (o) = Fo, with Φ :=

(
0 −κn κg
κn 0 −τ
−κg τ 0

)
, (∗)

has a unique solution F = (T,N,B) : I → R3×3; furthermore

• (FF t)′ = F (Φ + Φt)F t = 0, hence F : I → O(3) as Fo ∈ O(3);

• detF : I → {±1} is continuous, hence detF ≡ 1 since detFo = 1.

Consequently, the solution F = (T,N,B) of (∗) takes values in SO(3).

In particular, |T | ≡ 1, hence integration yields an arc length parametrized
curve

X := O +
∫ s
o
T (s)ds;
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clearly, the ribbon (X,N) has curvatures and torsion κn, κg and τ .

The uniqueness statement follows from the uniqueness of F after a choice
of Fo and that of X after a choice of O = X(o).

Problem 9. Let F, F̃ : I → SO(3) be two solutions of the structure
equations F ′ = FΦ; prove that F̃ = GF for some G ∈ SO(3).

1.3 Normal connection & Parallel transport

We shall now go on to study certain special normal fields resp ribbons
for space curves, as defined above: we start with normal fields that yield
curvature ribbons, i.e., ribbons with τ ≡ 0.

The derivative of a normal field N : I → R3 along a curve X : I → E3

naturally splits into tangent and normal parts,

N ′ = T 〈T,N ′〉+ (N ′ − T 〈T,N ′〉) ∈ TX ⊕⊥ NX;

the tangential part is related to the curvature κn, our next mission is to
investigate the normal part more closely:

Def. A normal field N : I → R3 along X : I → E3 is called parallel if

∇⊥N := (N ′)⊥ = N ′ − T 〈T,N ′〉 ≡ 0,

where ∇⊥ denotes the normal connection along X.

Note. In this definition, we do not assume |N | ≡ 1.

Lemma. The normal connection ∇⊥ of a curve X : I → E3 is metric,
i.e., 〈N1, N2〉′ = 〈∇⊥N1, N2〉+ 〈N1,∇⊥N2〉;
parallel normal fields have constant length and make constant angles.

Proof . First we prove that ∇⊥ is metric, i.e., satisfies Leibniz’ rule:

〈∇⊥N1, N2〉+ 〈N1,∇⊥N2〉 = 〈N ′1, N2〉+ 〈N1, N
′
2〉 = 〈N1, N2〉′.

Consequently, if N1 and N2 are parallel then 〈N1, N2〉′ ≡ 0

In particular, (|N |2)′ = 2〈N,∇⊥N〉 = 0 for a parallel normal field N ,
showing that N has constant length; and the angle α of two normal fields
N1 and N2 α = arccos

〈N1,N2〉
|N1| |N2|

≡ const
as soon as N1 and N2 are both parallel.
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Problem 10. Prove that any two parallel normal fields of a curve are
related by a constant normal rotation.

Rem. If (X,N) is a curvature ribbon, τ ≡ 0, then N is a (unit) parallel
normal field: ∇⊥N = (N ′)⊥ = B |X ′|τ = 0;

conversely, if N is a parallel normal field along X then (X, N|N | ) is a

curvature ribbon, by the same computation.

Rem. If N is a parallel normal field along X then so is B := T ×N .

Problem 11. Prove that a normal field that is obtained by a constant
normal rotation from a parallel normal field is parallel.

Rem. If a ribbon (X,N) is obtained from (X, Ñ) by a normal rotation,
i.e., (X,N) = (X, Ñ cosϕ+ B̃ sinϕ) with ϕ : I → R, then

τ = τ̃ + ϕ′

|X′| ;

consequently, a curvature ribbon resp unit parallel normal field is obtained
with

ϕ := ϕo −
∫
o
τds, where ds = |X ′| dt

denotes the arc length element — the constant ϕo of integration accounts
for constant normal rotations. As constant scales of parallel normal fields
are parallel, we obtain the following:

Lemma. Let X : I → E3 be a curve, o ∈ I and No ∈ NoX; then there
is a unique parallel normal field N : I → R3 along X with N(o) = No.

Problem 12. Prove the existence and uniqueness of parallel normal fields
for curves X : I → E in Euclidean spaces of arbitrary dimension.

Example. For the radial normal field N = −(e1 cos t + e2 sin t) along a
circular helix t 7→ X(t) = O + e1r cos t+ e2r sin t+ e3ht we have

τ = h
r2+h2 ;

hence
Ñ = N cosϕ+B sinϕ with ϕ(t) = − ht√

r2+h2

yields a parallel unit normal field along X, i.e., a curvature ribbon (X, Ñ).

Problem 13. Compute explicitely, and sketch, a unit parallel normal field
along a circular helix.
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Cor & Def. Parallel normal fields along X : I → E3 yield a linear
isometry from the normal space NoX at X(o) to the normal space
NtX at X(t). This isometry is called parallel transport along X.

Rem. This explains the term “connection” for ∇⊥: it provides a way to
identify normal planes of a curve at different points.

Proof . Fix some No ∈ NoX; by the preceding lemma there is a unique
parallel normal field N along X with N(o) = No; thus parallel normal
fields define a map

π : NoX → NtX.

As the equation ∇⊥N = 0 is linear in N , constant linear combinations of
parallel normal fields are parallel (“superposition principle”); hence π is
linear. As parallel normal fields have constant length and make constant
angles, π is an isometry.

Problem 14. Show that a curve takes values in a sphere or a plane if and
only if the curvatures κn and κg of a parallel frame satisfy the equation
of a line in the plane.
How can the radius of the sphere be read off from this equation?

1.4 Frenet curves

We conclude by discussing the “classical curve theory” of the 18th and
19th century: this is characterized by the condition κg ≡ 0.

Recall that a normal rotation (X̃, Ñ) = (X,N cosϕ+B sinϕ) of a ribbon
(X,N) results in the same rotation of the curvatures,(

κ̃n
κ̃g

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)(
κn
κg

)
;

in particular, κ̃n = −κg and κ̃g = κn for the ribbon (X, Ñ) = (X,B).
Thus the geometry of geodesic (κg ≡ 0) and of asymptotic (κn ≡ 0)
ribbons will be rather similar, though different in interpretation, as illus-
trated by the motion of an air plane during taxi and during the flight:
besides forward or backward forces (caused by change of speed), a pas-
senger experiences the forces caused by change of direction as sideways
forces during taxi, but as up- or downward forces during flight — this is
achieved by “twist” (torsion) of the plane during flight.



1.4 Frenet curves 11

Def. A curve X : I → E3 is called a Frenet curve if

∀t ∈ I : (X ′ ×X ′′)(t) 6= 0.

Rem. The Frenet condition is invariant under reparametrization.

Problem 15. Convince yourself that the Frenet condition is invariant
under reparametrization. How to generalize it to higher dimensions?

Lemma & Def. If X : I → E3 is a Frenet curve then ∀t ∈ I : T ′(t) 6= 0
and

t 7→ N(t) :=
T ′(t)
|T ′(t)|

defines a unit normal field of X: this is the principal normal field of X.

Proof . By the Frenet condition

0 6= X ′ ×X ′′ = X ′ × (|X ′|T )′ = X ′ × |X ′|T ′

Further, 0 = (|T |2)′ = 2〈T, T ′〉, showing that T ′ ⊥ T , so that N defines
a unit normal field of X.

Rem. If X is a Frenet curve then a ribbon (X,N) is a geodesic ribbon if
and only if N is, up to sign, the principal normal field of X.

Problem 16. Let X : I → E3 be a Frenet curve. Prove that (X,N) is a
geodesic ribbon if and only if ±N is the principal normal field of X.

Lemma & Def. If X is a Frenet curve with principal normal field N ,
then the structure equations of its Frenet frame F = (T,N,B) take
the form of the Frenet-Serret equations,

F ′ = F Φ with Φ = |X ′|
(

0 −κ 0
κ 0 −τ
0 τ 0

)
with the curvature κ > 0 and the torsion τ of the curve X.

Rem. Thus, for a Frenet frame, κ := κn > 0 and κg ≡ 0.

Proof . κg =
〈T ′,B〉
|X′| =

〈N |T ′|,B〉
|X′| = 0 and κn =

〈T ′,N〉
|X′| =

|T ′|
|X′| > 0.
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Example. A circular helix X(t) = O + e1r cos t + e2r sin t + e3ht is a
Frenet curve with principal normal field N(t) = −(e1 cos t+e2 sin t), and
with curvature κ = r

r2+h2 > 0 and torsion τ = h
r2+h2 .

Problem 17. Let s 7→ X(s) be an arc-length parametrized Frenet curve
and define its Darboux vector field by D := τT + κB. Prove that the
Frenet equations can be written as

T ′ = D × T, N ′ = D ×N, B′ = D ×B.
Problem 18. Express curvature κ and torsion τ of a Frenet curve in terms
of κn and κg of a parallel frame, and vice versa.

Rem. Curvature and torsion of a Frenet curve are given by

κ =
|X′×X′′|
|X′|3 and τ =

det(X′,X′′,X′′′)
|X′×X′′|2 .

In particular, they can be uniquely determined in terms of the curve alone
(without reference to a choice of normal field or frame).

Problem 19. Let X : I → E3 be a Frenet curve; prove the formulas

κ =
|X′×X′′|
|X′|3 and τ =

det(X′,X′′,X′′′)
|X′×X′′|2 .

Conclude that κ and τ are invariant under Euclidean motions of X.
[Hint: recall that κ and τ are invariant under reparametrization.]

For Frenet curves, our earlier Fundamental theorem for ribbons specializes
to a central theorem of classical curve theory:

Fundamental theorem for Frenet curves. Given two functions

κ, τ : I → R with ∀s ∈ I : κ(s) > 0,

there is an arc-length parametrized Frenet curve X : I → E3 with
curvature and torsion κ and τ , respectively.
Moreover, this curve X is unique up to Euclidean motion.

Proof . By the fundamental theorem for ribbons there is a ribbon (X,N)
with |X ′|2 ≡ 1, κn = κ, κg ≡ 0 and torsion τ ; this ribbon is unique up
to Euclidean motion. By the structure equations T ′ = Nκ 6= 0, hence

• X is Frenet, X ′ ×X ′′ = T × T ′ = Bκ 6= 0, and

• N is its principal normal field, N = T ′ 1
κ = T ′

|T ′| .
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Rem. There is a similar, simpler statement for planar curves X : I → E2,
where only one function s 7→ κ(s) appears.

Problem 20. Formulate a Fundamental theorem for curves X : I → E2;
prove it without using the Picard-Lindelöf Theorem.

Example. Let κ > 0 and τ ∈ R be two numbers; by the Fundamental
Theorem for Frenet curves, there is a unique (up to Euclidean motion)
arc length parametrized Frenet curve X : I → E3 with curvature κ and
torsion τ . On the other hand, we know that the circular helix

s 7→ X(s) = O + e1r cos s√
r2+h2

+ e2r sin s√
r2+h2

+ e3
hs√
r2+h2

,

where
r = κ

κ2+τ2 and h = τ
κ2+τ2 ,

is a curve with the given curvature and torsion. Thus every curve with
constant curvature and torsion is a circular helix:

Thm (Classification of circular helices). A Frenet curve is a circular
helix if and only if it has constant curvature and torsion.
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2 Surfaces

After discussing the core concepts of connection and curvature for curves
we now turn to the more complex topic of surfaces: the core concepts
remain the same, but the presence of “integrability conditions” for the
involved differential equations enriches the theory — or, otherwise said,
makes it more complicated. Most notably, a fundamental theorem for
surfaces will be considerably more complex than the corresponding theo-
rem(s) for curves/ribbons.

Again, we shall restrict ourselves to the core concepts, with a view to gen-
eralization to higher dimensions; consequently, we will omit some beau-
tiful topics, such as the Gauss-Bonnet theorem for closed surfaces.

2.1 Parametrization & Metric

As for curves, there is a variety of ways to describe surfaces in a Euclidean
space E3; again, it will be convenient to adopt a parametric description:

Def. A (parametrized) surface is a map X : R2 ⊃M → E3 of an open
connected domain M ⊂ R2 into a Euclidean space E3 that is regular,
i.e.,

∀(u, v) ∈M : d(u,v)X : R2 → R3 injects.

We also say: X is a parametrization of the surface X(M) ⊂ E3.

Rem. Here d(u,v)X : R2 → R3 is the derivative of X at (u, v) ∈M ,

X(u+ x, v + y) = X(u, v) + d(u,v)X
(
x
y

)
+ o(
(
x
y

)
)

= X(u, v) +Xu(u, v)x+Xv(u, v) y + o(x, y);

thus we may identify dX ' (Xu, Xv) with the pair of partial derivatives
or, after a choice of basis of R3, with the Jacobian matrix of X.

Hence d(u,v)X injects iff (Xu, Xv)(u, v) is linearly independent or, as

dimR3 = 3, equivalently (Xu ×Xv)(u, v) 6= 0.

Example. A helicoid X : R2 → E3 is the (ruled) surface

R2 3 (r, v) 7→ X(r, v) := O + e1r cos v + e2r sin v + e3v ∈ E3.
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Problem 1. Let (O; e1, e2, e3) be a cartesian reference system of E3 and
let 0 < r < R; prove that the torus T 2 ⊂ E3 is a surface, where

T 2 := {O + e1x1 + e2x2 + e3x3 | (
√
x2

1 + x2
2 −R)2 + x2

3 = r2}.

Example. A common “parametrization” of the 2-sphere S2 ⊂ E3 is given
by

X(u, v) := O + e1 cosu cos v + e2 cosu sin v + e3 sinu;

however, X ceases to be regular for cosu = 0 and sinu = ±1, i.e., at
the “poles” of the sphere. This problem is symptomatic and cannot be
resolved: there is no parametrization of the whole sphere at once.

This weakness of our definition of a surface can (later) be resolved by the
notion of a submanifold.

Problem 2. Let a ≥ b ≥ c > 0; show that the (twice punctured) ellipsoid

E2 = {O + e1x+ e2y + e3z | ( xa )2 + ( yb )2 + ( zc )2 = 1, |z| < c}
is a surface by finding a regular (prove it) parametrization.

Motivation. At any point X(u, v) of a parametrized surface X : M → E3

its derivative d(u,v)X : R2 → R3 can be used to identify tangent vectors

Y = Xu(u, v)x+Xv(u, v) y = d(u,v)X
(
x
y

)
with

(
x
y

)
∈ R2;

to compute the length of, and angle between, tangent vectors it is then
convenient to “pull back” the inner product of R3:

Def & Lemma. The (induced) metric or first fundamental form of a
parametrized surface X : M → E3 is defined by

I := 〈dX, dX〉;
for (u, v) ∈M , it yields a positive definite symmetric bilinear form

R2 ×R2 3 (
(
x1

y1

)
,
(
x2

y2

)
) 7→ 〈d(u,v)X

(
x1

y1

)
, d(u,v)X

(
x2

y2

)
〉 ∈ R.

Proof . Clearly, I|(u,v) : R2 × R2 → R is a symmetric bilinear form.
Further

I|(u,v)(
(
x
y

)
,
(
x
y

)
) = |d(u,v)X

(
x
y

)
|2 > 0

for
(
x
y

)
∈ R2 \ {0} since d(u,v)X : R2 → R3 injects.
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Notation & Rem. The first fundamental form is often written in terms
of its Gram matrix, as

I = E du2 + 2F du dv +Gdv2 or I =
(
E F
F G

)
with E := |Xu|2, F := 〈Xu, Xv〉 and G := |Xv |2. Then, at (u, v) ∈M ,

I|(u,v)(
(
x1

y1

)
,
(
x2

y2

)
) =
(
x1

y1

)t ( E(u, v) F (u, v)
F (u, v) G(u, v)

)(
x2

y2

)
.

Examples.

(1) A cylinder (u, v) 7→ X(u, v) := O + e1x(u) + e2y(u) + e3v has
induced metric

I = (x′2 + y′2) du2 + dv2;

in particular, if its profile curve u 7→ O + e1x(u) + e2y(u) is arc-
length parametrized, then X is isometric (length preserving),

I = du2 + dv2.

(2) The helicoid (r, v) 7→ X(r, v) = O + e1r cos v + e2r sin v + e3v has
induced metric

I|(r,v) = dr2 + (1 + r2) dv2;

using a reparametrization r = r(u) = sinhu (satisfying 1+r2 = r′2)
we obtain

I|(u,v) = cosh2(u) (du2 + dv2),

that is, (u, v) 7→ X(r(u), v) is conformal (angle preserving).

Problem 3. Compute the induced metric of the catenoid

(u, v) 7→ X(u, v) := O + e1 coshu cos v + e2 coshu sin v + e3u.

Def. A parametrized surface X : M → E3 is called

• conformal if E = G and F = 0;

• isometric if E = G = 1 and F = 0.

Problem 4. Find a conformal parametrization X : R2 → E3 of the unit
sphere with its north pole removed [Hint: stereographic projection].

Rem. A parametrization is conformal iff it preserves angles, i.e., iff the
angle of any two tangent vectors of the surface can be measured in R2.

Problem 5. Prove: a parametrization is conformal iff it preserves angles.
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Motivation. We know (Sect 1.1): any curve can be (re-)parametrized
by arc-length, i.e., isometrically. For surfaces, isometric parametrizations
are very special, an do not normally exist (not even locally) — we shall
see later what the obstructions are. In contrast to this:

Thm. Any surface admits locally a conformal (re-)parametrization.

Rem. This theorem is the key to treat (real) surfaces as complex curves:
a viewpoint that has far reaching consequences in surface theory.

Rem. A proof of this theorem is beyond this text; a beautiful proof uses
techniques from Complex (and Functional) Analysis.

To understand the statement: “locally” means that, for any (u, v) ∈M ,
the domain M can be reduced to a neighbourhood of (u, v) so that the
statement holds; and a “reparametrization” is defined as for curves:

Def. A reparametrization of a parametrized surface X : M → E3 is a
new parametrized surface

X̃ = X ◦ (u, v) : M̃ → E3 with a diffeomorphism (u, v) : M̃ →M,

i.e., a smooth bijection with smooth inverse (u, v)−1 : M → M̃ .

Rem. If (x, y) 7→ X̃(x, y) = X(u(x, y), v(x, y)) ∈ E3 then, by chain rule,

X̃x × X̃y = ((Xu ×Xv) ◦ (u, v)) · det
(
ux uy
vx vy

)
;

thus a reparametrization of a parametrized surface is regular.

2.2 Gauss map & Shape operator

A surface X : M → E3 has, at every point X(u, v), a tangent plane and
a normal line,

T (u, v) = X(u, v) + [{Xu(u, v), Xv(u, v)}] and

N (u, v) = X(u, v) + [(Xu ×Xv)(u, v)],

which corresponds to the orthogonal decomposition

R3 = [{Xu, Xv}](u, v)⊕⊥ [Xu ×Xv ](u, v)

of R3 into a tangent resp normal space of the surface:
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Def. The tangent and normal bundles of a surface X : M → E3 are
given by the maps

(u, v) 7→ T(u,v)X := [{Xu, Xv}](u, v) resp

(u, v) 7→ N(u,v)X := [Xu ×Xv ](u, v);

a map Y : M → R3 is called

• a tangent field along X if ∀(u, v) ∈M : Y (u, v) ∈ T(u,v)X, and

• a normal field along X if ∀(u, v) ∈M : Y (u, v) ∈ N(u,v)X.

The Gauss map ofX is the unit normal fieldN := Xu×Xv
|Xu×Xv | : M → R3.

Example. Consider a surface of revolution

(u, v) 7→ X(u, v) := O + e1r(u) cos v + e2r(u) sin v + e3h(u);

each profile curve (meridian) v ≡ const is the orthogonal intersection
of the surface with the plane x sin v = y cos v; hence we obtain the Gauss
map N by rotating the unit tangent field of the meridians by 90◦:

(u, v) 7→ N(u, v) =
−(e1 cos v+e2 sin v)h′(u)+e3r

′(u)√
(r′2+h′2)(u)

.

Rem. The Gauss map of a parametrized surface is a geometric object:
after a Euclidean motion, X̃ = Õ+A(X−O) with A ∈ SO(3), we obtain

Ñ =
(AXu)×(AXv)
|(AXu)×(AXv)| = AN.

that is, the Gauss map rotates with the surface. A reflection will change
the sign, as may a reparametrization do (e.g., swap of parameters).

This reflects that a unit vector N(u, v) ∈ N(u,v)X is unique up to sign.

Rem. Orientability issues do not arise in our setting: the Gauss map of
a parametrized surface is well defined — a non-orientable surface, e.g.,
a Möbius strip, may be described by a doubly covering parametrization.

Problem 6. Let r > 0 and define a parametrization of a Möbius strip by

X(u, v) := O + (e1 cos 2u+ e2 sin 2u)(r + v cosu) + e3v sinu.

Prove that X(u+ π, 0) = X(u, 0) but N(u+ π, 0) = −N(u, 0).
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Motivation. The normal curvature κn of a ribbon (X,N) is given by the
equation

0 = N ′T + T |X ′|κn = N ′T +X ′κn,

where t 7→ N ′T (t) ∈ TtX denotes the tangential part of the derivative.

In a similar way, the curvature or “shape” of a surface X : M → E3 with
Gauss map N : M → R3 can be described:

Lemma & Def. The Gauss map N of a surface X differentiates into
the tangent bundle,

∀(u, v) ∈M : d(u,v)N : R2 → T(u,v)X.

Hence we define the shape operator of X at (u, v) ∈M by

S|(u,v) := −d(u,v)N ◦ (d(u,v)X)−1 ∈ End(T(u,v)X).

Proof . Firstly, N differentiates into the tangent bundle TX = {N}⊥
since

1 ≡ |N |2 ⇒ 0 = d(|N |2) = 2〈N, dN〉.
Since d(u,v)X : R2 → R3 injects for (u, v) ∈M , it yields an isomorphism

d(u,v)X : R2 → T(u,v)X ⊂ R3

that can be inverted to obtain a linear map (d(u,v)X)−1 : T(u,v)X → R2;

composition with the linear map −d(u,v)N : R2 → T(u,v)X yields an
endomorphism S|(u,v) ∈ End(T(u,v)X), showing that S is well defined.

Rem. The map (u, v) 7→ S|(u,v) yields an endomorphism field along X;
S is also called the Weingarten tensor field of the surface X;

Rem. As (Xu(u, v), Xv(u, v)) yields a basis of T(u,v)X for (u, v) ∈ M ,
we may determine the shape operator by its values on the basis vectors,

S(Xu) = S(dX(
(

1
0

)
)) = −dN(

(
1
0

)
) = −Nu and S(Xv) = −Nv .

Lemma. S|(u,v) ∈ End(T(u,v)X) is symmetric for each (u, v) ∈M .

