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® |s there a more general theorem / pattern?

e Simple understanding of the general theorem?
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In G. Salmon’s Treatise on Conics (1855)













Eight-conic theorem

If seven out of the eight vertices
of the cube is given, then the eighth
one uniquely exists.

/

double-
contact
relation




Eight-conic theorem

e 1950: Discovered by
Roger Penrose as an undergrad.

e Never published.

e 1955: A simple proof was presented
to his doctoral advisor Hodge, who found
this geometric research too old-fashioned.

e The theorem was described to Conway,
who loved the theorem.

e 2020: Penrose described the theorem | Numperphik
IN a Numberphile podcast. \




Overview

e Proof inthe P> space of conics
e Penrose’s approach (undergrad)

e Penrose’s 3D approach (Cambridge)




Overview

e Nice things about the eight-conic theorem
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Conics

e Adual pair of conicis Q & P>, P € P°* so that PQ = Algyq
e Therankof (), P can be

regular conic degenerate conics

(1,2) (1,1) (1,0) (0O,1)




Conics in double contact

33\~

Take limits in the P> x P°* topology




Conics in double contact
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Conics in double contact
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(3,3) (2,1) (1,2) (1,1)
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Desargues theorem
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Related work
e Sergey Fomin & Pavlo Pylyavskyy “Incidences and Tilings” 2023
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Poncelet Porism
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Monge-like Theorem
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Eleven-conic Theorem
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Poncelet porism for polygon







(2n + 2)-conic theorem
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(2n + 2)-conic theorem
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(2n + 2)-conic theorem




(2n + 2)-conic theorem
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(2n + 2)-conic theorem
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Overview

e Nice things about the eight-conic theorem




Overview

e Proof inthe P> space of conics
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e The space of conicsis P> = {° ;:tslycrensm} /scaling
e Special projective varieties P°
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Y = {matrices with} /gcgling C D C P°




Space of conics

X 3 symm
matrices

} /scaling

e The space of conics Is P> = {3
e Special projective varieties P°
o ices with - 5

D = {" 5"} /scaling C P
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rank =1
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Space of conics

X 3 symm
matrices

} /scaling

e The space of conics Is P> = {3
e Special projective varieties P°

. f(matrices with : 5
D = {" ks }/scaling C P

) = {matrices With}/scaling CDC P

rank =1

o pS \D {regular}

conics
.
D\V = {pgil?s

double
lines




Space of conics

P> e Two conics are in double
contact if and only if their joining
line meet )/




Space of conics

P> e Two conics are in double
contact if and only if their joining
line meet )/

chord
of contact




Eight-conic configuration

e |tis acube graphin P>

e Each edge line meets V

e Penrose’s theorem boils down to
geometry of )V C D C P’




Geometry of D and V

e The cubic 4D surface D C P> contains many 2D planes.
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Geometry of D and V

e The cubic 4D surface D C P> contains many 2D planes.
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Geometry of D and V

e The cubic 4D surface D C P> contains many 2D planes.

> D= UVEV( Y atv )
> D= UpePZ (gl();;letzp)

e Each intersect ©
)/ transversally at a conic.



Face of a Penrose Cube




Face of a Penrose Cube




Face of a Penrose Cube




Face of a Penrose Cube

® /S a quadrilateral whose edges meet
Y in a point-plane.




Face of a Penrose Cube

® /S a quadrilateral whose edges meet
Y in a point-plane.

e Completing the tetrahedron
gives rise to two more special
points on the point-plane.




Face of a Penrose Cube

® /S a quadrilateral whose edges meet
Y in a point-plane.

e Completing the tetrahedron
gives rise to two more special
points on the point-plane.

ideal point

e We call these two points
“Ideal points”
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Face of a Penrose Cube

ideal point
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Face of a Penrose Cube




Corner of a Penrose Cube
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Corner of a Penrose Cube
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Structure of a Penrose Cube

e The Veronese points form a
cuboctahedron with planar faces.

e Edges of the cuboctahedron
meet In 12 ideal points.

¢ |deal points form two
complete quadrilaterals
In two Ideal planes.
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Penrose’s Original Approach

e Known theorems like Pappus, Pascal, Brianchon are already
cube configuration, but with degenerate conics.

e Stack known cubes until every vertex become non-degenerate.
e \We can mutate the type of an edge by the type of opposite edge

o Start with a theorem with two regular conics joined by an edge



Penrose’s Original Approach

o Start with a theorem with two regular conics joined by an edge

e
< | >
P‘/‘
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Overview

e Penrose’s 3D approach (Cambridge)




Penrose’s 3D Approach
e The 8-conic theorem is a slice/view of an 8-quadric theorem.

quadric

ring-contact

two quaderics in ring contact

e Theorem If 7 of the vertices are given, the 8th one uniquely exists.
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Special cases of 8-quadric configuration



3D proof of the Monge theorem (Monge)




3D proof of the Monge-like theorem
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3D proof of the Pascal theorem (Dandelin 1826
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3 cones In ring contact a sphere




3D proof of the Brianchon theorem




3D proof of the Poncelet porism




Summary

e 8-conic theorem unifies many
projective geometry theorems.

e 8-conic theorem can be
stacked to many more theorems.

e Beautiful structure in the 5D of conics.

e 3D proof by Penrose is intuitive.

e The 3D configuration unifies many
3D proofs of planar theorems.
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Publications
Just submitted to arXiv.
Stay tuned to my (Albert Chern’s) publication page.



