Approximation by Meshes with Spherical Faces

Anthony Ramos-Cisneros 🐁

Alisher Aikyn 🗞 Martin Kilian 🛄 Helmut Pottmann 🛄 🐟 Christian Mueller 🛄

Previous Work

Meshes with Spherical Faces

MARTIN KILIAN, TU Wien, Austria ANTHONY S RAMOS CISNEROS, KAUST, Saudi Arabia CHRISTIAN MÜLLER, TU Wien, Austria HELMUT POTTMANN, KAUST, Saudi Arabia

Overview

- Approximation by discrete family of spheres.
- Smooth appearance and torsion free support structure.
- Spherical Triangle meshes (ST Meshes) with support structure and adaptable face size.
- Spherical Quad meshes (SQ Meshes) remeshing and support structure.

Overview

- Approximation by discrete family of spheres.
- Smooth appearance and torsion free support structure.
- Spherical Triangle meshes (ST Meshes) with support structure and adaptable face size.
- Spherical Quad meshes (SQ Meshes) remeshing and support structure.

SQ-Mesh

ST-Mesh

S(u,v)

The centers c(u, v) depend only on the radius function r(u, v)

$$c(u,v)=f(u,v)+r(u,v)\ n(u,v)$$

111111

$$egin{aligned} & f & S: \ ||x-c(u,v)||^2 - r(u,v)^2 = 0 \ S_u: \langle x-c,c_u
angle + r \ r_u = 0 \ S_v: \langle x-c,c_v
angle + r \ r_v = 0 \ S(u,v) & f \ \end{bmatrix}$$

$$egin{cases} S: & ||x-c(u,v)||^2 - r(u,v)^2 = 0 \ S_u: \langle x-c,c_u
angle + r \ r_u = 0 \ S_v: \langle x-c,c_v
angle + r \ r_v = 0 \end{cases}$$

Associated line congruence

$$L(u,v)=S_u\cap S_v$$

$$egin{cases} S: & ||x-c(u,v)||^2 - r(u,v)^2 = 0 \ S_u: \langle x-c,c_u
angle + r \ r_u = 0 \ S_v: \langle x-c,c_v
angle + r \ r_v = 0 \end{cases}$$

Associated line congruence

$$L(u,v)=S_u\cap S_v$$

The direction vectors of L(u, v)

$$l=c_u imes c_v$$

$$egin{cases} S: & ||x-c(u,v)||^2 - r(u,v)^2 = 0 \ S_u: \langle x-c,c_u
angle + r \ r_u = 0 \ S_v: \langle x-c,c_v
angle + r \ r_v = 0 \end{cases}$$

Associated line congruence

$$L(u,v)=S_u\cap S_v$$

Envelope points

$$\set{f, \bar{f}} = L(u, v) \cap S(u, v)$$

$$egin{cases} S: & ||x-c(u,v)||^2 - r(u,v)^2 = 0 \ S_u: \langle x-c,c_u
angle + r \ r_u = 0 \ S_v: \langle x-c,c_v
angle + r \ r_v = 0 \end{cases}$$

Associated line congruence

$$L(u,v)=S_u\cap S_v$$

Envelope point by construction

$$f=L(u,v)\cap S(u,v)$$

- Sphere congruence S(u,v)
- Line Congruence [Support Structure] L(u, v)
- Envelopes

 Channel surface intersect both envelopes in two curves that form a ruled surface

 We are interested in torsal ruled surfaces
 [developable surface] which are related to torsion free support structures

Ŧ

 $s(u,v_0)$

• Torsal direction (\dot{u}, \dot{v}) given a line congruence L(u, v)

$$det \, (\dot{u} f_u \ + \ \dot{v} f_v, \ l, \ \dot{u} l_u \ + \ \dot{v} l_v) = 0$$

Discrete Sphere Congruence

Discrete Sphere Congruence

 Torsal parametrization of the line congruence results in two families of developable surfaces

Sphere Congruence Requirements

Requirements: A) Local Approximation

• Central spheres

• Mean Curvature

Möbius Invariant

Requirements: A) Local Approximation

• Central spheres

• Mean Curvature

Möbius Invariant

• Surfaces without change in sign of **H**

Requirements: B) Line angle with normal

• Sphere intersection lies on planes that should have an angle within a threshold angle θ

• We impose a restriction of the node axis directions *L*

$$ngle(L,n) \leq heta$$

Requirements: C) Torsal planes Angles

• The angle between the developable surfaces at the node L should not exceed a threshold angle

$\frac{\pi}{4} \leq \angle (n_{t_1}, n_{t_2}) \leq \frac{\pi}{2}$

ST-Meshes Adaptive Face Size

Meshes with Adapted Faces Size: Pliant Remeshing

• Given a function

 $g:\mathcal{R}
ightarrow\mathbb{R}^+$

that determines the desired target edge lengths

• $\pi(e)$ denotes the projection of the edge midpoint onto $\mathcal R$

$$l(e) := rac{|e|}{g(\pi(e))} \longrightarrow f$$

Meshes with Adapted Faces Size: Influence Zone

- To approximate with a small number of spheres we compute a region around a vertex *v_i*
- We collect vertices v' in a breadth-first manner as long as the distance with C_i is within tolerance value ε

Meshes with Adapted Faces Size

ST-Meshes Support Structure

ST-Meshes and Sphere Linear Complexes

• The absolute sphere Ω can have real, imaginary or ∞ (absolute plane) radius.