Proof . We verify symmetry on the basis (Xu(u, v), Xv(u, v)) of T(u,v)X:
as N ⊥ Xu, Xv we obtain

0 = 〈Xu, N〉v = 〈Xuv , N〉+ 〈Xu, Nv〉 = 〈Xuv , N〉 − 〈Xu, SXv〉,
0 = 〈Xv , N〉u = 〈Xvu, N〉+ 〈Xv , Nu〉 = 〈Xvu, N〉 − 〈Xv ,SXu〉;

hence 〈Xu, SXv〉 = 〈SXu, Xv〉 since Xuv = Xvu.
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Problem 7. Determine the Gauss map and shape operator of the helicoid.

Motivation. As the normal curvature κn of a ribbon, the shape operator
S may be defined by the equation

0 = dN + S ◦ dX = dNT + S ◦ dX,
thus suggesting that it encodes the curvature(s) of a surface:

Def. Let S denote the shape operator of X : M → E3; then:

• H := 1
2 tr S is the mean curvature of X;

• K := detS is the Gauss curvature of X; and

• the eigenvalues κ± = H ±
√
H2 −K and eigendirections of S are

the principal curvatures resp curvature directions of the surface X.

Rem. Note that H = 1
2 (κ+ + κ−), hence “mean curvature”.

Example. For a surface of revolution with arc-length parametrized profile
curve,

X(u, v) = O + e1r(u) cos v + e2r(u) sin v + e3h(u)

with r′2 + h′2 ≡ 1, we obtain the Gauss map (see above)

N(u, v) = −e1h
′(u) cos v − e2h

′(u) sin v + e3r
′(u);

now r′r′′+h′h′′ = 0 yields h′(r′h′′−r′′h′)+r′′ = r′(r′h′′−r′′h′)−h′′ = 0
so that

Nu +Xu(r′h′′ − r′′h′) = Nv +Xv
h′
r = 0.

Thus Xu and Xv yield curvature directions with principal curvatures

κ+ = r′h′′ − r′′h′ and κ− = h′
r

and, with r′r′′ + h′h′′ = 0 again, the Gauss curvature of X simplifies to

K = − r
′′
r .

Problem 8. Compute mean and principal curvatures of the helicoid.

Problem 9. Compute the Gauss curvatures of the helicoid and catenoid.

Rem. The shape operator and curvatures are geometric objects:

• if X̃ = X ◦ (u, v) is reparametrization of X and Ñ = N ◦ (u, v) then

S̃ = −(d(u,v)N ◦ d(u, v)) ◦ (d(u,v)X ◦ d(u, v))−1 = S|(u,v),
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hence, in particular, H̃ = H ◦ (u, v), K̃ = K ◦ (u, v), etc

• if X̃ = Õ +A(X −O) with A ∈ SO(3) is a Euclidean motion of X
then

S̃ = −(A ◦ dN) ◦ (A ◦ dX)−1 = A ◦ S ◦A−1,

hence the curvatures remain unchanged but the curvature directions
“rotate with the surface”.

Def. A point X(u, v) of a surface X : M → E3 is called

• umbilic if κ+(u, v) = κ−(u, v), i.e., if (H2 −K)(u, v) = 0;

• flat point if κ+(u, v) = κ−(u, v) = 0.

Rem. A point X(u, v) is an umbilic or a flat point if and only if

S|(u,v) = H(u, v) idT(u,v)X
resp S|(u,v) = 0.

Example. Suppose (u, v) 7→ X(u, v) takes values in a fixed plane,

π = {X ∈ E3 | 〈X −O,n〉 = d}, i.e., 〈dX, n〉 ≡ 0;

then N ≡ ±n, hence S ≡ 0 and every point of X is a flat point.

Conversely, if every point is a flat point, S ≡ 0, then N ≡ const and X
takes values in a fixed plane as, with some origin O ∈ E3,

0 = 〈dX,N〉 = d〈X −O,N〉.

Problem 10. Prove that all points of a sphere of radius r > 0 are umbilics
and compute its Gauss curvature.

Matrix representation. Using (Xu, Xv) as a tangential basis field, the
shape operator S can be written as a matrix:

(SXu,SXv) = −(Nu, Nv) = (Xu, Xv)
(
s11 s12

s21 s22

)
,

hence taking inner products with Xu and Xv yields(
e f
f g

)
:=
(
−〈Xu , Nu〉 −〈Xu , Nv〉
−〈Xv , Nu〉 −〈Xv , Nv〉

)
=
(
E F
F G

)(
s11 s12

s21 s22

)
,

that is, the (symmetric) Gram matrix of the second fundamtental form:
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Def & Lemma. The second fundamental form of a surface X : M → E3

is defined by
II := −〈dX, dN〉;

for each (u, v) ∈M , it yields a symmetric bilinear form

R2 ×R2 3 (
(
x1

y1

)
,
(
x2

y2

)
) 7→ −〈d(u,v)X

(
x1

y1

)
, d(u,v)N

(
x2

y2

)
〉 ∈ R.

Proof . Clearly, II|(u,v) is a bilinear form on R2. Further,

−〈Xu, Nv〉 = 〈Xuv , N〉 = 〈Xvu, N〉 = −〈Xv , Nu〉,
showing that II is symmetric.

Problem 11. Determine the second fundamental form of the helicoid.

Problem 12. Investigate how the first and second fundamental forms
change under Euclidean motion and under reparametrization.

Rem. Thus, given the first fundamental form I, the shape operator S can
be computed from the second fundamental form II, and vice versa.

Warning. Even though S is a symmetric endomorphism, its matrix(
s11 s12

s21 s22

)
=
(
E F
F G

)−1 ( e f
f g

)
= 1

EG−F 2

(
Ge− Ff Gf − Fg
Ef − Fe Eg − Ff

)
is usually not symmetric (as (Xu, Xv) is not orthonormal, in general).

Rem. Note that the Gauss curvature K = eg−f2

EG−F 2 .

2.3 Covariant differentiation & Curvature tensor

Similarly to the normal connection of a curve we define a “connection”
for tangent vector fields along a surface:

Def. The covariant derivative of a tangent field Y : M → R3 along a
surface X : M → E3 is the tangential part of its derivative,

∇Y := (dY )T = dY −N 〈dY,N〉,
where ∇ denotes the Levi-Civita connection along X.

Rem. Note that 〈Xuu, N〉 = −〈Xu, Nu〉 = e, etc, consequently

∇∂
∂u
Xu = Xuu −Ne and ∇∂

∂v
Xu

∇∂
∂v
Xv = Xvv −Ng and ∇∂

∂u
Xv

}
= Xuv −Nf.
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Lemma. The Levi-Civita connection satisfies the Leibniz rule,

∇(Y x) = (∇Y )x+ Y dx for any function x : M → R,

and is metric,
d〈Y,Z〉 = 〈∇Y,Z〉+ 〈Y,∇Z〉.

Proof . The Leibniz rule for scalar factors: by the usual product rule

d(Y x) = (dY )x+ Y dx hence ∇(Y x) = (dY )T x+ Y dx;

∇ is metric: if Y, Z are tangent fields then 〈dY, Z〉 = 〈∇Y,Z〉, hence

d〈Y, Z〉 = 〈dY, Z〉+ 〈Y, dZ〉 = 〈∇Y, Z〉+ 〈Y,∇Z〉

by the usual Leibniz rule for the inner product.

Matrix representation. As the covariant derivative of a tangent field is
tangential we obtain, in particular, for the basis fields Xu and Xv ,

∇∂
∂u

(Xu, Xv) = (Xu, Xv) Γ1

∇∂
∂v

(Xu, Xv) = (Xu, Xv) Γ2

}
with Γi =

(
Γ1
i1 Γ1

i2

Γ2
i1 Γ2

i2

)
; (∗)

thus, for a general tangent field Y = Xux+Xvy = dX
(
x
y

)
,

∇∂
∂u
Y = dX(( ∂

∂u + Γ1)
(
x
y

)
) and ∇∂

∂v
Y = dX(( ∂

∂v + Γ2)
(
x
y

)
) (∗∗)

or, otherwise said,

∇∂
∂u
◦ dX = dX ◦ ( ∂

∂u + Γ1) and ∇∂
∂v
◦ dX = dX ◦ ( ∂

∂v + Γ2).

Note that, for
(
x
y

)
=
(

1
0

)
and
(
x
y

)
=
(

0
1

)
, we recover (∗) from (∗∗).

Warning. ∇∂
∂u

and∇∂
∂v

are differential operators (not endomorphisms),

even though we may use matrices to describe them!

Def & Lemma. Γkij are called the Christoffel symbols of X; they are
symmetric,

Γkij = Γkji.

Proof . ∇∂
∂u
Xv = (Xvu)T = (Xuv)T = ∇∂

∂v
Xu yields symmetry.
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Koszul’s formulas. With matrices I :=
(
E F
F G

)
and J :=

(
0 −1
1 0

)
we

have 1
2 Iu −

Ev−Fu
2 J = IΓ1 and 1

2 Iv + Gu−Fv
2 J = IΓ2.

Proof . Multiplication of ∇∂
∂u
Xu = XuΓ1

11 + XvΓ2
11 with Xu and Xv

yields

EΓ1
11 + FΓ2

11 = 〈Xu, Xuu〉 = 1
2Eu,

FΓ1
11 +GΓ2

11 = 〈Xv , Xuu〉 = Fu − 〈Xu, Xvu〉
= Fu − 1

2Ev ;

the other equations are obtained in a similar way.

Cor. The Christoffel symbols Γkij depend on the induced metric I only.

Example. For an isometric parametrization, E = G ≡ 1 and F ≡ 0,
Koszul’s formulas yield Γkij = 0.

Problem 13. Compute the Christoffel symbols of a conformally para-
metrized surface.

Using the Levi-Civita connection we introduce a new kind of “curvature”,
the curvature tensor of a surface:

Def. For a tangent field Y : M → R3 along a surface X : M → E3

we define
RY := ∇∂

∂u
∇∂
∂v
Y −∇∂

∂v
∇∂
∂u
Y ;

R is called the curvature tensor of X.

Rem. This is a simplified version of the “true” curvature tensor, which is
sufficient in our setting of 2-dimensional surfaces though.

Lemma. R is a skew symmetric tensor of the tangent bundle TX, that
is, R|(u,v) ∈ End(T(u,v)X) is skew symmetric for each (u, v) ∈M , and

R(Y x) = (RY )x for any function x : M → R.

Proof . Clearly R|(u,v) ∈ End(T(u,v)X) for each (u, v) ∈M ; to see skew
symmetry observe that

1
2 (|Y |2)vu = 〈Y,∇∂

∂u
∇∂
∂v
Y 〉+ 〈∇∂

∂u
Y,∇∂

∂v
Y 〉,
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hence
〈Y,RY 〉 = 1

2 (|Y |2)vu − 1
2 (|Y |2)uv = 0.

To see that R is a tensor, R(Y x) = (RY )x, is a straightforward compu-
tation using the Leibniz rule for the Levi-Civita connection.

Problem 14. Verify that the curvature tensor of a surface is a tensor.

Matrix representation. To determine the matrix representation of the
curvature tensor in terms of the basis field (Xu, Xv) first recall that

∇∂
∂u
◦ dX = dX ◦ ( ∂

∂u + Γ1) and ∇∂
∂v
◦ dX = dX ◦ ( ∂

∂v + Γ2);

consequently, for Xu = dX
(

1
0

)
and Xv = dX

(
0
1

)
,

RXu = dX((( ∂
∂u + Γ1)( ∂

∂v + Γ2)− ( ∂
∂v + Γ2)( ∂

∂u + Γ1))
(

1
0

)
)

= dX((Γ2u − Γ1v + [Γ1, Γ2])
(

1
0

)
) and

RXv = dX((Γ2u − Γ1v + [Γ1, Γ2])
(

0
1

)
),

where [Γ1, Γ2] := Γ1Γ2−Γ2Γ1 denotes the commutator of matrices; thus

(RXu,RXv) = (Xu, Xv)(Γ2u − Γ1v + [Γ1, Γ2]).

On the other hand, taking inner products with Xu and Xv and using the
skew symmetry of R, we learn that there is a function % : M → R so
that (

0 −%
% 0

)
=
(
E F
F G

)
(Γ2u − Γ1v + [Γ1, Γ2]).

Note that % depends on the induced metric I only.

Problem 15. Show that RY = 1
r2 Y × (Xu ×Xv) if X : M → E3 takes

values in a sphere of radius r > 0, i.e., if |X−Z|2 ≡ r2 for some Z ∈ E3.
[Hint: compute ∇Y directly from the definition, using N = ± 1

rX.]

2.4 The Gauss-Codazzi equations

As for ribbons, an adapted (moving) frame F = (Xu, Xv , N) may be
used to investigate the geometry of a parametrized surface X : M → E3;
its structure equations, encoding the “shape” of a surface, can then be ex-
pressed in terms of notions from the previous sections: the induced metric,
the shape operator/second fundamental form and covariant derivative:
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Def & Lemma. The (adapted) frame of a surface X : M → E3 is the
map

F = (Xu, Xv , N) : M → Gl(R3);

its structure equations take the form

Fu = FΦ

Fv = FΨ

}
with Φ =

(
Γ1

11 Γ1
12 −s11

Γ2
11 Γ2

12 −s21

e f 0

)
and Ψ =

(
Γ1

21 Γ1
22 −s12

Γ2
21 Γ2

22 −s22

f g 0

)
.

These are the Gauss-Weingarten equations of the surface X : M → E3.

Warning. Note that, in general, F : M 6→ SO(3).

Remark/Proof. The claim follows directly from the definitions of the
Christoffel symbols Γkij , the (components sij of the) shape operator S,

and the (coefficients of the) second fundamental form II. Note that, for
example,

〈Xuu, N〉 = −〈Xu, Nu〉 = e.

Classically, the Gauss-Weingarten equations are written without matrices:

Xuu = ∇∂
∂u
Xu +Ne = XuΓ1

11 +XvΓ2
11 +Ne,

Xvu = ∇∂
∂u
Xv +Nf = XuΓ1

12 +XvΓ2
12 +Nf,

Xvv = ∇∂
∂v
Xv +Ng = XuΓ1

22 +XvΓ2
22 +Ng;

and Nu = −SXu = −(Xus11 +Xvs21),

Nv = −SXv = −(Xus12 +Xvs22),

where (
s11 s12

s21 s22

)
= 1

EG−F 2

(
Ge− Ff Gf − Fg
Ef − Fe Eg − Ff

)
.

Integrability of the adapted frame, Fuv = Fvu, then yields two central
equations of surface theory:

Gauss-Codazzi equations. For a parametrized surface X : M → E3

(G) 〈Xu,RXv〉 = K (EG− F 2) — Gauss equation,

(C) (∇∂
∂u

S)Xv = (∇∂
∂v

S)Xu — Codazzi equation,

where ∇S denotes the covariant derivative of the shape operator, for a
tangent field Y ,

(∇S)Y := ∇(SY )− S(∇Y ).
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Rem. The partial covariant derivatives ∇∂
∂u

S and ∇∂
∂v

S of the shape

operator are tensor fields on TX, e.g., ∇∂
∂u

S|(u,v) ∈ End(T(u,v)X) and

∇∂
∂u

S(Y x) = ∇∂
∂u

S(Y )x for any function x : M → R.

Problem 16. Verify that the partial covariant derivatives of the shape
operator yield tensor fields on the tangent bundle.

Proof . First compute, with f = −〈Nv , Xu〉 and e = −〈Nu, Xu〉 of the
second fundamental form,

(Xu)vu = (∇∂
∂v
Xu +Nf)u

= (∇∂
∂u
∇∂
∂v
Xu +Nuf) + N (fu + 〈N, (∇∂

∂v
Xu)u〉)

= (∇∂
∂u
∇∂
∂v
Xu +Nuf) + N (fu − 〈Nu,∇∂

∂v
Xu〉),

(Xu)uv = (∇∂
∂v
∇∂
∂u
Xu +Nve) + N (ev − 〈Nv ,∇∂

∂u
Xu〉

to deduce

0 = (RXu −Nve+Nuf)

+ N ((fu + 〈Nv ,∇∂
∂u
Xu〉)− (ev + 〈Nu,∇∂

∂v
Xu〉))

= (RXu −Nve+Nuf)−N 〈∇∂
∂u
Nv −∇∂

∂v
Nu, Xu〉.

Hence, taking inner products with Xu and Xv yields

〈RXu, Xu〉 = 0 and 〈RXu, Xv〉+ (eg − f2) = 0,

where the first equation is trivial by the skew symmetry of R and the
second yields the Gauss equation. The normal part, on the other hand,
yields

0 = 〈∇∂
∂u

SXv −∇∂
∂v

SXu, Xu〉.

In a similar way, (Xv)uv = (Xv)vu yields

0 = (RXv +Nug −Nvf)−N 〈∇∂
∂u
Nv −∇∂

∂v
Nu, Xv〉;

the tangential part only reproduces the Gauss equation, and the normal
part yields

0 = 〈∇∂
∂u

SXv −∇∂
∂v

SXu, Xv〉.

Thus ∇∂
∂u

SXv = ∇∂
∂v

SXu and, using ∇∂
∂u
Xv = ∇∂

∂v
Xu, we obtain the

Codazzi equation.
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Rem. Fuv = Fvu yields no further equations beyond the Gauss-Codazzi
equations: Nuv = Nvu is equivalent to the Codazzi equation.

Problem 17. Let N denote that Gauss map of a surface X : M → E3;
prove that Nuv = Nvu is equivalent to the Codazzi equation.

Matrix representation. With the matrix representation of the curvature
tensor,

(RXu,RXv) = (Xu, Xv)(Γ2u − Γ1v + [Γ1, Γ2]),

the Gauss equation reads

K(EG− F 2) =
(

1
0

)t ( E F
F G

)
(Γ2u − Γ1v + [Γ1, Γ2])

(
0
1

)
= −%,

or, by the skew symmetry of the curvature tensor,(
E F
F G

)
(Γ2u − Γ1v + [Γ1, Γ2]) = −K(EG− F 2) J with J :=

(
0 −1
1 0

)
.

The Codazzi equation was verified using

0 = fu + 〈Nv ,∇∂
∂u
Xu〉 − ev − 〈Nu,∇∂

∂v
Xu〉

= fu − (f, g)Γ1

(
1
0

)
− ev + (e, f)Γ2

(
1
0

)
;

a similar equation is readily derived for gu − fv to obtain

(f, g)u − (f, g)Γ1 = (e, f)v − (e, f)Γ2

as a version of the Codazzi equation in terms of the second fundamental
form. In terms of the columns σi of the matrix of the shape operator,

0 = Nu + (Xu, Xv)σ1 = Nv + (Xu, Xv)σ2,

the Codazzi equation can be expressed as

σ2u + Γ1σ2 = σ1v + Γ2σ1.

Problem 18. Let Σ denote the matrix of the shape operator; prove that
the partial covariant derivatives, ∇∂

∂u
S and ∇∂

∂v
S, have matrix represen-

tations
Σu + [Γ1,Σ] and Σv + [Γ2,Σ],

and derive an a expression of the Codazzi equation in terms of these.

Rem. In orthogonal coordinates, I = E du2 +Gdv2, the Gauss equation
reads

0 = K
√
EG+ (

(
√
G)u√
E

)u + (
(
√
E)v√
G

)v ;
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in particular, for a conformal parametrization, 0 = 2EK + ∆ lnE.

Problem 19. Verify the Gauss equation for orthogonal coordinates.

As a consequence of the Gauss-Codazzi equations we obtain one of the
most prominent theorems in surface theory:

Gauss’ theorema egregium. K depends on I only.

Proof . By the Gauss equation K = − %
EG−F 2 , where % only depends on

the induced metric.

Cor. If a surface admits an isometric (re-)parametrization then, nec-
essarily, its Gauss curvature vanishes, K ≡ 0.

Proof . For an isometric parametrization all Γkij = 0, hence R ≡ 0 and,
consequently, K ≡ 0. As the Gauss curvature is a geometric invariant
of a surface, K̃ = K ◦ (u, v) for a reparametrization X̃ = X ◦ (u, v),
we necessarily have K ≡ 0 as soon as a surface admits an isometric
(re-)parametrization.

Example. If X : M → E3 takes values in a sphere of radius r > 0 then
K ≡ 1

r2 6= 0, hence X does not admit (local) isometric parametrizations.

As another consequence of the Gauss-Codazzi equations a classification
of surfaces all of whose points are umbilics is obtained.

Example. If X : M → E3 takes values in a sphere or a plane in E3 then
all of its points are umbilics.

Def. A surface is called totally umbilic if every point is an umbilic.

Thm. Any totally umbilic surface is (part of) a plane or a sphere.

Proof . If X : M → E3 is totally umbilic then, for all (u, v) ∈M ,

S(u,v) = H(u, v) idT(u,v)X

and the Codazzi equation reads

0 = (∇∂
∂u

S)Xv − (∇∂
∂v

S)Xu = HuXv −HvXu.
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Hence Hu = Hv ≡ 0 so that H ≡ const.
If H ≡ 0 then N ≡ const and the surface is part of a plane.

If H ≡ const 6= 0 then Z := X + 1
HN ≡ const and |X − Z|2 ≡ 1

H2 ,

showing that X takes values in a sphere of radius 1
|H| centred at Z.

Problem 20. Suppose that X : M → E3 parametrizes a surfaces so that
Xu and Xv yield curvature directions, 0 = Nu + κ+Xu = Nv + κ−Xv .
Prove: the Codazzi equation(s) reads

0 = κ+
v + Ev

2E (κ+ − κ−) = κ−u − Gu
2G (κ+ − κ−).

Recall. The Gauss-Codazzi equations are the compatibility conditions of
the Gauss-Weingarten equations of a surface X : M → E3 with Gauss
map N ,

Fu = FΦ, Fv = FΨ for F = (Xu, Xv , N), (∗)
where Φ and Ψ only depend on the first and second fundamental forms
I and II of X: the Gauss-Codazzi equations are equivalent to

0 = F−1(Fvu − Fuv) = Ψu − Φv + [Φ,Ψ]. (∗∗)
Thus we obtain the following theorem, usually attributed to O Bonnet:

Fundamental theorem for Surfaces. Given symmetric bilinear forms

I =
(
E F
F G

)
and II =

(
e f
f g

)
,

with I positive definite and satisfying the Gauss-Codazzi equations,
there is (locally) a surface X with I and II as its first and second
fundamental forms.
Moreover, this surface is unique up to Euclidean motion.

Rem. In contrast to the fundamental theorems for curves, here we need to
require the Gauss-Codazzi equations as necessary and, locally, sufficient
compatibility conditions for the existence of a surface X.

Proof . To formulate the Gauss-Weingarten equations (∗) we use I and
II to determine the matrices Σ = I−1II of the shape operator and Γi, by
Koszul’s formulas

IΓ1 = 1
2 Iu −

Ev−Fu
2 J and IΓ2 = 1

2 Iv + Gu−Fv
2 J.
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The integrability conditions (∗∗) become the Gauss-Codazzi equations

(G) I (Γ2u − Γ1v + [Γ1, Γ2]) = −(eg − f2) J (Gauss equation), and

(C) (f, g)u − (f, g) Γ1 = (e, f)v − (e, f) Γ2 (Codazzi equation).

Thus, by the Maurer-Cartan lemma, the Gauss-Weingarten equations (∗)
admit a local solution, (u, v) 7→ F (u, v) = (F1, F2, F3)(u, v) ∈ Gl(3),
that is unique up to post-composition by a constant A ∈ Gl(3).

Since Γkij = Γkji and II is symmetric, F1v = F2u by the Gauss-Weingarten
equations; hence, by the Poincaré lemma, locally

Xu = F1 and Xv = F2.

with a map (u, v) 7→ X(u, v) ∈ E3, that is unique up to translation.

We seek: X has first fundamental form I and F3 is a unit normal field.
As

((F t)−1
(

I 0
0 1

)
F−1)u = (F t)−1

(
Iu − IΓ1 − Γt1I 0

0 0

)
F−1 = 0

by Koszul’s formulas, and similarly for the v-deritative, we learn that

(F t)−1
(

I 0
0 1

)
F−1 ≡ const, hence F tF =

(
I 0
0 1

)
as soon as we fix the constant of integration, A ∈ Gl(3), so that F satisfies
this equation at an initial point; this choice fixes F up to A ∈ O(3) as

F tF = F̃ tF̃ = F tAtAF ⇒ AtA = idR3 .

We seek: N := F3 is the Gauss map of X. By the above choice F3

is already a unit normal field and detF = ±
√
EG− F 2 does nowhere

vanish, hence all we ask is

〈Xu ×Xv , N〉 = det(Xu, Xv , N) = detF > 0,

which can be achieved by possibly post-composing F with a reflection;
this further choice fixes F up to post-composition with A ∈ SO(3).

Finally, we seek: X has second fundamental form II. This follows directly
from the construction of Φ and Ψ and the above choices as, for example,

〈Xuu, N〉 = 〈F1u, F3〉 = 〈F1Γ1
11 + F2Γ2

11 + F3e, F3〉 = e.

Moreover, after the above choices, X is unique up to Euclidean motion,
X 7→ Õ +A(X −O) with A ∈ SO(3) and O, Õ ∈ E3.
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3 Curves on surfaces

We now turn to curves on surfaces, where our notions of special rib-
bons (asymptotic, geodesic, curvature wibbons) will become useful be-
yond what we discussed in the first section. The key observation is that
a curve on a surface comes with a natural unit normal field, given by the
Gauss map of the surface.

However, the analysis of curves on surfaces has wider geometric impli-
cations, when considering parametrizations so that all “parameter lines”
have special geometric properties. For example, we will see that the van-
ishing of the Gauss curvature is not only a necessary condition for the
existence of local isometric (re-)parametrizations (theorema egregium),
but also a sufficient criterion (Minding’s theorem below).

3.1 Natural ribbon & Special lines on surfaces

If X : R2 ⊃M → E3 is a (parametrized) surface then the composition

I 3 t 7→ X(u(t), v(t)) ∈ E3

with a map (u, v) : I → M defines a curve on the surface X(M) ⊂ E3

as soon as X ◦ (u, v) is regular, that is, as soon as (dropping arguments)

∀t ∈ I : (Xuu
′ +Xvv

′)(t) 6= 0 ⇔ ∀t ∈ I :
(
u′

v′

)
(t) 6= 0

since d(u,v)X : R2 → R3 injects for every (u, v) ∈M .

Problem 1. Carefully compute, including all arguments, the unit tangent
field of a curve X ◦ (u, v) : I → E3 on a surface at some t ∈ I.

Expl & Def. The parameter lines of a surface X : M → E3 are the
curves

t 7→ X(u+ t, v) and t 7→ X(u, v + t).

Rem & Def. If t 7→ X(u(t), v(t)) is a curve on a surface X : M → E3

then
Tt(X ◦ (u, v)) ⊂ T(u(t),v(t))X

or, otherwise said, its unit tangent field T is always tangential to the
surface:

T = Xuu
′+Xvv′√

Eu′2+2Fu′v′+Gv′2
;
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thus the Gauss map N of the surface X yields a unit normal field

I 3 t 7→ N(u(t), v(t)) ∈ R3

along the curve, hence defines the natural ribbon for the curve; the
corresponding frame is sometimes called its Darboux frame.

Def. A curve t 7→ X(u(t), v(t)) on a surface X : M → E3 is called

• a curvature line if its natural ribbon is a curvature ribbon, τ ≡ 0;

• an asymptotic line if its natural ribbon is asymptotic, i.e., κn ≡ 0;

• a pre-geodesic line if its natural ribbon is geodesic, i.e., κg ≡ 0.

Rem. Thus a curve is curvature line on a surface if and only if the Gauss
map of the surface is parallel along the curve.

As parallel normal fields make constant angles we obtain:

Joachimsthal’s theorem. Suppose that two surfaces intersect along a
curve and that the curve is a curvature line for one of the two surfaces;
then it is a curvature line for the other surface also if and only if the
two surfaces intersect at a constant angle.

Problem 2. Prove Joachimsthal’s Theorem.

Rodrigues’ equation. t 7→ X(u(t), v(t)) is a curvature line if and only
if

0 = (dN + κ dX)
(
u′

v′

)
.

Proof . The structure equations for the natural ribbon yield

∇⊥(N ◦ (u, v)) = (Nuu
′ +Nvv

′) + (Xuu
′ +Xvv

′)κn,

hence t 7→ (X,N)(u(t), v(t)) is a curvature ribbon iff Rodrigues’ equation
holds.
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Rem. Thus t 7→ X(u(t), v(t)) is a curvature line iff dX(u
′

v′ ) is a curvature
direction at every point of the curve, as

(dN + κ dX)
(
u′

v′

)
= (−S + κ idTX )(dX

(
u′

v′

)
).

Example. For a surface X of revolution with Gauss map N (cf Sect 2.2),

X(u, v) = O + e1r(u) cos v + e2r(u) sin v + e3h(u),

N(u, v) = −e1h
′(u) cos v − e2h

′(u) sin v + e3r
′(u),

we deduced
Nu ‖ Xu and Nv ‖ Xv ;

hence the parameter lines of the surface are curvature lines, by Rodrigues’
equation. Alternatively, this follows directly from Joachimsthal’s theorem.

Def & Thm. X : R2 ⊃ M → E3 is a curvature line parametrization,
if all parameter lines are curvature lines. Any surface admits locally,
away from umbilics, a curvature line (re-)parametrization.

Problem 3. Find a curvature line reparametrization for the helicoid.

Rem. For X a curvature line parametrization (Xu, Xv) diagonalizes the
shape operator,

SXu ‖ Xu and SXv ‖ Xv ;

hence, as S is symmetric, we learn that Xu ⊥ Xv and Nu = −SXu ⊥ Xv
or, otherwise said,

F = f = 0

for the mixed coefficients of the fundamental forms of X,

I = E du2 + 2F dudv +Gdv2 and II = e du2 + 2f dudv + g dv2.

Conversely, if F = f = 0, then X is a curvature line parametrization, as
follows from the matrix representations of the shape operator.

Problem 4. Prove: F = f = 0 characterizes curvature line parametriza-
tions.
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Lemma. The normal curvature for a curve t 7→ X(u(t), v(t)) on a
surface is given by

κn =
II((u

′
v′),(

u′
v′))

I((u
′
v′),(

u′
v′))

.

Proof . The normal curvature of a ribbon (X,N) is given by

κn = 1
|X′| 〈T

′, N〉 = 1
|X′|2 〈X

′′, N〉 = − 〈X
′,N′〉

〈X′,X′〉 ;

applying the chain rule to the natural ribbon yields the claim.

Rem & Def. The normal curvature κn (of the natural ribbon) for a curve
on a surface depends only on the tangent direction (and not on u′′ or v′′).
Thus we also term it the “normal curvature κn of a tangent direction”.

As an immediate consequence we obtain:

Euler’s theorem. The normal curvatures κn at a point of a surface
satisfy

κn(ϑ) = κ+ cos2 ϑ+ κ− sin2 ϑ,

where κ± are the principal curvatures and ϑ is the angle between the
tangent direction of κn(ϑ) and the curvature direction of κ+.

Problem 5. Prove Euler’s Theorem. [Hint: fix (u, v) ∈M and use a basis
(e1, e2) of R2 that is orthonormal for I|(u,v) and diagonalizes II|(u,v).]

Cor. The principal curvatures can be characterized as the extremal
values of the normal curvatures at a point of a surface.

As another application of the above lemma we obtain the differential
equation for asymptotic lines:

Cor. t 7→ X(u(t), v(t)) is an asymptotic line of (u, v) 7→ X(u, v) if and
only if

e u′2 + 2f u′v′ + g v′2 ≡ 0.

Example. Circular helices as asymptotic lines on the helicoid:

II|(u,v) = −2du dv
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for the helicoid X(u, v) = O+e1 sinhu cos v+e2 sinhu sin v+e3v, hence
the parameter lines of X are asymptotic lines, in particular, the helices

t 7→ X(u, t) = O + e1r cos t+ e2r sin t+ e3t with r = sinhu.

Problem 6. Fix a point X(u, v) on a parametrized surface. Prove that
an asymptotic line can pass through X(u, v) in two, one or no directions,
depending on the sign of the Gauss curvature K(u, v).

3.2 Geodesics & Exponential map

Geometrically, geodesics can be thought of as the shortest possible paths
on a surface between any two points (at least locally); equivalently, they
can be characterized as the “straight lines” in the surface, i.e., those
which are not curved: κg ≡ 0. This is what we call “pre-geodesic lines”.

From a physics point of view, one may think of a geodesic as the path
of a particle on a surface that no forces are acting upon, i.e., that is not
accelerated (inside the surface):

Def. The covariant derivative of a tangent field Y : I → R3 along a
curve t 7→ X(u(t), v(t)) on a surface X : M → E3 is the tangential
part of its derivative,

D
dtY := Y ′ −N 〈N,Y ′〉.

A geodesic is an acceleration-free curve t 7→ C(t) = X(u(t), v(t)) on a
surface,

D
dtC

′ ≡ 0.

Rem. Thus t 7→ C(t) is geodesic iff its velocity C′ is parallel (w.r.t. Ddt ).

Example. Circular helices as geodesics of a circular cylinder:

t 7→ C(t) = O + e1r cos t+ e2r sin t+ e3ht = X(ht, t)

is a geodesic on the circular cylinder of radius r > 0,

(u, v) 7→ X(u, v) = O + e1r cos v + e2r sin v + e3u,

since
C′′(t) ⊥ Xu(ht, t), Xv(ht, t) ⇒ D

dtC
′(t) ≡ 0.
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Thm. Geodesics are the constant speed pre-geodesic lines.

Proof . Firstly, any geodesic C has constant speed, by Leibniz’ rule:

1
2 (|C′|2)′ = 〈C′, DdtC

′〉 ≡ 0.

Secondly, assume that |C′| ≡ const for a curve, C(t) = X(u(t), v(t));
then

C′′ 1
|C′|2 = T ′ 1

|C′| = Nκn −Bκg ‖ N ⇔ κg ≡ 0

by the structure equations of the Darboux frame (T,N,B) : I → SO(3)
of the curve C.

Clairaut’s theorem. For a geodesic on a surface of revolution the
product

r sin θ ≡ const,

where r = r(s) is the distance from the axis and θ = θ(s) is the angle
that the geodesic makes with the profile curves.

Proof . Let C(s) = O + e1r(s) cos v(s) + e2r(s) sin v(s) + e3h(s) be a
geodesic on a surface of revolution, wlog., arc length parametrized, set

Ct(s) := O +A(t)(C(s)−O) and Y (s) := ∂
∂t

∣∣
t=0

Ct(s),

where

A(t)(e1, e2, e3) = (e1, e2, e3)

(
cos t − sin t 0
sin t cos t 0

0 0 1

)
.

Observe that Y (s) = (−e1 sin v(s) + e2 cos v(s)) r(s) so that

r sin θ = r cos( π2 − θ) = 〈C′, Y 〉 = 〈 ∂∂sCt,
∂
∂tCt〉|t=0.

Then, as each Ct is an arc length parametrized geodesic, we compute

∂
∂s 〈

∂
∂sCt,

∂
∂tCt〉 = 〈 ∂∂s

∂
∂sCt︸ ︷︷ ︸
‖N

, ∂∂tCt︸︷︷︸
⊥N

〉+ 1
2
∂
∂t 〈

∂
∂sCt,

∂
∂sCt︸ ︷︷ ︸

≡const

〉 ≡ 0,

hence r sin θ ≡ const.
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Rem. This proof generalizes to obtain similar theorems for geodesics on
any surface that is invariant under a 1-parameter family of isometries,
e.g., under screw motions or under translations (cylinders).

Rem & Expl. Clairaut’s theorem provides a necessary condition for a
geodesic, not a sufficient condition: for example, consider the straight
line

t 7→ C(t) = O + e1 + (e2 + e3) t = X(u(t), v(t))

as a geodesic on the 1-sheeted hyperboloid parametrized by

(u, v) 7→ X(u, v) := O + e1 coshu cos v + e2 coshu sin v + e3 sinhu;

hence
r sin θ = 〈 C

′

|C′| , Y 〉 = coshu cos v√
2

≡ 1√
2
.

On the other hand, every circle of latitude t 7→ X(u, t) satisfies Clairaut’s
condition, r sin θ ≡ coshu, but is in general not a geodesic.

Problem 7. Let (u, v) 7→ X(u, v) = (r(u) cos v, r(u) sin v, h(u)) be a
surface of revolution. Prove that:

(a) if a circle of latitude t 7→ X(u, t) is geodesic then r′(u) = 0;

(b) if r′2 + h′2 ≡ 1 then the profile curves t 7→ X(t, v) are geodesic.

Motivation. It seems obvious that an initial point and velocity determine
the path of an acceleration-free particle uniquely. To substantiate this
intuition we derive the differential equations of a geodesic: thus consider
a tanget field t 7→ Y (t) = Xu(u(t), v(t))x(t) +Xv(u(t), v(t)) y(t) along
a curve t 7→ C(t) = X(u(t), v(t)) on a surface X : M → E3 to compute

D
dtY = Xux

′ + ((∇∂
∂u
Xu)u′ + (∇∂

∂v
Xu) v′)x

+ Xvy
′ + ((∇∂

∂u
Xv)u′ + (∇∂

∂v
Xv) v′) y

= Xu (x′ + (Γ1
11u
′ + Γ1

21v
′)x+ (Γ1

12u
′ + Γ1

22v
′) y)

+ Xv (y′ + (Γ2
11u
′ + Γ2

21v
′)x+ (Γ2

12u
′ + Γ2

22v
′) y);

in particular, for Y = C′, that is, x = u′ and y = v′,
D
dtC

′ = Xu (u′′ + Γ1
11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2)

+ Xv (v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2).

Thus we obtain:
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Geodesic equations. A curve t 7→ C(t) = X(u(t), v(t)) is a geodesic
iff 0 = u′′ + Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2,

0 = v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2.

(∗)

Rem. Similarly, using the structure equations for the Darboux frame of
a curve t 7→ X(u(t), v(t)), the geodesic curvature can be computed:

κg =

√
EG−F 2

√
Eu′2+2Fu′v′+Gv′2

3 det
(u′ u′′+Γ1

11u
′2+2Γ1

12u
′v′+Γ1

22v
′2

v′ v′′+Γ2
11
u′2+2Γ2

12
u′v′+Γ2

22
v′2

)
.

Cor. Geodesics can be determined from the induced metric I alone.

Example. Geodesics on a circular cylinder are straight lines after devel-
oping into a plane: the generators of the cylinder and circular helices.

Cor. Given (uo, vo) ∈ M and Y = d(uo,vo)X(
(
xo
yo

)
) ∈ T(uo,vo)X,

there is a unique (maximal) geodesic t 7→ CY (t) = X(u(t), v(t)) on
the surface X : M → E3 with

(u(0), v(0)) = (uo, vo) and (u′(0), v′(0)) = (xo, yo). (∗∗)

Rem. The initial condition (∗∗) says that an initial point and tangent
direction are given on the surface; if X(uo, vo) is a double point of the
surface then (∗∗) specifies the leaf of the surface that CY “lives” on.

Proof . With (w1, w2, w3, w4) = (u, v, u′, v′) the geodesic equations (∗)
yield a system of ODEs of the form w′ = f(w), where f is differentiable:

w′1 = w3,

w′2 = w4,

w′3 = −Γ1
11(w1, w2)w2

3 − 2Γ1
12(w1, w2)w3w4 − Γ1

22(w1, w2)w2
4 ,

w′4 = −Γ2
11(w1, w2)w2

3 − 2Γ2
12(w1, w2)w3w4 − Γ2

22(w1, w2)w2
4 .

Hence, the sought geodesic is obtained from a solution of the initial value
problem

w′ = f(w), w(0) = (uo, vo, xo, yo),

and the claim follows from the Picard-Lindelöf Thm.



40 3 Curves on surfaces

Problem 8. Find all geodesics of a plane in E3 with a given initial point.

Problem 9. Find all geodesics on a unit sphere with given initial point
and velocity. [Hint: do not parametrize the sphere.]

Lemma. CY s(t) = CY (st) for s ∈ (0, 1).

Proof . If CY : I → E3 is a geodesic satisfying the initial conditions (∗∗)
then

d
dtCY (st) = C′Y (st) s and D

dt
d
dtCY (st) = 0,

hence coincides on I with the unique geodesic CY s.

Rem. By the smooth dependence of solutions CY of the initial value
problem (∗) on the initial condition, we obtain a smooth map

R× T(uo,vo)X 3 (t, Y ) 7→ CY (t) ∈ E3,

defined on an open neighbourhood I×U of (0, 0) ∈ R×T(uo,vo)X with
star-shaped U and, wlog., I ⊃ [0, 1], by the above lemma:

Lemma & Def. Given a point X(uo, vo) on a surface X : M → E3

Y 7→ exp(Y ) := CY (1)

defines a smooth map on an open neighbourhood U of 0 ∈ T(u0,v0)X
with

d0 exp = idT(uo,vo)X
.

exp is called the exponential map of X : M → E3 at X(uo, vo).

Proof . Taking differentiability of exp as granted, we compute directional
derivatives:

d0 exp(Y ) = d
dt |t=0 exp(Y t) = d

dt |t=0CY (t) = Y

for Y ∈ T(uo,vo)X.

Rem. Thus exp : T(uo,vo)X ⊃ U → X(M) yields a local diffeomorphism
and, in particular, a (re-)parametrization for X around X(uo, vo).
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3.3 Geodesic polar coordinates & Minding’s theorem

By the previous section, the exponential map may be used to produce a
reparametrization of a surface X : M → E3 around any point X(uo, vo):
in particular, polar coordinates (r, ϑ) around 0 ∈ T(uo,vo)X can be
molded onto the surface

Def. A (re-)parametrization of a surface by geodesic polar coordinates
(r, ϑ) around a point X(0, 0) of the surface is given by the map

(r, ϑ) 7→ X(r, ϑ) := exp(e1r cosϑ+ e2r sinϑ),

where (e1, e2) is an orthonormal basis of the tangent space T(0,0)X.

Rem. Note that a parametrization by geodesic polar coordinates (r, ϑ) is
not regular at r = 0; however, it is regular on (0, ε)×R for some ε > 0.

Problem 10. Determine a parametrization by geodesic polar coordinates
around a point of a sphere S2 ⊂ E3 with centre O ∈ E3 and radius R > 0.
Compute its induced metric.

Lemma. In geodesic polar coordinates (r, ϑ) the induced metric

I = dr2 +Gdϑ2 with
√
G|r=0 = 0 and ∂

√
G

∂r |r=0 = 1.

Proof . Denote Y := e1 cosϑ+ e2 sinϑ and observe that, for fixed ϑ,

r 7→ X(r, ϑ) = CY r(1) = CY (r)

is an arc length parametrized geodesic with CY (0) = X(0, 0).

E = 1. CY is arc-length parametrized, hence E = |Xr |2 = |C′Y |
2 = 1.

F = 0. Xϑ|r=0 = 0, hence F |r=0 = 〈Xr , Xϑ〉|r=0 = 0; moreover

Fr = 〈Xrr , Xϑ〉+ 〈Xr , Xrϑ〉 = 〈Xrr , Xϑ〉+ 1
2Eϑ = 0

since Xrr = D
drC

′
Y +N...; hence r 7→ F (r, ϑ) ≡ 0 for any fixed ϑ.

√
G|r=0 = 0. Xϑ|r=0 = 0, hence G|r=0 = |Xϑ|2

∣∣
r=0

= 0.

(
√
G)r |r=0 = 1. Using Xϑ|r=0 = 0 and | ddϑXr |r=0|2 = | ddϑY |

2 = 1, we
get

1
2Grr

∣∣
r=0

= (〈Xrrϑ, Xϑ〉+ 〈Xrϑ, Xrϑ〉)|r=0 = 1,
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hence
G
r2 ∼ Gr

2r ∼
Grr

2 → 1 as r ↘ 0,

showing that
√
G has a (one-sided) derivative (

√
G)r |r=0 = 1.

Rem. In geodesic polar coordinates (r, ϑ) the Gauss equation specializes
to

0 = K
√
G+ (

√
G)rr .

Problem 11. Prove: K = − (
√
G)rr√
G

in geodesic polar coordinates (r, ϑ).

Cor. Geodesics are locally the shortest curves between two points.

Proof . We work in geodesic polar coordinates: let t 7→ X(r(t), ϑ(t)) be
a curve between two points X(0, 0) and X(r(1), ϑ(1)); then its length∫ 1

0

√
r′2 +G(r, ϑ)ϑ′2 dt ≥

∫ 1

0
r′dt = r(1)

with equality iff ϑ′ ≡ 0 and r′ > 0, that is, iff t 7→ X(r(t), ϑ(t)) is a
radial geodesic, up to reparametrization by the regular function r.

Minding’s theorem. Any two surfaces with the same constant Gauss
curvature are locally isometric, i.e., there are local parametrizations
X1 and X2 so that their induced metrics coincide, I1 = I2.

Rem. By Gauss theorema egregium: two isometric surfaces do necessarily
have the same Gauss curvature; by Minding’s theorem: for surfaces of
constant Gauss curvatures this is also sufficient.

Proof . For a parametrization by geodesic polar coordinates (r, ϑ),

I = dr2 +Gdϑ2 with
√
G|r=0 = 0 and (

√
G)r |r=0 = 1

and, by the Gauss equation,

K = − (
√
G)rr√
G

.

Thus, if K ≡ const then G satisfies, for fixed ϑ, the initial value problem

0 = (
√
G)rr +K

√
G with 0 =

√
G|r=0 and 1 = (

√
G)r |r=0,
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which has a unique solution√
G(r, ϑ) =


1√
K

sin(
√
Kr) if K > 0,

r if K = 0,
1√
−K sinh(

√
−Kr) if K < 0.

Hence the metric I is uniquely determined by K and parametrization by
geodesic polar coordinates shows that any two surfaces with the same
constant Gauss curvature are locally isometric.
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4 Special surfaces

As an application of the developed general theory we now turn to some
(classes of) “examples” — just as we were able to determine all (Frenet)
curves with constant curvature and torsion or all totally umbilic surfaces,
i.e., surfaces with H2 −K = 0, we will now turn to classify (describe)
more general classes of surfaces satisfying certain curvature conditions.

4.1 Developable surfaces

The cylinder over an arbitrary planar curve, with generators orthogonal
to the plane of its profile curve, can be “developed” into a (parameter)
plane, that is, admits an isometric parametrization. By Gauss’ theorema
egregium and by Minding’s theorem, a necessary and sufficient condition
for a surface to admit such (local) isometric parameters is the vanishing
of its Gauss curvature, K ≡ 0. This describes the “intrinsic geometry”
of such a surface: the length and angle measurements inside a surface
of Gauss curvature K ≡ 0 is that of a (flat) plane. In this section we
investigate the “extrinsic geometry” of such developable surfaces: how
they can be curved in space, or their “shape” in space.

Def. A surface is developable if its Gauss curvature vanishes, K ≡ 0.

Example. Consider a (general) cone, over a profile curve C : I → E3

on a unit sphere in E3 with centre Z ∈ E3,

X : I ×R→ E3, (u, v) 7→ X(u, v) := Z + (C(u)− Z) ev .

Every sphere centred at Z intersects the surface orthogonally along a
parameter line u 7→ X(u, v), and every plane containing a tangent line
of the curve C at u ∈ I and the centre Z touches the surface along a
generator of the cone, i.e., along a parameter curve v 7→ X(u, v); hence
X is a curvature line parametrization, by Joachimsthal’s theorem. In
particular, the generators of the cone are curvature lines, and the Gauss
curvature of the surface vanishes, with one of its principal curvatures:

0 = Nv +Xv · 0 ⇒ K ≡ 0.
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Problem 1. Let (u, v) 7→ Z + (C(u) − Z) ev be the cone over an arc
length parametrized spherical curve C : I → S2(Z), i.e., |C − Z| ≡ 1.
Specify an isometry (development) of the cone into a Euclidean plane.

Mission. We wish to describe all developable surfaces.

Codazzi equations. To this end, let X : M → E3 denote a curvature line
parametrization of a developable surface with Gauss map N : M → R3,

0 = Nu +Xuκ
+ = Nv +Xvκ

−, where

{
κ+ = κ,

κ− ≡ 0,

wlog, since 0 = K = κ+κ−. The Codazzi equations then read

0 =
κ+
v

κ+−κ− + Ev
2E = (lnκ

√
E)v ,

0 =
κ−u

κ+−κ− −
Gu
2G = −(ln

√
G)u;

thus we may adjust the parameter v so that G ≡ 1 or, equivalently,

I = Edu2 + dv2 and II = Eκdu2.

Koszul’s formulas. Next we determine the Christoffel symbols,

Γ1 = 1
2E

(
Eu Ev

−EEv 0

)
and Γ2 = 1

2E

(
Ev 0
0 0

)
.

In particular, we learn that Xvv = XuΓ1
22 + XvΓ2

22 + Ng = 0, showing
that, for any fixed u and assuming wlog that (u, 0) ∈M ,

X(u, v) = C(u) + Y (u) v with

{
C(u) := X(u, 0),

Y (u) := Xv(u, 0);

namely, with Z(v) := X(u, v)−X(u, 0)−Xv(u, 0) v we have

Z(0) = 0, Z′(0) = 0 and Z′′ ≡ 0 hence Z ≡ 0.

Thus every parameter line v 7→ X(u, v) is a straight line, so that X is a
ruled surface:

Def. A ruled surface consists of a 1-parameter family of straight lines.

Rem & Expl. General cylinders and cones are ruled surfaces.

The helicoid is obtained by a screw motion of a straight line, hence it is
ruled — but not developable as its Gauss curvature K < 0 (cf Sect 3.1).
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Problem 2. Parametrize a 1-sheeted hyperboloid in E3,

H = {O + e1x+ e2y + e3z ∈ E3 |x2 + y2 = 1 + z2},
as a ruled surface and compute its Gauss curvature. Sketch one of the
two rulings of the surface.

Gauss equation. With the above normalization, G ≡ 1, the shape of
the induced metric, I = E du2 + dv2, is the same as for geodesic polar
coordinates; accordingly, the Gauss equation reads

0 = K
√
E + (

√
E)vv = (

√
E)vv .

Hence
(
√
E)(u, v) = (

√
E)(u, 0) + (

√
E)v(u, 0) v

as above and, if Ev(u, 0) 6= 0, then the induced metric degenerates,

E(u, v(u)) = 0, for v(u) = − 2
(lnE)v(u,0)

.

General cylinder. First we consider the case u 7→ Ev(u, 0) ≡ 0; since

Xuv = XuΓ1
12 +XvΓ2

12 +Nf = Xu(ln
√
E)v

we deduce that Y = Xv ≡ const is a constant (unit) normal vector of
the curve u 7→ C(u), that hence is the planar profile curve of a general
cylinder,

X(u, v) = C(u) + Y v with B ≡ const.

General cone. When Ev(u, 0) 6= 0 for (u, 0) ∈ M we may consider the
map

u 7→ Z(u) := X(u, v(u)) with v(u) := − 2
(lnE)v(u,0)

; (∗)

if u 7→ v(u) ≡ r = const then, using Xuv = Xu(ln
√
E)v again, we learn

that
Z′(u) = Xu(u, 0)−Xvu(u, 0) 2

(lnE)v(u,0)
= 0.

Hence Z ≡ const and C takes values in a sphere with centre Z and
radius r, since

|C − Z|2 = |Y r|2 = r2;

thus u 7→ C(u) is the profile curve of a general cone with vertex Z,

X(u, v) = C(u) + Y (u) v = Z + Y (u)(v − r).
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Tangent developable. When Ev(u, 0) 6= 0 and v′(u) 6= 0 for (u, 0) ∈M ,
then

Z′ = Y v′ 6= 0; hence X(u, v) = Z(u) + Z′(u)
v−v(u)
v′(u)

is a tangent developable: a surface generated by the tangents of its
(regular) curve of regression or directrix.

Any such tangent developable is, in fact, developable: its Gauss map

N(u, v) = − Z′×Z′′
|Z′×Z′′| (u) satisfies 0 = Nv = Nv +Xv · 0,

hence the parameter lines v 7→ X(u, v) are curvature lines and the corre-
sponding principal curvature κ− ≡ 0 vanishes.

Problem 3. Let (u, v) 7→ X(u, v) = Z(u) + Z′(u) v be the tangent
developable of an arc length parametrized Frenet curve Z : I → E3;
determine the curvature lines of X through a point X(u, v), and describe
the construction geometrically.

Thm (Classification of developable surfaces). A surface is devel-
opable if and only if it is a composition of general cylinders, cones and
tangent developables, that are fitted smoothly along generators.

Rem. Developable surfaces are of interest in design or architecture;
Gehry’s Guggenheim museum in Bilbao (Spain) is a prominent example,
where developable surfaces have played a role in design.

4.2 Minimal surfaces

Minimal surfaces appear, from a physical point of view, as “soap films”:
dipping a closed wire frame into soap solution the shape formed by the
soap will be a minimal surface; mathematically, the problem of existence
(and determination) of a surface of minimum area bounded by a closed
space curve is known as “Plateau’s problem”. We will not take this
approach, of defining minimal surfaces as surfaces of (locally) minimal
area (or, energy), but we use the corresponding Euler-Lagrange equation
to define this class of surfaces:
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Def. A surface is minimal if its mean curvature vanishes, H ≡ 0.

Problem 4. Show that the helicoid is a minimal surface, and determine
its asymptotic and curvature lines.

Mission. We wish to show that minimal surfaces minimize the surface
area

A(X) =
∫
M
W dudv where W 2 = EG− F 2;

thus we aim to see that minimal surfaces X are critical points of the
area functional X 7→ A(X). Unfortunately, we are not able to compute
the derivative of the area directly — its arguments are (parametrized)
surfaces — but “Calculus of Variations” methods come to the rescue: we
consider suitable “variations” (curves) in the space of surfaces and take
derivative with respect to the variation parameter.

Def. A normal variation of a surface X : M → E3 with Gauss map N
is a map

t 7→ Xt := X +N tµ, where µ ∈ C∞(M);

δX := d
dt

∣∣
t=0

Xt is its variational vector field, and the corresponding

variation of area is
δA := d

dt

∣∣
t=0

A(Xt).

Cayley-Hamilton theorem. The next Lemma follows from this theorem:

0 = χλ(λ) = λnan + . . .+ λ1a1 + idV a0;

for the characteristic polynomial χλ(t) = tnan + . . . + ta1 + a0 of an
endomorphism λ ∈ End(V ); in particular, if dimV = 2 then

0 = λ2 − λ · tr λ+ idV detλ.

In fact, the theorem is easily verified when dimV = 2 and (e1, e2) is a
basis of eigenvectors, λ(ei) = eixi and χλ(t) = t2 − t (x1 + x2) + x1x2:

λ2(ei)− λ(ei)(x1 + x2) + ei x1x2 = 0 for i = 1, 2.

Def & Lemma. With the third fundamental form III := 〈dN, dN〉 of a
surface X with Gauss map N we have 0 = III− 2H II +K I.

Proof . Using the shape operator, dN = −S ◦ dX, and its symmetry

III− 2HII +KI = 〈dX, (S2 − 2H S +K id) ◦ dX〉;
thus the claim follows directly from the Cayley-Hamilton theorem.
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Thm. X is minimal iff δA = 0 for every normal variation Xt of X.

Proof . The metric of a normal variation Xt = X +N tµ of a surface X
is

It = I− 2tµII + t2µ2III + t2dµ2 = a I− 2tb II + t2dµ2

with a = (1 − t2µ2K) and b = µ(1 − tµH), where we used the Cayley-
Hamilton theorem; note that a|t=0 = 1, da

dt |t=0 = 0 and b|t=0 = µ.

Thus, using curvature line parameters or with H = Eg−2Ff+eG
2(EG−F 2)

,

W 2
t = EtGt − F 2

t = W 2(a2 − 4tabH + t2(...))

hence, taking t-derivatives and using that Wt|t=0 = W ,

2W d
dt |t=0Wt = W 2(0− 4µH) ⇒ d

dt |t=0Wt = −2µHW,

and we obtain as the first variation of area

δA =
∫
M

d
dt |t=0Wtdu dv = −2

∫
M
µH dudv. (∗)

Consequently, any minimal surface is critical for the area functional.

To see the converse, we choose µ in (∗) suitably: µ := H, for example,
to obtain

δA = −2
∫
M
µH dudv = −2

∫
M
H2 du dv;

now the integrand H2 ≥ 0, hence δA < 0 if H does not vanish.

Rem. If a surface has infinite area, or if (Plateau’s problem) its boundary
is fixed, then a better adapted choice of µ is required: here one may let

µ(u, v) := H(u, v) e
− 1
%2−((u−uo)2+(v−vo)2)

for (u−uo)2 + (v− vo)2 < %2 and = 0 else, where % > 0 is appropriately
chosen: then the same argument as before shows that H must vanish
around any (uo, vo) ∈M .

Rem. For a normal variation through parallel surfaces Xt = X +N t, a
similar computation as above, with µ ≡ 1, yields:

Steiner’s formula. For a parallel surface Xt = X +N t of X we have

W 2
t = W 2(1− 2tH + t2K);

in particular, Xt is regular wherever 1− 2tH + t2K 6= 0.

Using 0 = III − 2HII + KI from the Cayley-Hamilton theorem again we
further learn
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Thm. The Gauss map of a minimal surface is (weakly) conformal,

III = −K I;

and it is regular away from flat points. Conversely, if the Gauss map
of an umbilic free surface is conformal then the surface is minimal.

Rem. For a minimal surface −KI is positive semi-definite, since

2H = tr S = 0 ⇒ K = detS ≤ 0.

Proof . Clearly the Gauss map N of a minimal surface is weakly conformal
since III = −KI by the Cayley-Hamilton theorem.

To see the converse first note that, away from umbilics, I and II are
linearly independent; hence the Cayley-Hamilton theorem,

0 = (III +KI)− 2HII,

implies H = 0 when III ‖ I.

Def & Lemma. Any minimal surface is isothermic, i.e., admits a local
conformal curvature line (re-)parametrization away from umbilics.

Proof . Suppose that (u, v) 7→ X(u, v) is a curvature line parametrization
of a minimal surface with principal curvatures κ± = ±κ, wlog., κ > 0.
Then, by the Codazzi equations:

0 =
κ+
v

κ+−κ− + Ev
2E = 1

2 (lnκE)v and 0 = − 1
2 (lnκG)u;

thus X̃(ũ, ṽ) = X(u(ũ), v(ṽ)) with u′2 = 1
κE (u) and v′2 = 1

κG (v) yields

Ẽ = G̃ = 1
κ̃ ,

hence a conformal curvature line reparametrization of X.
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Cor (local Weierstrass representation). If N : M → S2 ⊂ R3 is
conformal, |Nu|2 = |Nv |2 = κ and 〈Nu, Nv〉 = 0, then

Xu = −Nu 1
κ and Xv = Nv

1
κ (∗)

yields a conformal curvature line parametrization X : M → E3 of a
minimal surface; conversely, every minimal surface arises, locally and
away from umbilics, in this way.

Proof . The second claim follows directly from the above lemma: every
minimal surface admits locally a conformal curvature line parametrization;
Rodrigues’ equations then yield (∗),

Xu = −Nu 1
κ and Xv = Nv

1
κ with |Nu|2 = |Nv |2 = κ2E = κ.

To substantiate the first statement first note that

Nuv = Nu
κv
2κ +Nv

κu
2κ

since

〈Nuv , Nu〉 = κv
2 , 〈Nuv , Nv〉 = κu

2 and 〈Nuv , N〉 = 0;

hence the PDE system (∗) is integrable by Poincaré’s lemma:

Xvu −Xuv = (Nv
1
κ )u + (Nu

1
κ )v = 0.

Clearly X so defined is conformal, |Xu|2 = |Xv |2 = 1
κ , and its mean

curvature
H = − κ2 (〈Xu, Nu〉+ 〈Xv , Nv〉) = 0

vanishes, showing that X is minimal.

Rem. Considering S2 ∼= R2∪{∞} as a Riemann sphere, a conformal map
N : M → S2 can be thought of as a meromorphic map: this establishes
the relation with the classical Enneper-Weierstrass representation for
minimal surfaces. In a similar vein:

Thm. A conformally parametrized surface (u, v) 7→ X(u, v) is mini-
mal if and only if X is harmonic, i.e., ∆X ≡ 0.

Proof . If X is conformal, that is, E = G and F = 0, then

H = 1
2E (e+ g) = 1

2E 〈N,Xuu +Xvv〉 = 1
2E 〈N,∆X〉;
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hence X is minimal as soon as it is harmonic. Conversely, for a conformal
parametrization

〈Xu,∆X〉 = 1
2 (E −G)u + Fv = 0

and similarly 〈Xv ,∆X〉 = 0, proving the converse.

Problem 5. Prove that the catenoid X is a conformally parametrized
minimal surface, X(u, v) = O + e1 coshu cos v + e2 coshu sin v + e3u.

Example. A conformally parametrized surface of revolution,

X(u, v) = O + e1r(u) cos v + e2r(u) sin v + e3h(u)

with r2 = r′2 +h′2, is minimal if and only if ∆X = 0, that is, if and only
if

r′′ = r

h′′ = 0

}
⇔
{
r(u) = a coshu+ b sinhu

h(u) = c u+ d

with constants a, b, c, d,∈ R, where a2 − b2 = c2 by conformality.

If c = 0 then b = ±a and X parametrizes a “horizontal” plane by
conformal polar coordinates since

r(u) = ae±u and h(u) ≡ d.
If c 6= 0 then a = c coshuo and b = sinhuo for a suitable uo, by confor-
mality, hence we arrive at

r(u) = c cosh(u+ uo) and h(u) = c(u+ uo) + (d− cuo),

that is, X is, up to parameter shift and similarity, the catenoid

(u, v) 7→ X(u, v) := O + e1 coshu cos v + e2 coshu sin v + e3u.

Summarizing we have obtained a classification result:

Cor (Classification of minimal surfaces of revolution). A minimal
surface of revolution is either (part of) a plane or (part of) a catenoid.

Rem. As every harmonic function is the real part of a holomorphic
function, any (conformally parametrized) minimal surface X : M → E3

arises from the real part of a holomorphic null curve:

X(u, v) = O + ReC(u+ iv),
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where C : C ⊃M → C3 is holomorphic, and |C′|2 ≡ 0. Here, holomor-
phicity of C implies that X is harmonic, and the null condition implies
conformality; namely, using C′ = (ReC)u − (ReC)vi, from the Cauchy-
Riemann equations, we obtain

0 = |C′|2 = (|Xu|2 − |Xv |2)− 2i〈Xu, Xv〉.
Note that |.|2 denotes (the quadratic form of) the bilinear extension of
the inner product on R3 to C3. This is the (complex) local Weierstrass
representation of a minimal surface.

Problem 6. Show that the Enneper surface

(u, v) 7→ O + e1 Re z
3−3z

3 + e2 Re
i(z3+3z)

3 + e3 Re z2

is a conformally parametrized minimal surface.

Problem 7. Determine a holomorphic C : C → C3 so that ReC yields
the catenoid. Which surface does ImC yield?

Rem. If C is a holomorphic null curve then so is Ceiα, for every α ∈ R.
In this way a 1-parameter family (Xα)α∈R of (conformally parametrized)
minimal surfaces can be obtained, where

Xα = O + Re(Ceiα) = O + (ReC) cosα− (ImC) sinα.

This is the associated family of X, its conjugate minimal surface is the
surface

X∗ = Xπ/2 = O − ImC.

We give a real description of this associated family:

Thm & Def. Let X : M → E3 be minimal, with Gauss map N ; with
its conjugate surface X∗ the associated family (Xα)α∈R of X is given
by

Xα = X cosα +X∗ sinα, where dX∗ = N × dX. (∗)
All surfaces Xα are minimal and share the same induced metric and
Gauss map,

Iα = I and Nα = N.

Proof . We assume X to be conformal, that is, we have

N ×Xu = Xv and N ×Xv = −Xu.
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Then X∗ = X
π
2 is well defined by (∗), because X is harmonic:

X∗uv −X∗vu = (N ×Xu)v − (N ×Xv)u = ∆X = 0.

To see that all surfaces Xα are isometric, note that I∗ = I and, hence,
Iα = I cos2 α + I∗ sin2 α = I. From (∗) it is obvious that all surfaces
have parallel tangent planes, Nα = N . Finally

∆X∗ = (N ×Xu)u + (N ×Xv)v = Xvu −Xuv = 0

so that Xα is (with X and X∗) harmonic by superposition.

Problem 8. Let (u, v) 7→ X(u, v) be a conformally parametrized minimal
surface. Show that its second fundamental form can be written as

II = Re{(e− if)(du+ idv)2}
and that (eα − ifα) = eiα(e− if) for the surfaces Xα of the associated
family of X. Conclude that the curvature and asymptotic lines of X are
exchanged for the conjugate surface X∗.

Example. The associated family of the helicoid is given by

Xα(u, v) =

(
sinh u cos v cos α− cosh u sin v sin α
sinh u sin v cos α + cosh u cos v sin α

v cos α + u sin α

)
.

Problem 9. Compute the associated family of the helicoid.

4.3 Linear Weingarten surfaces

We described developable surfaces and minimal surfaces (soap films) by
curvature conditions, K ≡ 0 resp H ≡ 0. Further interesting surface
classes may be described by curvature conditions: soap bubbles by the
condition H ≡ const, surfaces that hyperbolic or elliptic geometries can
be modelled on by K ≡ const 6= 0 (cf Minding’s theorem). We shall
study “linear Weingarten surfaces” as a wider class of surfaces to obtain
a better understanding of the interrelations and key properties of the
aforementioned classes of surfaces.

Def. A surface is a linear Weingrten surface if its Gauss and mean
curvatures satisfy a non-trivial affine relation

0 = aK + 2bH + c. (W )
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We call a linear Weingarten surface tubular if ∆ := b2 − ac = 0.

Rem. If X is a linear Weingarten surfaces with a 6= 0 then (W ) reads

0 = a(aK + 2bH + c) = (aκ+ + b)(aκ− + b)−∆ (W ′)

with the principal curvatures κ± of X; i.e., the linear relation of mean
and Gauss curvatures is a quadratic relation for the principal curvatures.

Examples. We already discussed:

(1) developable (flat) surfaces, K ≡ 0, for (a, b, c) = (1, 0, 0);

(2) minimal surfaces, H ≡ 0, for (a, b, c) = (0, 1, 0).

As generalizations we obtain the following linear Weingarten surfaces:

(3) constant mean curvature surfaces, H ≡ −c, for (a, b, c) = (0, 1, c);

(4) constant Gauss curvature surfaces, K ≡ −c, for (a, b, c) = (1, 0, c).

Tubular linear Weingarten surfaces yield a degenerat case:

(5) If X is a tubular linear Weingarten surface, ∆ = b2−ac = 0, then
we must have a 6= 0 (since a = 0⇒ b = c = 0) and then

0 = a(aK + 2bH + c) = (aκ+ + b)(aκ− + b),

showing that one of the principal curvatures is constant, say

κ− ≡ − b
a =: − 1

% .

Assuming b 6= 0 Rodrigues’ equations shows that C := X −N a
b is

a curve,
Nv +Xvκ

− = 0 ⇒ (X −N%)v = 0,

hence X parametrizes a tube over C, e.g.,

X(u, v) = C(u) +N(u) % cosϕ(v) +B(u) % sinϕ(v),

justifying the terminology “tubular” in the case ∆ = 0.

Lemma. Parallel surfaces Xt = X+Nt of a linear Weingarten surface
X are linear Weingarten, with

at = a+ 2tb+ t2c, bt = b+ tc, and ct = c.
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In particular, ∆t = ∆ for any t.

Proof . For a parallel surface Xt = X +N t we have

It = I− 2tII + t2III, IIt = II− tIII, IIIt = III;

hence
0 = (1− 2tH + t2K) IIIt − 2(H − tK) IIt +K It

and, away from umbilics, the Cayley-Hamilton theorem implies that

Ht = H−tK
1−2tH+t2K

and Kt = K
1−2tH+t2K

.

Therefore

(a+ 2tb+ t2c)Kt + 2(b+ tc)Ht + c = aK+2bH+c
1−2tH+t2K

(∗)
which proves the first claim; ∆t = ∆ by a simple computation.

Rem. We use Nt = N for any parallel surface Xt of X; note that X and
Xt have parallel tangent planes, hence justifying the terminology.

Rem & Expl. Parallel families of linear Weingarten surfaces come in few
types, characterized by special “representatives” in the parallel family.
Thus, suppose that X is linear Weingarten, 0 = aK + 2bH + c.

(1) If X is tubular, ∆ = 0, then ∀t ∈ R : ∆t = 0 and all parallel linear
Weingarten surfaces are tubular as well (as one expects).

(2) If ∆ 6= 0 but c = 0, then b 6= 0 and the parallel surfaces satisfy

0 = (a+ 2tb)Kt + 2bHt;

in particular, t = − a
2b yields a minimal surface Xt, i.e., the parallel

surfaces of a minimal surface are characterized by (a, b, c) = (a, 1, 0).

(3) If ∆ 6= 0 and c 6= 0, then we obtain for t = − bc , from (∗),

0 = −∆
c Kt + c ⇒ Kt = c2

∆ ,

hence Xt is a surface of constant Gauss curvature.

If ∆ > 0, then t = − b±
√

∆
c yields at = 0, hence

0 = ∓2
√

∆Ht + c ⇒ Ht = ± c2
1√
∆
,

that is, a parallel pair of constant mean curvature surfaces Xt.
Observe that these two surfaces of constant mean curvature lie sym-
metrically on either side of their parallel surface of constant Gauss
curvature. This is Bonnet’s theorem:
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Bonnet’s theorem. If X has constant mean curvature H 6= 0, then
the parallel surface X +N 1

2H has constant Gauss curvature 4H2.
Conversely, if X has constant Gauss curvature K > 0, then its two
parallel surfaces X ±N 1√

K
have constant mean curvature ± 1

2

√
K.

Rem. If X is a surface of constant positive Gauss curvature K = 1
t2

the induced metrics of its two parallel surfaces X ±N 1
t are conformally

related, by the Cayley-Hamilton theorem:

I±t = I∓ 2tII + t2III = 2
K (H ∓

√
K) II.

In the case of negative constant Gauss curvature K = − 1
t2

a similar effect
occurs for the complex conjugate pair of parallel surfaces X±it = X±N it
of “constant mean curvature” H±it = ± 1

2

√
K: we obtain

I±it = I∓ 2itII− t2III = 2
K (H ∓

√
K) II.

Problem 10. Suppose that (u, v) 7→ X(u, v) is umbilic free and has
constant mean curvature H 6= 0. Prove that the parallel surface

(u, v) 7→ X∗(u, v) := X(u, v) +N(u, v) 1
H

induces a conformally equivalent metric I∗ = H2−K
H2 I, and has constant

mean curvature H∗ = H.

Mission. Seek a classification of linear Weingarten surfaces of revolution.
According to the above analysis, and excluding totally umbilic surfaces,
we obtain three cases:

(1) ∆ = c = 0, so that the surface is a tubular surface of revolution,
that is, a circular cylinder or a circular cone;

(2) ∆ 6= 0 = c, and the surface is parallel to a catenoid;

(3) ∆, c 6= 0, where the surface is parallel to a surface of revolution with
constant Gauss curvature K = ± 1

c2 6= 0.

Thus (3) is the only case tha tstill requires work — here we may, wlog.,
assume that K ≡ ε = ±1, by scaling the surface if necessary.
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4.4 Rotational surfaces of constant Gauss curvature

As discussed at the end of the last section, a complete classification of
linear Weingarten surfaces of revolution is obtained as soon as we obtain
one for surfaces of constant Gauss curvature K ≡ ε = ±1. To this
end, we will derive a differential for the profile curve; subsequently, this
differential equations is solved, using Jacobi elliptic functions.

Thus let X(u, v) = O + e1r(u) cos v + e2r(u) sin v + e3h(u) denote a
surface of revolution, and compute its curvatures (cf Sect 2.2):

κ+ =
〈Xuu,N〉
〈Xu,Xu〉 = r′h′′−r′′h′√

r′2+h′2
3 and κ− =

〈Xvv ,N〉
〈Xv ,Xv〉 = 1

r2
rh′√
r′2+h′2

,

hence
K =

h′(r′h′′−r′′h′)
(r′2+h′2)2 .

Lemma. If X has constant Gauss curvature K ≡ ε = ±1 then r has
only isolated critical points and

∃c ∈ R : (c− εr2)(r′2 + h′2) = r′2. (∗)

Proof . Clearly r′′(u) 6= 0 when r′(u) = 0, i.e., r has only isolated critical
points; away from those critical points

K = ε = − 1
2rr′ (

1

1+(h
′
r′ )2

)′ ⇔ (c− εr2)(r′2 + h′2) = r′2

with a constant of integration c ∈ R, where c ≥ εr2.

Rem. If K ≡ 0 then r′′ = h′′ ≡ 0, confirming that the profile curve of
the surface is a straight line.

Rem. Any surface X of constant Gauss curvature K = ε = ±1 admits
curvature line parameters (u, v) so that (away from umbilics)

E = cosh2 ϕ, G = sinh2 ϕ and e = g = coshϕ sinhϕ,

or, respectively,

E = cos2 ϕ, G = sin2 ϕ and e = −g = cosϕ sinϕ.

Namely, with the ansatz κ+ = tanhϕ and κ− = cothϕ, the Codazzi
equations

0 = Ev
2E +

κ+
v

κ+−κ− = Gu
2G −

κ−u
κ+−κ−
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show that
(
√
E

coshϕ )v = (
√
G

sinhϕ )u = 0

so that a suitable change of curvature line parameters leads to the claimed
form of the metric. A similar argument works in the case K = −1 and,
in fact, for linear Weingarten surfaces in general.

Problem 11. Let (u, v) 7→ X(u, v) be a curvature line parametrization of
a surface with constant Gauss curvature K ≡ −1. Show that there is a
curvature line reparametrization, u = u(ũ) and v = v(ṽ), so that

Ĩ = cos2 ϕdũ2 + sin2 ϕdṽ2 and ĨI = 1
2 sin 2ϕ (dũ2 − dṽ2)

with a suitable function ϕ.

Lemma. If X has constant Gauss curvature K ≡ ε = ±1 and the
profile curve is parametrized so that

E − εG = (r′2 + h′2)− εr2 = a

with some (chosen) a ∈ R, then there exists c ∈ R so that

r′2 = (a+ εr2)(c− εr2), where

{
−a ≤ r2 ≤ c if ε = +1,

−c ≤ r2 ≤ a if ε = −1.
(∗∗)

If ε = −1 then, additionally, c < 1.

Proof . With r′2 + h′2 = a + εr2 the elliptic ODE (∗∗) is obtained from
the previous lemma; by continuity, it also holds at the critical points of r:

r′2 = (r′2 + h′2)(c− εr2) = (a+ εr2)(c− εr2).

As both factors must be non-negative, we obtain

−a ≤ r2 ≤ c or − c ≤ r2 ≤ a

for ε = +1 and ε = −1, respectively. Finally, the height function h
is then determined up to constant of integration and sign, i.e., shift or
reflection of the surface, by

h′2 = a+ εr2 − r′2 = (a+ εr2)((1− c) + εr2).

If ε = −1 we hence also have c < 1, since 1− c ≥ r2 and a+ εr2 ≥ 0.
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Def. Let p ∈ [0, 1] and q =
√

1− p2. The Jacobi amplitude function
ϕ = amp u is the inverse function of the incomplete elliptic integral of
the first kind,

ϕ 7→ u(ϕ) :=
∫ ϕ

0
dθ√

1−p2 sin2 θ
.

The Jacobi elliptic functions of pole type n are

snp u = sinϕ, cnp u = cosϕ, dnp u =
√

1− p2 sin2 ϕ.

The incomplete elliptic integral of the second kind is

ϕ 7→ Ep(ϕ) :=
∫ ϕ

0

√
1− p2 sin2 θ dθ.

p and q are the elliptic modulus and co-modulus of these functions.

Rem. For the extremal cases of the elliptic modulus p ∈ {0, 1} we have

sn0 u = sinu, cn0 u = cosu and dn0 u = 1,

and
sn1 u = tanhu, cn1 u = 1

coshu and dn1 u = 1
coshu ,

where the latter formulas for p = 1 are verified by comparing derivatives.

Lemma. For the Jacobi elliptic functions we have: the derivatives

am′p = dnp, sn′p = cnp dnp, cn′p = − snp dnp, dn′p = −p2 snp cnp;

and the Pythagorean laws

1 = sn2
p + cn2

p = dn2
p +p2 sn2

p = 1
q2 (dn2

p−p2 cn2
p).

Proof . For the Jacobi amplitude we compute the derivative:

ϕ′ = 1
u′ =

√
1− p2 sin2 ϕ ⇒ am′p u = dnp u;

the other derivatives follow by chain rule. The Pythagorean rules follow
directly from the definitions.

Lemma. The Jacobi elliptic functions satisfy the elliptic differential
equations: sn′2p = (1− sn2

p)(1− p2 sn2
p),

cn′2p = (1− cn2
p)(q2 + p2 cn2

p),

dn′2p = −(1− dn2
p)(q2 − dn2

p).

Proof . By direct computation, using the Pythagorean laws.
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Lemma. For p ∈ (0, 1) the Jacobi elliptic functions have ranges:

amp(R) = R, snp(R) = [−1, 1], cnp(R) = [−1, 1], dnp(R) = [ 1
q , 1].

Proof . For p ∈ (0, 1) and q =
√

1− p2 ∈ (0, 1) we have

∀u ∈ R : q ≤ am′p u = dnp u =
√

1− p2 sin2 amp u ≤ 1,

hence
∀u ∈ [0,∞) : qu ≤ amp u

showing that amp(R) = R since amp is an odd function. This then
implies the other claims.

Lemma. Let α < β. The (elliptic) initial value problem

x′ =
√

(−α + x2)(β − x2), x(to) = xo with x2
o ∈ [α, β]

has at most one solution with isolated critical points.

Proof . Assuming that the critical points of x are isolated we compute

x′2 = (−α + x2)(β − x2) ⇒ x′′ = −2x3 + (α + β)x.

The Picard-Lindelöf Theorem then shows that any solution of the equiv-
alent first order system(

x
y

)′
=
(

y
−2x3+(α+β)x

)
,
(
x(to)
y(to)

)
=
( xo√

(−α+x2
o)(β−x2

o)

)
is unique.

Rem. The assumption on the critical points is critical: the initial value
problem

x′2 + x2 = 1, x2(0) = 1

has four solutions: x ≡ ±1 and x = ± cos. Taking a (positive) root
eliminates the sign ambiguity, and requiring the solution to have only
isolated singularities singles out x = cos.

With these preparations we now formulate a complete classification of
surfaces of revolution with constant Gauss curvature K = ε = ±1:
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Thm (Tjaden). Any rotational surfaceX of constant Gauss curvature
K ≡ ε = ±1 is, up to reparametrization, given by one of the following
profiles, where p ∈ (0, 1)

r(u) = p cnp(u), h(u) =

{
(Ep ◦ amp)(u) if ε = +1,

(Ep ◦ amp)(u)− u if ε = −1;

r(u) = 1
p dnp(up ), h(u) =

{
1
p ((Ep ◦ amp)(up )− q2 u

p ) if ε = +1,
1
p ((Ep ◦ amp)(up )− u

p ) if ε = +1;

r(u) = 1
coshu , h(u) =

{
tanhu if ε = +1 (sphere),

tanhu− u if ε = −1 (pseudosphere).

Proof . We need to show that the given profiles exhaust, up to parameter
shift, the (non-trivial) solutions of the ODEs

r′2 = (a+ εr2)(c− εr2) and h′2 = (a+ εr2)((1− c) + εr2),

where a, c ∈ R (here c is given and a can be chosen suitably) so that all
factors are non-negative, hence necessarily

c > 0 if ε = +1,

a > 0 and c < 1 if ε = −1.

Thus we may choose a := 1− c in any case to obtain

r′2 = ((1− c) + εr2)(c− εr2) and h′2 = ((1− c) + εr2)2 (∗)

with c > 0 if ε = +1 and c < 1 if ε = −1. Observe that a the elliptic
differential equations for r is invariant under the exchange

(ε = +1, c)↔ (ε = −1, a = 1− c).

Seeking solutions r with only isolated critical points, we obtain a unique
solution for any given initial condition; r determines h uniquely up to sign
and constant of integration (reflection and translation of the surface).

• Case c, a = 1− c ∈ (0, 1): we let

(p, q) :=

{
(
√
c,
√

1− c) if ε = +1,

(
√

1− c,
√
c) if ε = −1,
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so that (∗) reads

r′2 = p2(1− ( rp )2)(q2 + p2( rp )2) and h′2 =

{
(q2 + p2( rp )2)2,

p4(1− ( rp )2)2;

• Case c > 1, a = 1− c < 0 resp c < 0, a = 1− c > 1: we let

(p, q) :=

{
( 1√

c
,
√

1−c√
c

) if ε = +1,

( 1√
1−c ,

√
−c√

1−c ) if ε = −1,

so that (∗) now becomes

r′2 = − 1
p4 (1− (pr)2)(q2 − (pr)2) and h′2 =

{
1
p4 ((pr)2 − q2)2,
1
p4 (1− (pr)2)2;

• Case c = 1, a = 1− c = 0 resp c = 0, a = 1− c = 1: here (∗) reads

r′2 = r4( 1
r2 − 1) and h′2 =

{
r4,

r4( 1
r2 − 1)2.

Thus, in each case, one of the claimed solutions is obtained.

Rem. Surfaces with K ≡ −1 yield “realizations” of the hyperbolic non-
Euclidean geometry in Euclidean space: reparametrizing the pseudosphere

X(u, v) = O + e1
cos v

coshu + e2
sin v

coshu + e3(tanhu− u)

with (x, y) = (coshu, v), as new (curvature line) coordinates yields

E = 〈Xu, Xu〉u′2 = 1
x2 and G = 〈Xv , Xv〉 = 1

x2 ,

thus (x, y) 7→ X(x, y) is an isometric parametrization of (half of) the
Poincaré half plane into E3. However, Hilbert’s theorem asserts that
there is no isometric immersion of the complete hyperbolic plane into E3.

Rem & Def. Apart from the sphere, none of the above surfaces is regular:
in the cases r = p cnp the surfaces cross the axis of rotation, hence
develop “cone points”; in all cases the zeroes

0 = (1− c) + εr2 = r′2 + h′2

of r′ yield circles of non-regularity, e.g., in the case of the pseudosphere
the circle

1− r2(u) = 1− 1
cosh2 u

= 0 ⇔ u = 0
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yields a cuspidal edge: near u = 0 the profile curve “looks like” a Neile
parabola (1− r)3 = h2 (cf Sect 1.1). Namely, for u ∼ 0 we have

− 3h(u)

u3 coshu = 3u coshu−sinhu
u3 ∼ u sinhu

u2 ∼ coshu ∼ 1

and 2(1−r(u))

u2 coshu = 2 coshu−1
u2 ∼ sinhu

u ∼ coshu ∼ 1,

hence
9h2

8(1−r)3 (u) =
(

3h(u) coshu

u3 )2

(
2(1−r(u)) coshu

u2 )3
coshu ∼ coshu ∼ 1.

A more detailed analysis of “surfaces with singularities” is of recent in-
terest, but would exceed the scope of these lectures.
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5 Manifolds and vector bundles

We have already seen some problems with our definitions of curves and
surfaces: for example,

(1) a hyperbola does not qualify as a curve (according to our definition)
as it consists of two components, hence cannot be parametrized by
a single regular (hence continuous) map defined on an open interval;

(2) the sphere S2 ⊂ E3 does not qualify as a surface since there can-
not be a (regular) parametrization of all of S2 defined on an open
connected subset U ⊂ R2 (by the “hairy ball theorem”).

The notion of a k-dimensional submanifold of E resolves this problem —
at the cost of introducing another restriction, that can in turn be resolved
by the notion of an “immersed abstract manifold”. At the same time, the
following discussions will shed light on the notion of “local” (as opposed
to “global”), used previously in this text in an informal way.

The definition of abstract manifolds does create several technical issues
that are cumbersome to resolve, hence we only discuss submanifolds here.
By the Whitney embedding theorem, this is not a restriction: every k-
dimensional (abstract) manifold can be embedded into R2k.

Throughout the first two sections of this chapter we aim to avoid argu-
ments that rely on finite dimensions; the background Hilbert space struc-
ture assumed to be omnipresent ensures that (Frechet-)differentiability is
a notion available to us.

5.1 Submanifolds in a Euclidean space

There are several equivalent definitions/characterizations of submanifolds
in a Euclidean space E : these allow to pass from an implicit representation
of, e.g., a curve or a surface to a parametric description, and vice versa.
We define a submanifold to be a subset that “can locally be flattened”:

Def. M ⊂ E is a (k-dimensional) submanifold of E if it is locally
diffeomorphic to a (k-dimensional) subspace S ≤ E :

∃S ≤ E∀X ∈M∃ϕ : U → ϕ(U) : ϕ(M ∩ U) = S ∩ ϕ(U),
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where S is a (k-dimensional) affine subspace of E and ϕ : U → ϕ(U) a
diffeomorphism defined on an open neighbourhood U ⊂ E of X ∈M .

Rem. We use the notation S ≤ E for a structure preseving subset relation,
e.g., for affine (Euclidean) subsets of an affine or Euclidean space.

Rem. We require neither E nor S to be finite dimensional here.

Example. Any open subset U
◦
⊂ E is a submanifold. This example is as

important as it is trivial.

Example. The graph M = {(x, y) ∈ Rk ×Rn−k | y = g(x)} ⊂ Rn of
any smooth map g : Rk → Rn−k is a k-dimensional submanifold via

ϕ : Rn → Rn, (x, y) 7→ ϕ(x, y) := (x, y − g(x)).

Problem 1. Let ϕ : R2 → R2, (x, y) 7→ (x, y − g(x)), with a differ-
entiable map g : R → R. Prove that ϕ yields a local diffeomorphism
around every point (x, g(x)) ∈ R2, x ∈ R.

Alternatively, any submanifold can locally be described by equations:

Lemma. M ⊂ E is submanifold iff it is locally level set of submersions:

∃W∀X ∈M∃F : U →W : M ∩ U = F−1({0}),
where W is a Banach space and F : U → W is a submersion defined
on an open neighbourhood U ⊂ E of X. We have dimM = dim ker dF .

Rem. Here, it is sufficient to require dXF to surject for all X ∈ M : if
dXF surjects then, by the Inertia principle (X 7→ dXF is continuous),
there is a neighbourhood Ũ ⊂ U of X so that dY F surjects for all Y ∈ Ũ .

Example. The graph M = {(x, y) ∈ Rn | y = g(x)} of g : Rk → Rn−k

is level set of a single submersion

F : Rn → Rn−k, (x, y) 7→ F (x, y) := y − g(x).

Yet another alternative characterization is to describe a submanifold by
local parametrizations or charts — this approach is paramount for the
definition of abstract manifolds.
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Lemma & Def. M ⊂ E is submanifold iff it can locally be parameter-
ized:

∃V ∀X ∈M∃f : V
◦
⊃ D → U

◦
⊂ E : M ∩ U = f(D),

where V is a Banach space, U ⊂ E an open neighbourhood of X ∈M ,
and f : D → E a parametrization of M ∩ U , that is,

• f : D → E is an immersion, so that

• f : D →M∩U is a homeomorphism (with the induced topology).

The map f−1 : M ∩U → V is called a chart. We have dimM = dimV .

Rem. f being an immersion excludes “kinks” or “sharp edges” of M ,
injectivity of f prevents self-intersections of M , and continuity of f−1

excludes “T-junctions”.

Rem. We temporarily use f to denote a parametrization, to distinguish
it from points X ∈M .

Example. The graph M = {(x, y) ∈ Rn | y = g(x)} of g : Rk → Rn−k

can be parametrized by a single parametrization

f : Rk → Rn, x 7→ (x, g(x));

a (global) chart is given by the projection

f−1 : M → Rk, (x, y) 7→ x.

This example of a graph yields an approach to prove the lemmas.

Proof . We prove both lemmas.

Let M ⊂ E be a submanifold, X ∈ M and ϕ : U → ϕ(U) a diffeomor-
phism with

ϕ(M ∩ U) = S ∩ ϕ(U).

Take O = ϕ(X) ∈ S as origin and, with a complementary subspace W
of V , write

O + V = S ≤ E = O + (V ⊕W );

accordingly ϕ−O = µ+ F ∈ V ⊕W, where

• F : U →W yields a submersion with M ∩ U = F−1({0}), and

• µ|M : M∩U → V is a chart around X, as inverse of the parametriza-
tion

f := (ϕ−O)−1|µ(U) : µ(U)→ E .
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We reverse engineer this construction to obtain proofs of the converses.

• Let F : E
◦
⊃ U →W be a submersion with M ∩ U = F−1({0}).

Let V := ker dXF and fix a complementary W ′, E = X+(V ⊕W ′);
further let π : V ⊕W ′ → V and π′ : V ⊕W ′ → W ′ denote the
corresponding projections. Then

dXF |W ′ : W ′ →W

is an isomorphism, hence invertible, and we may define ϕ : U → E
by

Y 7→ ϕ(Y ) := X + π(Y −X) + (dXF |−1
W ′ ◦ F )(Y );

as
dXϕ = π + dXF |−1

W ′ ◦ dXF = π + π′ = idV⊕W ′

is an isomorphism ϕ is a diffeomorphism, by the Inverse Mapping
Thm, after possibly restricting to a smaller U . By construction

ϕ(M ∩ U) = (X + V ) ∩ ϕ(U).

• Let f : V
◦
⊃ D → E be a local parametrization, M ∩ U = f(D).

Suppose, wlog, 0 ∈ D and X = f(0); set V ′ := d0f(V ) and fix a
complementary subspace W , so that E = X + (V ′ ⊕W ); as above,
let π : V ′ ⊕W → V ′ and π′ : V ′ ⊕W → W be the corresponding
projections. As

d0f : V → V ′

is invertible we may define ψ : U ′ → E on U ′ := X + π−1(d0f(D))
by

Y 7→ ψ(Y ) := (f ◦ d0f
−1 ◦ π)(Y −X) + π′(Y −X);

as
dXψ = d0f ◦ d0f

−1 ◦ π + π′ = π + π′ = idV ′⊕W
is an isomorphism ψ is a diffeomorphism, by the Inverse Mapping
Thm, after possibly restricting to a smaller U ′. Replacing U by
U∩ψ(U ′) and adjusting the domains U ′ of ψ resp D of f accordingly
we obtain

M ∩ U = f(D) = ψ((X + V ′) ∩ U ′),
hence ϕ := ψ−1 : U → U ′ = ϕ(U) yields the sought-after diffeo-
morphism.

It is obvious that the dimension claims hold.



5.1 Submanifolds in a Euclidean space 69

Rem. This proof is insensitive to dimension, in particular, it also works
in an infinite dimensional setting.

Problem 2. Use the Implicit Mapping Thm to show directly that any
implicitely defined submanifold has local parametrizations.

Example. Let E be a Euclidean space over V , choose an origin O ∈ E
and let β : V × V → R denote a non-trivial symmetric bilinear form; set

F : E → R, X 7→ β(X −O,X −O)− 1.

Then the (proper) central quadric Q := F−1({0}) ⊂ V is a submanifold
since

v 7→ dXF (v) = 2β(X −O, v)

surjects for X ∈ Q (since dXF (X −O) = 2 6= 0 and by Inertia).

Such central quadrics come in different flavours, depending on the signa-
ture of β: for example, if V = R3 and β is non-degenerate then Q may be

an ellipsoid, a 1-sheeted or a 2-sheeted hyperboloid.

In particular, Q may

• not be connected (2-sheeted hyperboloid) or

• not be coverable by a single parametrization (ellipsoid).

On the other hand, a cone Q = {X ∈ E |β(X − O,X − O) = 0} is, in
general, not a submanifold.

Problem 3. Show that C = {O + e1x1 + e2x2 ∈ E2 |x2
1 = x2

2} is not a
submanifold.

Example. Gerono’s lemniscate is the curve G = F−1({0}) ⊂ E2, where

F : E2 → R, O + e1x1 + e2x2 = X 7→ F (X) := x4
1 − x

2
1 + x2

2.

It is (check) the image of the immersion t 7→ O + e1 sin t + e2 sin t cos t,
yet not a submanifold of E2.

Problem 4. Prove that Gerono’s lemniscate is not a submanifold.

Rem. If F = F1 + F2 : E
◦
⊃ U → W = W1 ⊕W2 is a submersion, then

so are Fi : U →Wi, i = 1, 2; in this way the submanifold

M = F−1({0}) = F−1
1 ({0}) ∩ F−1

2 ({0}) = M1 ∩M2

appears as the intersection of two (higher dimensional) submanifolds.



70 5 Manifolds and vector bundles

Example. Identifying R4 ∼= C2, the (square) Clifford torus

T 2 = {O + e1z + e2w ∈ E4 | |z|2 + |w|2 = 1, |z|2 − |w|2 = 0}
appears as the intersection of two quadrics: the 3-sphere and a cone.

Problem 5. Prove that the conic sections C = F−1({0}) ⊂ E3, where

F : E3 → R2, F (O + e1x+ e2y + e3z) :=

(
x2 + y2 − z2

x cos α + z sin α− d

)
with α ∈ R and d 6= 0, are 1-dimensional submanifolds of E3.

5.2 Tangent space & Derivative

Previously, functions, vector fields, etc, along a (parametrized) curve
or surface were considered as maps of the same parameter(s) as the
parametrization. Hence it was clear how to differentiate them. Now, in
the setting of submanifolds, these maps will be defined on a submani-
fold M , in particular, not on an open subset of a linear or affine space.
Consequently, the basic notions of analysis need to be revisited.

Def. The tangent space of a (k-dimensional) manifold M ⊂ E at a
point X ∈M is the (k-dimensional, linear) subspace

TXM := dxf(V ),

where f : V ⊃ D → E is a parametrisation of M around X = f(x).

Rem. TXM is independent of the choice of local parametrisation:
if f̃ : D̃ → X is another local parametrisation around X = f̃(x̃) then
there is a diffeomorphism g : D̃ → D so that f̃ = f ◦ g and x = g(x̃);
hence

dx̃f̃(Ṽ ) = dxf(dx̃g(Ṽ )) = dxf(V ).

Problem 6. Let V be a Euclidean vector space with inner product 〈., .〉
and let x 7→ x∗ := 〈x, .〉 denote the canonical embedding of V into V ∗.
Prove that the image M := f(S) of the unit sphere S ⊂ V under the
Veronese embedding

f : S → Sym(V ), x 7→ f(x) := x · x∗

a submanifold is and determine its tangent space at X = f(x) ∈M .
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Lemma. If M = F−1({0}) is the level set of a submersion F : U →W
then

TXM = ker dXF for X ∈M.

Proof . For any local parametrization f around X = f(x) we have

F ◦ f ≡ 0 ⇒ dXF ◦ dxf ≡ 0 ⇒ TXM ⊂ ker dXF ;

then dimTXM = dim ker dXF implies TXM = ker dXF , if dimM <∞.

If dimM =∞ then a more intricate argument following the proof of the
characterizations of submanifolds is required.

Example. The tangent space of a central quadric Q = F−1({0}) ⊂ E
with F (X) = β(X −O,X −O)− 1 is given by

TXQ = ker dXF = {v ∈ V | v ⊥β X −O}.

Rem. If C : (−ε, ε)→M ⊂ E is a curve (smooth map) with C(0) = X
then C′(0) ∈ TXM is a tangent vector: if M ∩ U = F−1({0}) then

F ◦ C ≡ 0 ⇒ dXF (C′(0)) = 0 ⇒ C′(0) ∈ ker dXF.

Conversely, every tangent vector v ∈ TXM is of that form, v = C′(0) for
a suitable curve C: if M ∩ U = f(D) with X = f(x) and v = dxf(w)
take

C(t) := f(x+ tw), hence C′(0) = dxf(w) = v.

Further, two curves C, C̃ : (−ε, ε) → M through X = C̃(0) = C(0)
yield the same tangent vector iff

C̃ ∼ C :⇔ C̃′(0) = C′(0).

Hence
TXM = {C : (−ε, ε)→M |C(0) = X}/∼.

Problem 7. Describe the tangent space TXM of a manifold M ⊂ E in
terms of a flattening diffeomorphism ϕ with ϕ(M ∩ U) = S ∩ ϕ(U).

Now we are prepared to tackle the issue of differentiablity for functions de-
fined on (sub-)manifolds — the familiar notion of “linear approximation”
is no longer available since a manifold is not a linear or affine space.

Here, the key idea is to define the derivative so that the chain rule holds:
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Def. A map g : M →M ′ between manifolds is differentiable at X ∈M
with derivative

dXg := dx′f
′ ◦ dx(f ′−1 ◦ g ◦ f) ◦ (dxf)−1

if (f ′−1 ◦ g ◦ f) : D → D′ is differentiable at x ∈ D, where f : D →M
and f ′ : D′ → M ′ are local parametrizations around X = f(x) and
around X ′ = g(X) = f ′(x′), respectively.

Rem. This definition makes sense as differentiability and derivative of g do
not depend on the choice of parametrization: if f̃ = f ◦ϕ and f̃ ′ = f ′◦ϕ′
are other parametrizations around X = f̃(x̃) and X ′ = f̃ ′(x̃′) then

f̃ ′−1 ◦ g ◦ f̃ = ϕ′−1 ◦ (f ′−1 ◦ g ◦ f) ◦ ϕ
is differentiable at x̃ = ϕ−1(x) since ϕ and ϕ′ are diffeomorphisms and,
with x′ = ϕ′(x̃′), the chain rule yields

dx̃′ f̃
′ ◦ dx̃(f̃ ′−1 ◦ g ◦ f̃) ◦ (dx̃f̃)−1 = dXg.

Rem. Any chart µ = f−1 : M ∩ U → D is differentiable with derivative

dXµ = (dµ(X)f)−1

by definition: clearly id−1 ◦ µ ◦ f = id is differentiable at x = µ(X) and

dXµ = dxid ◦ dxid ◦ (dxf)−1 = (dxf)−1.

With this notion of differentiability many of the usual theorems can be
proved for maps between manifolds — by simply “transporting” the the-
orems onto manifolds by means of parametrizations resp charts.

Lemma (Chain rule). If g : M →M ′ and h : M ′ →M ′′ are differen-
tiable then h ◦ g : M →M ′′ is with

dX (h ◦ g) = dg(X)h ◦ dXg.

Problem 8. Prove the chain rule for maps between manifolds.

Rem. The Leibniz rule for products of maps defined on manifolds follows
from the chain rule and the usual Leibniz rule.

Similarly, linearity of the derivative for vector space valued maps follows.
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Inverse Mapping Theorem. Suppose that g : M →M ′ is smooth and
dXg : TXM → Tg(X)M

′ is an isomorphism for some X ∈M . Then g
restricts to a diffeomorphism around X, i.e., there is a neighbourhood
U of X in M so that g|U : U → g(U) has a smooth inverse.

Problem 9. Prove the Inverse Mapping Theorem on (sub-)manifolds.

Rem. If H : E → R is differentiable and M ⊂ E is a submanifold then
h := H|M : M → R is differentiable with

dXh = dXH|TXM : TXM → R.

Namely: h is clearly differentiable, as H ◦ f is for any parametrization f ;
moreover, if X = f(x) and v = dxf(w) ∈ TXM then

dXh(v) = dx(h ◦ f)(w) = dx(H ◦ f)(w) = dXH(v).

Problem 10. Prove the Lagrange multiplier theorem: if M = F−1({0})
is a submanifold in E , where F : E → R, and H : E → R is differentiable
then X ∈ M is a critical point (hence candidate for an extremum) of
h := H|M : M → R iff there is λ ∈ R so that (λ,X) is a critical point
of

R× E 3 (λ,X) 7→ H(X)− λF (X) ∈ R.

Rem. Let M ⊂ E be a manifold and X ∈ M . A derivation at X is a
map

v : C∞(M)→ R, h 7→ vh

that is linear and satisfies Leibniz rule, v(hg) = (vh)g(X) + h(X)(vg).

Every tangent vector v ∈ TXM gives rise to a derivation

v : C∞ → R, h 7→ vh := dXh(v).

It can be shown that every derivation at X arises in this way, hence
the tangent space TXM of M at X can be identified with the space of
derivations at X, equipped with the usual linear structure on spaces of
real-valued maps.
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5.3 Lie groups

One way to investigate the geometry of a curve or surface was to attach a
(suitably adapted) moving frame to the object: its change then provided
structure equations that encoded the geometry (e.g., curvatures, torsion)
of the object under investigation. More conceptually, such a frame was
obtained as the image of the standard basis of R3 under a (smooth) map
into a subgroup G ≤ Gl(R3).

Thus a Lie group is required: a group G that is, at the same time, a
manifold so that the group operations are differentiable.

Assumption: to simplify formulations we now assume finite dimensions.

Example. Let V be a Euclidean vector space. Gl(V )
◦
⊂ End(V ) is a

(sub-)manifold and a single parametrization is given by the inclusion map

Gl(V ) ↪→ End(V ), g 7→ g,

that we may use to investigate differentiability of the group operations,

µ : Gl(V )× Gl(V )→ Gl(V ), (g, g′) 7→ µ(g, g′) := g ◦ g′

and
ι : Gl(V )→ Gl(V ), g 7→ ι(g) := g−1.

Clearly, µ is differentiable as (restriction of) a bilinear map, with derivative

End(V )×End(V ) 3 (y, y′) 7→ d(g,g′)µ(y, y′) = g ◦ y′+ y ◦ g′ ∈ End(V );

in particular, with g′ = g−1,

End(V ) 3 y′ 7→ d(g,g−1)µ(0, y′) = g ◦ y′ ∈ End(V )

is an isomorphism, so that the Implicit Mapping Theorem implies that the
(unique) local solution ι of µ(h, ι(h)) = µ(g, g−1) = id is differentiable
with

dhι(y) = y′ = −h−1 ◦ y ◦ h−1.

Rem. End(V ) becomes a Euclidean vector space with the inner product

(x, y) 7→ tr(x∗ ◦ y),

where x∗ ∈ End(V ) denotes the adjoint endomorphism. However, since
End(V ) is finite-dimensional, the notions of topology or differentiability
in End(V ) do not depend on this choice of inner product.
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Rem. For a subgroup G ≤ Gl(V ) it suffices to be a (sub-)manifold in
End(V ) in order to be a Lie group: by the chain rule the group operations

µ|G×G : G×G→ G and ι|G : G→ G

of G are differentiable, as restrictions of the group operations on Gl(V ).

As we only consider submanifolds, we only introduce the notion of a Lie
group for subgroups G ≤ Gl(V ) of a general linear group Gl(V ):

Def. G ≤ Gl(V ) is a Lie group, if G ⊂ End(V ) is a submanifold.

Example. The orthogonal group of a Euclidean vector space (V, 〈., .〉),

O(V ) := {g ∈ Gl(V ) | ∀v, w ∈ V : 〈g(v), g(w)〉 = 〈v, w〉}

is a Lie group as it is a submanifold of End(V ): consider

O(V ) = β−1({0}) with β : Gl(V )→ sym(V ), g 7→ β(g),

where β(g) ∈ sym(V ) denotes the symmetric bilinear form

β(g) : V × V → R, β(g)(v, w) := 〈g(v), g(w)〉 − 〈v, w〉;

we aim to show that β : Gl(V )→ sym(V ) is a submersion, i.e., that

End(V ) 3 y 7→ (dgβ(y))(v, w) = 〈g(v), y(w)〉+ 〈y(v), g(w)〉 ∈ sym(V )

surjects, which follows by the Riesz representation lemma — namely,
using that

(v, w) 7→ σ0(v, w) := 〈g(v), g(w)〉

is positive definite, we deduce that

∀σ ∈ sym(V )∃s ∈ Symσ0
(V )∀v, w ∈ V : σ(v, w) = 2σ0(v, s(w)),

that is,
σ = dgβ(y) with y = g ◦ s.

Note that σ0 = 〈., .〉 for g ∈ O(V ), so that

TgO(V ) = ker dgβ = {g ◦ s | ∀v, w ∈ V : 〈v, s(w)〉+ 〈s(v), w〉 = 0}.
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Def. Let G ≤ Gl(V ) be a Lie group. Its Lie algebra is

g := T1G;

its adjoint action is the group action

Ad : G× g→ g, (g, y) 7→ Adg(y) := g ◦ y ◦ g−1.

Recall. A group action of a group G on a vector space W is a map

G×W →W, (g, w) 7→ gw,

satisfying g(g′w) = (g ◦ g′)w and 1w = w for g, g′ ∈ G and w ∈W .

Example. gl(V ) = End(V ) is the Lie algebra of Gl(V ).

Rem. The adjoint action is the derivative of conjugation: for fixed g, the
map

G 3 h 7→ ρg(h) := g ◦ h ◦ g−1

satisfies ρg(1) = 1, so that its derivative d1ρg = Adg : g→ g.

Lemma. Ad : G→ End(g) is differentiable with derivative

ad := d1Ad : g→ End(g), adx(y) = [x, y] := x ◦ y − y ◦ x.

Proof . For fixed y ∈ g consider G 3 g 7→ Adg(y) ∈ g to compute the
derivative:

(d1Ad(x))(y) = x ◦ y ◦ 1−1 + 1 ◦ y ◦ (−1−1 ◦ x ◦ 1−1) = [x, y],

where we used dgι(x) = −g−1 ◦ x ◦ g−1 for ι(g) = g−1.

Rem. Thus the adjoint action yields a canonical (group) representation
of a Lie group G on its Lie algebra g. If this representation is faithful,
then it yields a natural ambient space for the Lie group as a submanifold.

Cor & Def. The Lie algebra g of a Lie group G ≤ Gl(V ) is a Lie alge-
bra in the algebraic sense, i.e., comes with a Lie bracket [., .] satisfying

(i) skew symmetry: ∀x, y ∈ g : [x, y] + [y, x] = 0;

(ii) Jacobi identity: ∀x, y, z ∈ g : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Proof . As ad : g→ End(g), it yields a multiplication on g,

g× g 3 (x, y) 7→ adx(y) = [x, y] ∈ g.

It is trivial to verify skew symmetry and the Jacobi identity for the com-
mutator of endomorphisms.
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Example. The orthogonal algebra of a Euclidean vector space (V, 〈., .〉)
is the space

o(V ) = T1O(V ) = {y ∈ gl(V ) | ∀v, w ∈ V : 〈v, yw〉+ 〈yv, w〉 = 0}.
Any other tangent space is obtained by left translation

lg : T1O(V )→ TgO(V ), y 7→ lg(y) := g ◦ y.

Problem 11. Let ∆ : V n → R denote a volume form on V . Prove that
the special linear group Sl(V ) := {g ∈ Gl(V ) | det g = 1} of volume
preserving endomorphisms is a Lie group and determine its Lie algebra.

5.4 Grassmannians

Grassmannians not only provide an interesting example for manifolds but
will also be paramount in our further analysis of vector bundles and the
geometry of submanifolds. A key issue in identifying a Grassmannian as
a (sub-)manifold in our context is to embed it into a suitable ambient
Euclidean geometry: much of the analysis reduces to linear algebra and
analysis, which we will discuss in detail here.

Def. For vector subspaces S, S′ ≤ V we introduce an equivalence
relation

S′ ∼ S :⇔ ∃ψ ∈ Gl(V ) : S′ = ψ(S).

An equivalence class GS(V ) = {S′ ≤ V |S′ ∼ S} is a Grassmannian.

Rem. Assuming dimV <∞ we also write Gk(V ) for the Grassmannian
of k-dimensional subspaces of V , as

S′ ∼ S ⇔ dimS′ = dimS for S, S′ ≤ V.

Example. G1(Rn+1) = RPn is the real projective n-space.

Rem. In a (finite-dimensional) Euclidean vector space (V, 〈., .〉) the above
equivalence relation may equivalently be formulated as

S′ ∼ S :⇔ ∃ψ ∈ O(V ) : S′ = ψ(S).

If the inner product is indefinite, then this alternative formulation leads
to the Grassmannians of k-dimensional subspaces with fixed signature.
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Lemma. Suppose V = S ⊕ T and S′ ≤ V . Then V = S′ ⊕ T iff

∃!g ∈ Hom(S, T ) : S′ = {x+ g(x) |x ∈ S}.

Proof . First suppose that S′ = {x+g(x) |x ∈ S} is the graph of a linear
map g : S → T . Then

• V = S′ + T : take v = s+ t ∈ S + T = V , then

v = (s+ g(s)) + (t− g(s)) ∈ S′ + T ;

• {0} = S′ ∩ T : let v = s+ g(s) = t ∈ S′ ∩ T , then

s = t− g(s) ∈ S ∩ T = {0} ⇒ s = 0 = t = s+ g(s).

Conversely, suppose that V = S′ ⊕ T and denote the corresponding
projection onto T by π′ : V → T, v = s′ + t 7→ t. Now set

g : S → T, s 7→ g(s) := −π′(s);

then, with the graph G := {x+ g(x) |x ∈ S} of g,

• G ⊂ S′: s+ g(s) = s− π′(s) ∈ S′ for s ∈ S;

• G ⊃ S′: as V = S ⊕ T we can (uniquely) decompose s′ ∈ S′,
s+ t = s′ ∈ S′ ⇒ 0 = π′(s′) = π′(s) + π′(t) = −g(s) + t.

A map g is (uniquely determined by) its graph, hence the uniqueness
claim holds trivially.

Rem. This lemma already provides “local” parametrizations

Hom(S, T )→ GS(V );

in the case of projective space, these are the usual affine coordinates.

Unfortunately, we did not identify GS(V ) as a subset of some Euclidean
space E , hence do not have a notion of differentiability (or even topology)
on GS(V ) yet.

To remidy this defect we introduce an inner product 〈., .〉 on V , which
induces the aforementioned inner product on End(V ) = gl(V ),

〈., .〉 : gl(V )× gl(V )→ R, (λ, λ′) 7→ tr λ∗λ′,

and then embed GS(V ) ↪→ gl(V ) by identifying a subspace S ≤ V with
the reflection ρ in S:
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Lemma. Given a scalar product 〈., .〉 on V , where dimV =: n ∈ N ,

Gk(V )
1:1←→ {ρ ∈ gl(V ) | ρ∗ρ = ρ2 = 1, tr ρ = 2k − n}.

Proof . Given S ∈ Gk(V ) we have V = S ⊕ S⊥; let π and π⊥ denote
the corresponding (orthogonal) projections and set

ρ := π − π⊥ =

{
1 on S,

−1 on S⊥;

hence ρ2 = 1, ρ∗ = ρ and tr ρ = dimS − dimS⊥ = k − (n− k).

Conversely, if ρ∗ = ρ and ρ2 = 1 then ρ is diagonalizable with eigenvalues
±1 and orthogonal eigenspaces S = ker(ρ − 1) resp S⊥ = ker(ρ + 1);
further, 2k − n = tr ρ = 2 dimS − n yields S ∈ Gk(V ).

Rem. Alternatively, the Grassmannian Gk(V ) can be identified with a
set of orthogonal projections,

Gk(X)
1:1←→ {ρ ∈ End(X) | ρ∗ = ρ = ρ2, tr ρ = k}.

Problem 12. Let X be a Hilbert space, dimX = n. Show that

Gk(X)
1:1←→ {ρ ∈ End(X) | ρ∗ = ρ, ρ2 = ρ, tr ρ = k}.

Recall. The adjoint λ∗ : W → V of λ ∈ Hom(V,W ), defined by

∀v ∈ V ∀w ∈W : 〈w, λ(v)〉W = 〈λ∗(w), v〉V ,
satisfies

ker λ∗ = (λ(V ))⊥ and λ∗(W ) = (ker λ)⊥.

We now reformulate the above local parametrizations in terms of reflec-
tions:

Lemma. Let S ∈ Gk(V ) and S′ = {s + g(s) | s ∈ S} the graph of a
linear map g ∈ Hom(S, S⊥); let ρ resp ρ′ denote the corresponding
reflections, and π = 1

2 (1 + ρ) : V → S the orthogonal projection to S;
then

ρ′ = (1 + ψ)ρ (1 + ψ)−1 with ψ := (gπ)− (gπ)∗.

Conversely, let S′ ∈ Gk(V ) and suppose that |ρ′ − ρ| < 2; then there
is a unique g ∈ Hom(S, S⊥) so that S′ = {s+g(s) | s ∈ S} is the graph
of g, where

g = (ρ′ − ρ)(ρ′ + ρ)−1|S .
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Proof . First note that, clearly, ψ∗ +ψ = 0, and that ψρ+ ρψ = 0 since

S
gπ−→ S⊥

gπ−→ {0} and S⊥
(gπ)∗
−→ S

(gπ)∗
−→ {0}

Further we learn that S and S⊥ are invariant subspaces of

1− ψ2 = (1 + ψ)∗(1 + ψ) = 1 + (gπ)∗(gπ) + (gπ)(gπ)∗.

As a consequence, (v, w) 7→ 〈v, (1 − ψ2)w〉 defines a positive definite
inner product on V , as

|(1 + ψ)w|2 =

{
|w|2 + |g(w)|2 for w ∈ S,

|w|2 + |g∗(w)|2 for w ∈ S⊥.

Hence 1 + ψ ∈ Gl(V ) is an automorphism, and satisfies

(1 + ψ)(S⊥) = ((1 + ψ)(S))⊥ = {s+ g(s) | s ∈ S}⊥.

This proves the first claim:

ρ′ = (1 + ψ)ρ (1 + ψ)−1 = (1 + ψ)(1− ψ)−1ρ.

Using this formula it is straightforward to recover g from ρ′: we obtain

ρ′ ± ρ =

{
2(1− ψ)−1ρ,

2ψ(1− ψ)−1ρ;

hence
ψ = (ρ′ − ρ)(ρ′ + ρ)−1 and g = ψ|S .

To prove the second claim we show that S⊥ is a complementary subspace
of S′ ∈ Gk(V ) as long as |ρ′ − ρ| < 2: observe that,

(ρ′ − ρ)(v) = 2v for v ∈ S′ ∩ S⊥;

thus |ρ′ − ρ|2 = tr(ρ′ − ρ)2 ≥ 4 as soon as S′ ∩ S⊥ 6= {0}, contrary to
our assumption.
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Cor. The Grassmannian Gk(V ) is a k(n− k)-dimensional manifold.

Proof . We prove that {ρ ∈ gl(V ) | ρ∗ρ = ρ2 = 1, tr ρ = 2k − n} is a
submanifold. Thus for S ∈ Gk(V ) we consider as a local parametrization:

f : Hom(S, S⊥)→ Gk(V ), g 7→ f(g) := ρ′,

where ρ′ is the reflection in the graph S′ = {s + g(s) | s ∈ S} ∈ Gk(V )
of g. By the previous lemma f injects and its inverse

ρ′ 7→ g = (ρ′ − ρ)(ρ′ + ρ)−1|S
is the restriction of a differentiable, hence continuous, map — defined on
a suitable neighbourhood U ⊂ gl(V ) of ρ.

To see that f qualifies as a local parametrization it therefore suffices to
show that it immerses: we use

f(g) = (1 + ψ)(1− ψ)−1ρ and dgψ(h) = (hπ)− (hπ)∗ =: η

to compute
dgf(h) = 2(1− ψ)−1η (1− ψ)−1ρ;

consequently dgf(h) = 0 implies η = 0, hence h = η|S = 0.

Rem. Another approach is to describe a Grassmannian as a symmetric
space:

GS(V ) = O(V )/(O(S)× O(S⊥)),

using Lie groups as discussed in the previous section.

5.5 Vector bundles

A vector bundle over a manifold M is

• a manifold that locally “looks like” the product M × V of M and a
vector space V ;

• a family of (isomorphic) vector spaces X 7→ VX that is smoothly
parametrized by M .

The usual definition, to be found in many textbooks, takes the first ap-
proach. We take the second point of view:
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Def. Let M ⊂ E be a manifold. A vector bundle over M is a smooth
map

S : M → Gk(V )

for some k ∈ N (the rank of S) and some Hilbert space V ; the fibre of
S at X is the image SX of X, the total space of S is its “graph”

{(X,Y ) ∈M × V |Y ∈ SX}.

Rem. We will not distinguish between a k-dimensional subspace S ≤ V
and the reflection ρ ∈ gl(V ) in S (from now on also denoted by S).

Rem. In a similar way, a principal bundle over M can be defined as a
smooth map M 3 X 7→ GX ≤ Gl(V ) assigning isomorphic Lie subgroups
GX of some Gl(V ) to every point of a manifold M .

Expl & Def. If dimV = n then Gn(V ) = {V } and the constant map

S : M → Gn(V ), X 7→ SX = V

is called a trivial (vector) bundle over M ⊂ E .

Rem. Thus a “vector bundle” is, in the sense of the above definition,
a “vector (sub-)bundle (of the trivial bundle M × V )” — similar to our
definition of a manifold as a submanifold of E .

Def. A section of a vector bundle S : M → Gk(V ) is a smooth map

σ : M → V, where ∀X ∈M : σ(X) ∈ SX .
A local section is one that is defined locally, on some open U ⊂M .

Notations.

• ΓV := {σ : M → V | ∀X ∈M : σ(X) ∈ SX} the space of sections;

• ΓXV := {σ : U → V | ∀Y ∈ U : σ(Y ) ∈ SY } the space of local
sections, defined on some open neighbourhood U ⊂M of X ∈M .

Rem. In a similar way, a (local) frame F : M → Gl(V ) is a (local)
section of a principal bundle M 3 X 7→ GX ≤ Gl(V ).

Rem. Given vector bundles S : M → Gk(V ) and S′ : M → Gk′ (V
′)

X 7→ Hom(SX , S
′
X ) ⊂ End(V, V ′) (trivial extensions to S⊥X )

defines another, rank kk′, vector bundle (a tensor bundle) Hom(S, S′).
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Def. A section Φ ∈ ΓHom(S, S′) is called vector bundle homomorphism;
it is a vector bundle isomorphism if every ΦX bijects.

Lemma. A vector bundle S : M → Gk(V ) admits local basis sections:

∀X ∈M∃bi ∈ ΓXS∀Y ∈ U : SY = [(b1(Y ), . . . , bk(Y ))].

Hence, any S is locally (isomorphic to a) trivial (bundle).

Proof . Fix X ∈ M and U ⊂ M so that ∀Y ∈ U : |VY − VX | < 2.
Hence, for any Y ∈ U , the orthogonal projection π : V → SX yields an
isomorphism

π|SY : SY → SX .

Thus choose a basis (c1, . . . , ck) of SX ; then, for i = 1, . . . , k,

U 3 Y 7→ bi(Y ) := (π|SY )−1(ci) ∈ SY
define local sections of S, bi ∈ ΓXS, so that (b1, . . . , bk)(Y ) is a basis
of SY for each Y ∈ U . Hence a (local) vector bundle isomorphism

M ⊃ U 3 Y 7→ ΦY ∈ Hom(SY , SX ), ΦY : bj(Y ) 7→ cj ,

is obtained from S to the trivial bundle M ⊃ U → Gk(SX ) = {SX}.
Rem. If bi : M → V (i = 1, . . . , k) are smooth and (pointwise) linearly
independent then they span a (smooth) rank k vector bundle

S : M → Gk(V ), X 7→ SX := [(b1(X), . . . , bk(X))].

Problem 13. Prove this claim.

Cor. The total space of a vector bundle S : Mm → Gk(V ) over an
m-dimensional manifold is an (m+k)-dimensional manifold in E ×V .

Remark. Clearly, the graph of a vector bundle S is a (sub-)manifold

{(X,SX ) ∈M ×Gk(V ) |X ∈M} ⊂ E × End(V ).

By the corollary, it is a manifold if the fibres SX are thought of as subsets
of V rather than as points in Gk(V ) ⊂ End(V ).

Proof . Fix X ∈M and a local parametrization

f : O →M ⊂ E around X = f(x) ∈ f(O) =: U
◦
⊂M.
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By the previous lemma S : M → Gk(V ) admits local basis sections, wlog
defined on U : ∃bi ∈ ΓXS : S|U = [(b1, . . . , bk)].

Hence, for any v ∈ SX , that is, point (X, v) of the total space of S,

F : O ×Rk → E × V, (y, w) 7→ (f(y),
∑k

i=1
(bi ◦ f)(y)wi)

yields a local parametrization of the total space of S around (X, v).

Def & Cor. Let M ⊂ E be an m-dimensional manifold; its tangent
bundle

TM : M → Gm(V ), X 7→ TXM,

is a rank m vector bundle. A vector field on M is a section ξ ∈ Γ(TM).

Proof . We need to show that TM : M → Gm(V ) is differentiable: this
follows since

TM |U = [( ∂
∂x1

, . . . , ∂
∂xm

)],

where
U 3 X 7→ ∂

∂xi
|X := df−1(X)f(ei) ∈ TXM,

with the standard basis (e1, . . . , em) of Rm, denote the Gaussian basis
fields of a local parametrization f : O → f(O) =: U ⊂M .

Remark. The tangent bundle TM : M → Gm(V ) of an m-dimensional
manifold M ⊂ E is rank m vector bundle over M , thus a 2m-dimensional
manifold in E × V .

Lemma & Def. Given vector fields ξ, η ∈ Γ(TM) there is a unique
vector field ζ ∈ Γ(TM) so that

∀h ∈ C∞(M) : ζh = ξ(ηh)− η(ξh).

[ξ, η] := ζ is called the Lie bracket of ξ and η.

Proof . First note that, by Schwarz lemma,

∀h ∈ C∞(M) : ∂
∂xi

∂
∂xj

h− ∂
∂xj

∂
∂xi

h = 0 ⇒ [ ∂
∂xi

, ∂
∂xj

] = 0

for the Gaussian basis fields ∂
∂xi

of a local parametrization f : O → U .

Now write ξ|U =
∑m

i=1
vi

∂
∂xi

and η|U =
∑m

i=1
wj

∂
∂xj

to compute

[ξ, η]h =
∑m

i,j=1
vi
∂wj
∂xi

∂h
∂xj
− wj ∂vi∂xj

∂h
∂xi

for h ∈ C∞(U),
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hence

[ξ, η]|U =
∑m

i,j=1
vi
∂wj
∂xi

∂
∂xj
− wj ∂vi∂xj

∂
∂xi
∈ Γ(TM |U )

yields indeed a vector field, i.e., second order derivatives vanish.

Rem. With the Lie bracket Γ(TM) is an (infinite dimensional) Lie algebra:
clearly [., .] is bilinear and skew-symmetric; the Jacobi identity is readily
checked.

5.6 Connections on vector bundles

Connections already made an appearance earlier in this text: as the Levi-
Civita connection of a surface or as the normal connection of a curve.
These connections provided a method to take derivatives of tangential
resp normal vector fields. A linear connection on a vector bundle is a
straightforward generalization of these two notions:

Def. A (linear) connection on a vector bundle S : M → Gk(V ) is a
map ∇ : Γ(TM × S)→ Γ(S), (ξ, σ) 7→ ∇ξσ
so that

(i) ∇ is C∞(M)-linear in the first argument:

∇ξ+ησ = ∇ξσ +∇ησ and ∇hξσ = h∇ξσ;

(ii) ∇ is a derivation in the second argument:

∇ξ(σ + τ) = ∇ξσ +∇ξτ and ∇ξ(hσ) = h∇ξσ + (ξh)σ.

Rem. The Lie derivative Lξη := [ξ, η] yields a way to differentiate vector
fields of the tangent bundle TM of a (sub-)manifold; however, this is not
a linear connection on TM since ξ 7→ Lξη is not C∞(M)-linear.

Expl & Def. Ordinary differentiation on a trivial vector bundle,

S : M → Gn(V ) with dimV = n,

yields a trivial connection

∇ : Γ(TM × S)→ Γ(S), ∇ξσ|X := dXσ(ξX ) for X ∈M.

Rem. Any two connections ∇ and ∇′ on a vector bundle S differ by a
tensor field: β := ∇′ −∇ : Γ(TM)→ ΓEnd(S) satisfies

∀h ∈ C∞(M) : β(hσ) = hβσ.
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Def. A section σ ∈ Γ(S) of a vector bundle S : M → Gk(V ) is called
parallel if

∇σ ≡ 0.

Two connections ∇,∇′ on vector bundles S and S′ over M will be
called gauge equivalent if

∃Φ ∈ ΓHom(S, S′) : ∇′ ◦ Φ = Φ ◦ ∇ and ∀X ∈M : Φ−1
X exists.

The map ∇ 7→ ∇′ = Φ◦∇◦Φ−1 is called a gauge transformation of ∇.

Lemma. A connection is gauge equivalent to a trivial connection iff
it admits a parallel basis field.

Proof . Suppose (σ1, . . . , σk) is a parallel basis field of S, that is, ∇σi = 0
for i = 1, . . . , k; let S′ = M × Rk denote a(ny) trivial rank k vector
bundle with trivial connection d and (constant) basis (b1, . . . , bk). Then
define

Φ ∈ ΓHom(S, S′) by Φ(σi) := bi for i = 1, . . . , k

to obtain the sought gauge transformation:

(d ◦ Φ)(σi) = dbi = 0 = Φ(0) = (Φ ◦ ∇)(σi).

The converse follows by the very same computation, where Φ is used to
obtain (σ1, . . . , σk).

Rem. Any vector bundle S admits local basis fields, i.e., is locally trivial.
However, a vector bundle S with connection ∇ may not even be locally
gauge equivalent to a vector bundle S′ with a trivial connection d.

Local triviality of a (vector bundle with) connection is detected by the
corresponding curvature tensor:

Def. The curvature tensor of a connection ∇ on a vector bundle S is
the tensor field R : Γ(TM × TM × S)→ Γ(S),

(ξ, η, σ) 7→ Rξ,ησ := ∇ξ∇ησ −∇η∇ξσ −∇[ξ,η]σ.

Rem. R is a tensor field, that is, C∞(M)-linear in all entries.

Problem 14. Prove that the curvature tensor R of a connection ∇ on a
vector bundle S is a tensor field.
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Thm & Def. ∇ is locally trivial iff it is flat, that is, iff R ≡ 0.

Proof . If ∇ is locally trivial we use a local parallel basis field (σ1, . . . , σk)
to compute ∀i = 1, . . . , k : Rσi ≡ 0.

To prove the converse, we show that any vector σo ∈ SO , O ∈ M , can
be extended to a local parallel section σ ∈ ΓOS; then a basis at any point
can be extended to a local parallel basis field, hence ∇ is locally trivial.

We use induction over m = dimM : let dimM = m + 1 and fix a local
parametrization Rm × R 3 (x, t) 7→ f(x, t) ∈ M around O = f(0, 0);
fix σo ∈ SO and let M0 := {f(x, 0)} denote the t = 0 “sheet” in M .
Since the restriction of ∇ to M0 is flat there is a local parallel section

σ̃ : M0 → V, σ̃(f(x, 0)) ∈ Sf(x,0);

now use parallel transport along the t-curves to extend σ̃ to a local section
over M , cf Sect 1.3: by the Picard-Lindelöf theorem there are unique
solutions t 7→ σ(f(x, t)) of the initial value problems

∇ ∂
∂t
σ = 0, σ(f(x, 0)) = σ̃(f(x, 0)).

Taking for granted (smooth dependence on the initial value) that σ is
differentiable we now verify that σ is indeed parallel: since

∇∂
∂t
∇ ∂
∂xi

σ = ∇ ∂
∂xi

∇∂
∂t
σ − R ∂

∂xi
, ∂
∂t
σ = 0 and ∇ ∂

∂xi

σ|M0
= 0

we conclude that ∇ ∂
∂xi

σ = ∇∂
∂t
σ = 0, that is, ∇σ = 0.

Rem. If d = ∇+ β with a tensor field β : Γ(TM)→ ΓEnd(S) then

0 = Rdξ,ησ = (R∇ξ,η + [βξ ◦ βη ])σ + ((∇ξβη)− (∇ηβξ)− β[ξ,η])σ, (∗)
with the covariant derivative of a tensor field,

(∇ξβη)σ := ∇ξ(βησ)− βη(∇ξσ) for βη ∈ ΓEnd(S).

If M ⊂ E3 is a surface in Euclidean 3-space (over V = R3) and S ≡ V ,
the Gauss-Weingarten equations yield a decomposition d = ∇ + β of
the trivial connection (differentiation) on S = M ×R3, and (∗) become
the corresponding Gauss-Codazzi equations.

Problem 15. Revise the Gauss-Codazzi equations.
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5.7 Geometry of submanifolds

We take up the remark formulated at the end of the previous section to
generalize the geometric notions of the first two chapters of this text to
submanifolds. In order to analyze the structure of the geometric invariants
and their relations in more depth we first consider the structure equations
in an affine setting, before specializing to a Euclidean setting: thus we
initially use a “normal bundle” that complements the tangent bundle, but
is not necessarily orthogonal:

Def. Two vector bundles S : M → Gk(V ) and S′ : M → Gk′ (V ) are
complementary if ∀X ∈M : V = SX ⊕ S′X .

Notation. Throughout this section M ⊂ E will be an m-dimensional
submanifold in a Euclidean space E over V . We will identify V with the
trivial vector bundle V : M → Gn(V ), where dimV = n, and let d
denote a trivial connection on V .

Lemma (Gauss-Weingarten equations). Suppose that TM and N ′

are complementary vector bundles over M ⊂ E and denote the re-
spective projections by π ∈ ΓHom(V, TM) and π′ ∈ ΓHom(V,N ′);
let ∇ := π ◦ d ◦ π, S := −π ◦ d ◦ π′,

II := π′ ◦ d ◦ π, ∇′ := π′ ◦ d ◦ π′.
Then ∇ and ∇′ are connections on TM and N ′, respectively, while

Γ(TM × TM) 3 (ξ, η) 7→ II(ξ, η) ∈ Γ(N ′)

and
Γ(N ′) 3 ν 7→ Sν ∈ ΓEnd(TM)

are tensors, i.e., C∞(M)-linear; further, II is symmetric, and ∇ is
torsion free, that is, its torsion tensor T vanishes,

∀ξ, η ∈ Γ(TM) : T(ξ, η) := ∇ξη −∇ηξ − [ξ, η] = 0.

Rem. Thus, for ξ, η ∈ Γ(TM) and ν ∈ Γ(N ′),

ξη = dη(ξ) = ∇ξη + II(ξ, η),

ξν = dν(ξ) = −Sνξ + ∇′ξν.
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Further note that the torsion only makes sense for a connection on TM .

Proof . For ξ, η ∈ Γ(TM) and h ∈ C∞(M)

ξ(hη) = (π + π′)((ξh)η + h (ξη)) = ((ξh)η + h∇ξη) + h II(ξ, η),

showing that ∇ and II are a derivtation resp C∞(M)-linear in the second
argument; clearly both are C∞(M)-linear in the first argument. Hence,
∇ is a connection and II a tensor.

A similar computation/argument applies to S and ∇′.
Finally, as the trivial connection d is torsion free (Schwarz’ lemma),

[ξ, η] = ξη − ηξ = (∇ξη −∇ηξ) + (II(ξ, η)− II(η, ξ))

is tangential, showing that II is symmetric and ∇ torsion free.

Gauss-Codazzi-Ricci equations. Suppose that TM and N ′ are com-
plementary vector bundles over a submanifold M ⊂ E ; then

(G) Rξ,ηζ = SII(ζ,η)ξ − SII(ζ,ξ)η — Gauss equation,

(C) (∇′ξII)(η, ζ) = (∇′ηII)(ξ, ζ) — Codazzi equation (for II),

(∇ξS)ν η = (∇ηS)ν ξ — Codazzi equation (for S),

(R) R′ξ,ην = II(ξ,Sνη)− II(Sνξ, η) — Ricci equation,

where R and R′ denote the curvature tensors of ∇ resp ∇′, and with
the covariant derivatives of II resp S : Γ(N ′ × TM)→ Γ(TM),

(∇′ξII)(η, ζ) := ∇′ξII(η, ζ)− II(∇ξη, ζ)− II(η,∇ξζ),

(∇ξS)νη := ∇ξ(Sνη)− Sν∇ξη − S∇′
ξ
νη.

Proof . The equations are obtained in a straightforward way, by expanding

0 = ξ(ηζ)− η(ξζ)− [ξ, η] ζ and 0 = ξ(ην)− η(ξν)− [ξ, η] ν

and decomposing the results into Γ(TM)- and Γ(N ′)-components.
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Rem. These are just the equation (∗) from the previous section, with
∇+∇′ as a connection on TM ⊕N ′ and with β = II−S as its deviation
from the trivial connection.

Example. Suppose that ∇ is torsion free and ν ∈ Γ(N ′) is ∇′-parallel.
Then

Sν = κν idTM ⇒ (∇ξSν) = (ξκν) idTM .

Thus, if dimM ≥ 2 and Sν = κν idTM then κν ≡ const by the Codazzi
equation (as in Sect 2.4), hence, as π′ ◦ dν = ∇′ν = 0,

0 = κν idTM − Sν = κν + dν ⇒
{
X 7→ ν(X) ≡ const or

X 7→ X +
ν(X)
κν (X)

≡ const,

depending on whether κν ≡ 0 or 6= 0. In the former case, M ⊂ H for
some hyperplane H ⊂ E ; in the latter case, M is a submanifold in some
hypersphere Sn−1( 1

κν
) ⊂ E as soon as ν is a unit normal field.

We now turn to a Euclidean setting — thus require the presence of an
inner product — where, for example, the orthogonal complement of the
tangent bundle yields a canonical complementary vector bundle. The
main consequences will be the existence of a distinguished tangential
connection, the Levi-Civita connection of a submanifold, and a relation
between the second fundamental form II and the shape operator S of a
submanifold, procured by the induced metric. To start we set the scene:

Def. A vector bundle S : M → Gk(V ) is Euclidean if it carries a
metric 〈., .〉 : Γ(S × S)→ C∞(M);

that is, each 〈., .〉X : SX×SX → R is a positive definite inner product.
A connection ∇ on S is then metric if it satisfies Leibniz’ rule

ξ 〈σ, τ〉 = 〈∇ξσ, τ〉+ 〈σ,∇ξτ〉.

Expl & Def. If V is equipped with a scalar product 〈., .〉 then the tangent
bundle TM : M → Gm(V ) of M ⊂ E inherits a metric

I : Γ(TM × TM)→ C∞(M), (ξ, η) 7→ I(ξ, η) := 〈ξ, η〉,
the induced metric or first fundamental form on M . In this situation

NM : M → Gn−m(V ), X 7→ NXM := TXM
⊥
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yields a natural complementary vector bundle, the normal bundle of M .

Decomposing the trivial (metric) connection d on M → Gn(V ) = {V }
according to the Gauss-Weingarten equations,

dσ =

{
∇σ + II(σ, .) for σ ∈ Γ(TM),

−Sσ + ∇⊥σ for σ ∈ Γ(NM),

yields

• the covariant derivative or Levi-Civita connection ∇ of M ⊂ E ;

• its second fundamental form II and shape operator S;

• and its normal connection ∇⊥.

Notation. From now on we assume that M ⊂ E be a sub(!)manifold of
a Euclidean space E over a vector space V with inner product 〈., .〉.

Lemma. The shape operator S of a submanifold M ⊂ E is symmetric
(with respect to the first fundamental form I) and is related to its
second fundamental form II by

∀ξ, η ∈ Γ(TM)∀ν ∈ Γ(NM) : 〈ν, II(ξ, η)〉 = I(Sνξ, η).

Proof . For ξ, η ∈ Γ(TM) and ν ∈ Γ(NM) we compute

0 = ξ 〈η, ν〉 = 〈ξη, ν〉+ 〈η, ξν〉 = 〈II(ξ, η), ν〉 − 〈η,Sνξ〉,

proving the claimed relation. Symmetry of Sν then follows from the
symmetry of II.

Lemma. The normal connection ∇⊥ of a submanifold M is metric.

Proof . The trivial connection d on M → Gn(V ), X 7→ V , is metric,
hence

d〈ν, ν̃〉 = 〈dν, ν̃〉+ 〈ν, dν̃〉 = 〈∇⊥ν, ν̃〉 = 〈ν,∇⊥ν̃〉

for ν, ν̃ ∈ Γ(NM).
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Expl & Def. If M ⊂ E is a hypersurface, i.e., dim E = dimM + 1, then
the normal connection ∇⊥ of M is locally trivial, hence flat: namely,
normalizing a local basis field we obtain a (local) Gauss map ν ∈ Γ(NM)
(which is unique up to sign); then (ν) is a parallel basis field of NM as

0 = d|ν|2 = 2〈ν, dν〉 ⇒ dν = −Sν ∈ ΓEnd(TM).

As Sν ∈ ΓEnd(TM) is symmetric it diagonalizes and, where the principal
curvatures of M (i.e., eigenvalues κi of Sν) do not change multiplicities,
there is a local orthonormal basis field of curvature directions

(ξ1, . . . , ξm) with Sνξi = κiξi for i = 1, . . . ,m.

If M is totally umbilic, Sν = κ idTM , and dimM ≥ 2 we already know
that

κ ≡ const.

Thus:

• if κ = 0 then ν ≡ const, hence, for any fixed Xo ∈M ,

M 3 X 7→ 〈X −Xo, ν〉 ≡ const ∈ R,

showing that M lies in a hyperplane with unit normal ν;

• if κ 6= 0 then X 7→ C := X + ν 1
κ ≡ const, hence

M 3 X 7→ |X − C|2 = 1
|κ|2 ≡ const ∈ R,

showing that M lies in a hypersphere with centre C and radius 1
|κ| .

Lemma. The covariant derivative ∇ of a manifold M ⊂ E is torsion
free and metric (with respect to the induced metric).

Proof . We already know that ∇ is torsion free (from Schwarz’ lemma).
For vector fields ξ, η, ζ ∈ Γ(TM) one computes

ξI(η, ζ) = ξ〈η, ζ〉 = 〈ξη, ζ〉+ 〈η, ξζ〉 = I(∇ξη, ζ) + I(η,∇ξζ),

showing that ∇ is a metric connection.
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Lemma (Koszul’s formulas). Let M be a manifold with a metric I.
Any torsion free and metric connection ∇ on TM satisfies

2I(∇ξη, ζ) = ξ I(η, ζ) + η I(ξ, ζ) − ζ I(ξ, η)

− I(ξ, [η, ζ]) − I(η, [ξ, ζ]) + I(ζ, [ξ, η]).

Proof . This is a straightforward computation: if ∇ is metric then

ξ I(η, ζ) = I(∇ξζ, η) + I(∇ξη, ζ)

η I(ζ, ξ) = I(∇ηζ, ξ) + I(∇ηξ, ζ)

ζ I(ξ, η) = I(∇ζη, ξ) + I(∇ζξ, η)

and then the claim follows by using that ∇ is torsion free.

Cor (Levi-Civita connection). Given a metric I on a manifold M ,
there is a unique torsion free and metric connection ∇ on TM .

Proof . Any metric and torsion free connection ∇ must satisfy Koszul’s
formula, hence is uniquely determined by the metric via Riesz’ represen-
tation lemma.

On the other hand, Koszul’s formula defines indeed a metric and torsion
free connection on TM : the right hand side of Koszul’s formula

• is C∞(M)-linear in the 1st argument,

• behaves like a derivation in the 2nd argument,

• symmetrizing the 2nd and 3rd arguments yields ξ I(η, ζ),

• skew-symmetrizing 1st and 2nd arguments yields I([ξ, η], ζ).

Cor. The curvature (tensor) R of the Levi-Civita connection ∇ of a
manifold M ⊂ E depends on the metric I on M alone.

Proof . Clear.
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Theorema egregium. The Gauss curvature K := detSν of a surface
M2 ⊂ E3 in Euclidean 3-space depends on the induced metric alone.

Proof . By the Gauss equation

I(Rξ,ηη, ξ) = I(SII(η,η)ξ, ξ)− I(SII(η,ξ)η, ξ)

= 〈II(ξ, ξ), II(η, η)〉 − 〈II(ξ, η), II(ξ, η)〉
= I(Sνξ, ξ) I(Sνη, η)− I(Sνξ, η)2

= det Sν

for any (local) orthonormal basis field (ξ, η) of TM .

Rem. The Gauss curvature K is independent of the choice (sign) of the
Gauss map ν ∈ Γ(NM).

For higher dimensional hypersurfaces M ⊂ E , a similar argument shows
that products Kij := κiκj of principal curvatures κi and κj for i 6= j,
the sectional curvatures of a hypersurface M , are intrinsic quantities
(that is, depend on I only).
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Epilogue

In this rather concise introduction to the wide field of differential geometry
we were only able to touch upon few topics — however, I hope to have
given a clear outline of the basic methods of (local) differential geometry
in a way that will enable the interested student to study further topics
independently.

In particular, this lecturer hopes that the underlying principle of how con-
nections on vector bundles lead to geometric results has been elucidated
clearly, by recovering some of the key results for (parametrized) surfaces
from Chap 2 in the setting of submanifolds of Chap 5.

Using these methods, it should now for example be rather straightforward
to generalize those results on special surfaces from Chap 4, that did not
depend on a specific dimension or codimension, to the general setting of
a submanifold in a Euclidean space.

I hope that the presented material has sparked your interest in the beau-
tiful field of differential geometry, and that it has provided a solid base
to read and study further, for example, using the books referenced in the
introduction. Anyhow, I wish you all the best for your future (studies)!
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Appendix: Tools from algebra and analysis

The following notations, definitions and formulas of linear algebra and
analysis are used throughout the text, without further comment or expla-
nation; they may be found in many standard textbooks. It will make a
good exercise to verify any unfamiliar identities, by example and/or proof.

A.1 Euclidean geometry

We study the differential geometry of objects in a Euclidean ambient
geometry — here we recall the notions of a Euclidean space resp motion,
and collect some useful facts and formulas in the context.

Euclidean space. A triplet (E , V, τ), consisting of a set E of points, a
Euclidean vector space (V, 〈., .〉), where 〈., .〉 : V × V → R is a positive
definite inner product, and an action τ : V × E → E of V on E by
translations:

(i) τ0 = idE and ∀v, w ∈ V : τv ◦ τw = τv+w (group action);

(ii) ∀X,Y ∈ E∃!v ∈ V : τvX = Y (simple transitivity).

For simplicity we write τvX =: X + v.

Note that no assumption about the dimension is made.

Cartesian reference system. (O;E), where O ∈ E is an origin and E is
an orthonormal basis of (V, 〈., .〉). If E = (e1, . . . , en) then every point
X ∈ E has (unique) cartesian coordinates x1, . . . , xn ∈ R, where

X = O +
∑n

i=1
eixi = O + (e1, . . . , en)(x1, . . . , xn)t.

Vector products. In general, a product is a bilinear map � : V ×V →W
into some target vector space W . We use mainly two different products:

Euclidean inner product. 〈., .〉 : V × V → R is additionally symmetric
and positive definite, that is,

∀v, w ∈ V : 〈v, w〉 = 〈w, v〉 and ∀v ∈ V \ {0} : 〈v, v〉 > 0;

two vectors v, w ∈ V are orthogonal or perpendicular if 〈v, w〉 = 0 and,
more generally, the angle α ∈ [0, π] of two vectors v, w ∈ V can be
defined by the equation

〈v, w〉 = |v| |w| cosα, where |v| :=
√
〈v, v〉.
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Cross product. × : R3 ×R3 → R3 is a skew-symmetric vector product,

∀v, w ∈ R3 : v × w + w × v = 0,

and a pair (v, w) of vectors is linear independent iff v×w 6= 0. The cross
product can serve to measure area: with the angle α of v, w ∈ R3

|v × w|2 = |v|2|w|2 − 〈v, w〉2 = |v|2|w|2 sin2 α;

another way to phrase this identity is the defining identity:

∀u, v, w ∈ R3 : 〈u, v × w〉 = det(u, v, w).

In particular, v, w ⊥ v × w and 〈u × v, w〉 = 〈v, u × w〉. and a double
cross product can be reduced by u× (v × w) = v 〈w, u〉 − w 〈v, u〉.
The cross product is particular to R3; the wedge product is a product
with similar properties and that generalizes to higher dimensions in a
straightforward way:

∧ : R3 ×R3 → Λ2R3 ∼= o(3), (v ∧ w)x := (v × w)× x.

Euclidean motion. This is an orientation and distance preserving trans-
formation of a Euclidean space,

E 3 X 7→ Õ +A(X −O) ∈ E , where A ∈ SO(V )

denotes the linear part of the (affine) transformation and Õ ∈ E is the
image of the origin O ∈ E . If dim E = dimV = 3, wlog V = R3,
then any positively oriented orthonormal basis (e1, e2, e3) is mapped to
a basis of the same type by A ∈ SO(3) as

〈Aei, Aej〉 = 〈ei, ej〉 and det(Ae1, Ae2, Ae3) = det(e1, e2, e3).

Note that any A ∈ SO(3) is compatible with the cross product,

(Av)× (Aw) = A(v × w).

Linear transformations. More generally, we use the general linear and
(special) orthogonal groups on a vector space V , with inner product 〈., .〉
and volume distortion det:

Gl(V ) := {A ∈ End(V ) |A−1 exists};
O(V ) := {A ∈ Gl(V ) | ∀v, w ∈ V : 〈Av,Aw〉 = 〈v, w〉};

SO(V ) := {A ∈ O(V ) | detA = +1}.
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If E = (e1, . . . , en) is an orthonormal basis of V , then A ∈ End(V ) can
be identified with a matrix X ∈ Rn×n, where

(Ae1, . . . , Aen) = (e1, . . . , en)X;

the corresponding matrix groups are then

Gl(n) = {X ∈ Rn×n |X−1 exists};
O(n) = {X ∈ Gl(n) |XtX = En};

SO(n) = {X ∈ O(n) | detX = +1}.
When A : I → G is a group-valued curve with A(0) = idV , then its
derivative A′(0) ∈ g takes values in the corresponding algebra,

gl(V ) = End(V );

o(V ) = {X ∈ gl(V ) | ∀v, w ∈ V : 〈Xv,w〉+ 〈v,Xw〉 = 0};
so(V ) = o(V );

or, in matrix representations,

gl(n) = Rn×n and o(n) = {X ∈ gl(n) |Xt +X = 0}.

A.2 Derivative and differentiation

Obviously, differentiation and derivative are key notions in differential
geometry — here we clarify notations and review the most important
differentiation rules.

Derivative. A map X : D ⊃M → E between Euclidean spaces, over vec-
tor spaces U resp V , is differentiable at p ∈M if it can be approximated
by a (continuous) affine map A : D → E to first order,

X(q)−A(q)
|q−p| =

X(q)−X(p)−dpX(q−p)
|q−p| → 0 as q → p,

where dpX : U → V denotes the linear part of the approximating affine
map q 7→ A(q) = A(p) + dpX(q − p), the derivative of X at p ∈M .

Continuity is automatic if dimU <∞, else it needs to be assumed.

For parametrizations we use D = U = Rn, with n = 1 or n = 2 for curves
resp surfaces. If D = Rn then the derivative dpX can be identified with
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the tupel of its partial derivatives, in particular, for X : R ⊃ I → E ,
t 7→ X(t),

dtX(x) = X ′(t)x

and, for X : R2 ⊃M → E , (u, v) 7→ X(u, v),

d(u,v)X(
(
x
y

)
) = Xu(u, v)x+Xv(u, v) y = (Xu, Xv)|(u,v)

(
x
y

)
,

where subscripts denote partial derivatives, Xu = ∂
∂uX, etc.

If dim E < ∞ and F is given in terms of cooordinate functions Fi with
respect to a (cartesian) reference system (O; e1, . . . , em) then the Jacobi
matrix of F is obtained, as a matrix representation of its derivative.

Problem 1. Compute the Jacobi matrix of

F : R2 → R, (u, v) 7→ F (u, v) :=

{
uv2
√
u2+v2

u2+v4 for (u, v) 6= (0, 0),

0 for (u, v) = (0, 0)

at (u, v) = (0, 0) and prove that F is not differentiable at (u, v) = (0, 0).

Chain rule. The derivative of a composition of maps is the composition
of their derivatives: given differentiable maps p : C → D and X : D → E ,
their derivative is differentiable and

dt(X ◦ p) = dp(t)X ◦ dtp;

for example, for a composition t 7→ C(t) = X(u(t), v(t)) we obtain

C′(t) = Xu(u(t), v(t))u′(t) +Xv(u(t), v(t)) v′(t);

often this will be more clearly represented by (not entirely correctly) drop-
ping arguments,

C′ = Xuu
′ +Xvv

′.

Linearity. If Y,Z : D ⊃M → V are vector valued differentiable maps,
then any linear combination of Y and Z is differentiable and the activity
of taking derivative is linear: for p ∈M and y, z ∈ R,

dp(Y y + Zz) = (dpY ) y + (dpZ) z.

Leibniz rule. Any (continuous) product � : V × V → W on a vec-
tor space is differentiable and the chain rule yields the derivative of the
product of two differentiable maps Y,Z : D ⊃M → V : for p ∈M ,

dp(Y � Z) = (dpY )� Z(p) + Y (p)� (dpZ).
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The most important application of the Leibniz rule in (Euclidean) differen-
tial geometry is the derivative of the inner product: for Y,Z : R 3 I → V ,
t 7→ Y (t), Z(t),

〈Y, Z〉′ = 〈Y ′, Z〉+ 〈Y, Z′〉.

The Leibniz rule also holds for products of objects from different vector
space, for example, for the scalar multiplication: for Y : R 3 I → V and
y : I → R we obtain

(Y y)′ = Y ′y + Y y′.

Problem 2. Let β : V 3 → R be tri-linear; assuming that β is differen-
tiable show that

d(u,v,w)β(x, y, z) = β(x, v, w) + β(u, y, w) + β(u, v, z).

Conclude that (the differentiable function) det : Gl(3)→ R has derivative

dA det : gl(3)→ R, X 7→ dA det(X) = det(A) tr(A−1X).

A.3 Inverse & implicit mappings

If a smooth function f : R ⊃ I → R has derivative f ′(t) 6= 0 then it
is (locally) strictly increasing or decreasing around t ∈ I, hence it has a
local inverse (f |(t−δ,t+δ))−1 : f(t− δ, t+ δ)→ I around t ∈ I. A similar
statement holds true for smooth maps between Euclidean spaces.

Inverse Mapping Theorem. Suppose that X : D ⊃ M → E is continu-
ously differentiable and that dpX : U → V is invertible at some p ∈M .
Then there is an open neighbourhood B ⊂M of p so that:

(i) X|B : B → E injects (so that X|B : B → X(B) is invertible);

(ii) X(B) ⊂ E is open (so that (X|B)−1 may be differentiable);

(iii) X−1 : X(B)→ B is continuously differentiable with

dqX
−1 = (dpX)−1 for q = X(p) ∈ X(B)

For short. A smooth map X : D ⊃M → E has, locally, a smooth inverse
where its derivative is invertible — and the derivative of the inverse is the
inverse of the derivative, as obtained from the chain rule.



A.3 Inverse & implicit mappings 101

Remark. If dpX : U → V is invertible then, necessarily, dimU = dimV .
If, furthermore, U = V and dimV <∞ then dpX ∈ End(V ) is invertible
if and only if det dpX 6= 0.

Problem 3. Let X : R2 \{0} → R2, (u, v) 7→ X(u, v) := (u2−v2, 2uv).
Show that X does not inject, but has a local inverse around every (u, v).

Implicit Mapping Theorem. Suppose that F : E ⊃ M → F is continu-
ously differentiable, V = U ⊕ U ′ and that, for o ∈M , the restriction

doF |U′ : U ′ →W of doF : V →W

is invertible; then there are open neighbourhoods B ⊂ U and B′ ⊂ U ′

of 0 ∈ V and a (unique) continuously differentiable map g : B → B′ so
that g(0) = 0 and, for (u, v) ∈ B ×B′,

F (o+ u+ v) = F (o)⇔ v = g(u).

For short. The equation F (u, v) = F (uo, vo) can be locally solved for v

if and only if the equation d(uo,vo)F (
(
x
y

)
) = 0 can be solved for y.

Problem 4. Use the Implicit mapping theorem to show that, for any point

X ∈ E = {O + e1u+ e2v ∈ E2 | (ua )2 + ( vb )2 = 1}

of the ellipse E ⊂ E2, the ellipse can locally be written as a graph over
one of the coordinate axes of the cartesian reference system (O; e1, e2).

Rem. The Implicit and Inverse mapping theorems are equivalent.

Problem 5. Prove the Implicit from the Inverse mapping theorem.

Useful notions. A smooth map X : D ⊃M → E is called

• an immersion if dpX injects for all p ∈M ;

• a submersion if dpX surjects for all p ∈M ;

• a diffeomorphism if it has a smooth inverse.
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A.4 ODEs: the Picard-Lindelöf theorem

Recall that an ordinary differential equation (of order n) is an equation

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) (†)
for an unknown function x = x(t) which depends on a (real) variable t;
for the time being, we think of x as a real valued function.

Any such ODE can be re-written as a (system of) ODE(s) of order n = 1
by introducing the derivatives as new functions: with xk := x(k−1) the
equation (†) is equivalent to the system

x′1(t) = x2(t)

...

x′n−1(t) = xn(t)

x′n(t) = f(t, x1(t), . . . , xn(t)).

Hence we never need to think about higher order ODEs.

Picard-Lindelöf theorem. Let R×Rn ⊃ I ×U 3 (t, x) 7→ f(t, x) ∈ Rn
be continuous and Lipschitz continuous in x and let (to, xo) ∈ I × U ;
then there is ε > 0 so that the initial value problem

x′(t) = f(t, x(t)), x(to) = xo (?)

has a unique solution on (to − ε, to + ε).

A proof and detailed explanations can be found in any analysis text book.

Special cases. Two special cases of the Picard-Lindelöf theorem are of
particular interest in differential geometry:

(1) if x 7→ f(t, x) = f(x) is differentiable then (?) has a unique local
solution (prove it for n = 1!);

(2) if x 7→ f(t, x) = A(t)x is linear then (?) has a unique global(!)
solution x : I → Rn.

Problem 6. Let t 7→ κ(t) be some function. Find the solution of(
x
y

)′
=
(

0 −κ
κ 0

)(
x
y

)
with

(
x
y

)
(0) =

(
1
0

)
. (∗)

[Hint: write (x, y) in polar coordinates.]
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A.5 PDEs: the Poincaré & Maurer-Cartan lemmas

Partial differential equations come in many different flavours. To us the
following two (systems of) partial differential equations are of particular
interest — generalizations to higher dimensional domains are straightfor-
ward.

Poincaré lemma. Given ϕ = ϕ(u, v) and ψ = ψ(u, v) the partial differ-
ential equation

dX = ϕdu+ ψ dv ⇔
{
Xu = ϕ

Xv = ψ

has a local (on simply connected domains) solution x iff ϕv = ψu.
Moreover, the solution is unique up to an additive constant.

A proof of the Poincaré lemma can be found in any good analysis text
book. The following theorem is less commonly found:

Maurer-Cartan lemma. Given Φ = Φ(u, v),Ψ = Ψ(u, v) ∈ gl(n) the
partial differential equation

dF = F · (Φ du+ Ψ dv) ⇔
{
Fu = F · Φ
Fv = F ·Ψ

(?)

can locally (on small open sets) be solved to get F = F (u, v) ∈ Gl(n) iff

Φv −Ψu = [Φ,Ψ] := ΦΨ−ΨΦ. (??)

The solution is unique up to left multiplication by a constant matrix.

Proof . First prove that the Maurer-Cartan equation (??) is necessary:
if F is a solution of (?) then

0 = (Fu)v − (Fv)u

= FvΦ + FΦv − FuΨ− FΨu

= F (ΨΦ + Φv − ΦΨ−Ψu).

To show that (??) is also a sufficient condition suppose that Φ and Ψ
are defined on (−ε, ε)2 and satisfy (??). We first use the Picard-Lindelöf
theorem twice to obtain F :

(1) fix v = 0 and consider the initial value problem

Fu(u, 0) = F (u, 0)Φ(u, 0), F (0, 0) = idRn ,
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which is a linear system of ordinary differential equations, hence has
a unique solution u 7→ F (u, 0) by the Picard-Lindelöf theorem;

(2) now fix u and consider the initial value problem

Fv(u, v) = F (u, v)Ψ(u, v), F (u, 0) as obtained in (1),

which is again has a unique solution v 7→ F (u, v) by the Picard-
Lindelöf theorem.

Now we got F (u, v) at any (u, v) ∈ (−ε, ε)2. Taking differentiability of
F for granted, we now verify that F satisfies (?); by construction (2),
Fv = FΨ so that only Fu = FΦ needs to be verified. Thus compute

(Fu − FΦ)v = Fvu − FvΦ− FΦv

= (FΨ)u − FΨΦ− FΦv

= FuΨ + F (Ψu − Φv −ΨΦ)

= (Fu − FΦ)Ψ

by (??); which, as a linear system of ODEs (u is fixed), has the unique
solution Fu −FΦ ≡ 0 since (Fu −FΦ)(u, 0) = 0 by construction in (1).

Next we show that F (u, v) ∈ Gl(n) for all (u, v) ∈ (−ε, ε)2. Suppose
F (u, v) was not invertible at some point (u, v); then F (u, v) would not
surject, hence there would exist xt ∈ (Rn)∗ \ {0} with xtF (u, v) = 0.
On the other hand, the function xtF satisfies

(xtF )u = (xtF )Φ and (xtF )v = (xtF )Ψ,

which is a linear system of partial differential equations, thus has a unique
solution by a similar argument as above. As xtF ≡ 0 is a solution with
the given initial value xtF (u, v) = 0 we infer that xt = xtF (0, 0) = 0,
contradicting the initial assumption xt 6= 0.

Finally we examine uniqueness: suppose that F̃ is another solution of (?).
Using

0 = (idRn )u = (FF−1)u = FuF
−1 + F (F−1)u,

hence
(F−1)u = −F−1FuF

−1,

we compute

(F̃F−1)u = (F̃u)F−1 − F̃ (F−1FuF
−1) = F̃ (Φ− Φ)F−1 = 0,

and similarly for (F̃F−1)v , showing that F̃ = AF with constant A.
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Problem 7. Let (u, v) 7→ Φ(u, v),Ψ(u, v) ∈ gl(2) be trace free. Prove
that a solution (u, v) 7→ F (u, v) ∈ Gl(2) of Fu = FΦ and Fv = FΨ has
constant determinant. [Hint: verify that (detF )u = detF tr(F−1Fu).]
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