• The spheres S_{ij} lie in a linear sphere complex and are orthogonal to Ω

• The relation between the envelope points is given by

$R^2 = mv \cdot m \bar{v}$

- Both f, \bar{f} are ST-meshes with support structure.
- f, \bar{f} are related by a sphere inversion.

 In applications with larger meshes we can use more sphere meshes

ST-Meshes: Algorithm

• Estimating the center $\,\mathcal{m}\,$ of the absolute sphere

• Minimize the angle between the line congruence (support structure) with the normals of the reference surface

$$E_{center} = \sum_{v_i \in V} \left(1 - rac{\langle v_i - m, \; n_i
angle}{||v_i - m||^2}
ight)^2$$

ST-Meshes: Algorithm

• Estimating the radius R

• For each central sphere C_i we compute a radius R_i of an absolute sphere Ω_i

• We take R as the mean over all R_i

ST-Meshes: Algorithm

SQ-Meshes

SQ Meshes: Setup

- 1. Consider a **grid** over a **B-Spline** surface.
- 2. Use **central spheres** as the initial sphere congruence guess.
- 3. Optimize **line congruence** to satisfy angle constraints.
- 4. Optimize **torsal directions** to satisfy angle constraints.
- 5. Obtain a **torsal direction field** over the grid.
- 6. **Remesh** following the torsal direction.
- 7. Perform **post-optimization** to fit spheres, support structure, and planarity of torsal planes.

SQ Meshes: Setup

- We consider our input reference surface f(u, v) as a **B-Spline** surface with degree at least 5 on each parameter u, v
- Initialize S(u, v) as a central sphere congruence
- We use a radius function represented in B-Spline form

$$r(u,v) = \sum_{kl} N_k^m(u) N_l^n(v) \ r_{kl}$$

SQ Meshes: Line Congruence Optimization

- Variables: $r_{kl},\ l_{ij}$
- Line congruence condition $l=c_u imes c_v$

$$E_{LC} = \sum_{i,j\in G} \langle l_{ij}, \; c_{ij,u}
angle^2 + \langle l_{ij}, \; c_{ij,v}
angle^2$$

$$\langle l_{ij}, n_{ij}
angle \leq heta$$

$$E_{LC_{orth}} = \sum_{i,j\in G} ig(\langle l_{ij},\ n_{ij}
angle^2 - heta^2 - \mu_{ij} ig)^2$$

SQ Meshes: Line Congruence

- Checkerboard Pattern approach
- Approximate derivatives by diagonal directions of the quads

 v_0

$$det(l_t, l_c, t_{-}) = 0$$
 $E_{torsal} = \sum_{q \in Q} \left\langle \frac{l_t}{||l_t||}, n_t \right\rangle^2 + \left\langle \frac{l_c}{||l_c||}, n_t \right\rangle^2 + \langle t, n_t \rangle^2$
 v_3
 v_4
 v_4
 v_4
 v_1
 v_5
 v_6
 v_1
 v_1

 \bar{v}_2 \overline{t}_1 \bar{v}_1 l_c v_2 t_1

v1

Ū3

 $ar{q}$

• Angle constraint

$$\langle n_{t_1}, n_{t_2}
angle \leq \cos(lpha)$$

$$E_{torsal} = \sum_{q \in Q} ig(\langle oldsymbol{n_{t_1}}, oldsymbol{n_{t_2}}
angle^2 - \cos^2(lpha) +
u_q^2 ig)^2$$

Variables:
$$r_{ij},\ l_{ij},\ \mu_t,\
u_t,\ n_t,\ \mu_{ij},\
u_q$$

 n_{t_1}

• Planarity of torsal planes

$$E_{torsal} = \sum_{q \in Q} \left\langle \frac{l_t}{||l_t||}, n_t \right\rangle^2 + \left\langle \frac{l_c}{||l_c||}, n_t \right\rangle^2 + \langle t, n_t \rangle^2$$

• Torsal planes angles

$$E_{t_{angle}} = \sum_{q \in Q} \left(\langle n_{t_1}, n_{t_2}
angle^2 - \cos^2(lpha) +
u_q^2
ight)^2$$

SQ Meshes: Remeshing

• We use IGL Anisotropic Remeshing [Panozzo et al., 2014] and LibQEx [Ebke et al., 2013] to obtain a quad mesh aligned with the torsal field obtained from the optimization.

- Q_M Remeshed Mesh
- f Reference surface

Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4, Article 134 (2014), 11 pages.

Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (2013), 1–10.

- Implicit sphere equation $\psi(x):=Ax^2-\langle B,x
 angle+C=0$
- Normalization factor $arphi(f) := B_f^T B_f 4 A_f C_f 1$
- Sphere fitting

$$E_{sphere} = \sum_{f \in F} \sum_{q_i \in f} \psi(q_i)^2$$

$$E_{unit} = \sum_{f \in F} arphi^2(f)$$

• Energy Support Structure

Initial
$$n_{c_q} = l_i$$

$$E_{supp} = \sum_{c_q} \sum_{c_i,\,c_j \in c_q} \langle c_i - c_j, n_{c_q}
angle$$

$$E_{supp} = \sum_{c_q} \sum_{c_i, \, c_j \in c_q} \langle c_i - c_j, n_{c_q}
angle$$
Planarity of Torsal planes $ext{corsal plane} = \sum_{uw \in edges} \langle l_u, n_{uw}
angle^2 + \langle l_w, n_{uw}
angle$

$$E_{ ext{torsal plane}} = \sum_{uw \in edges} \langle l_u, n_{uw}
angle^2 + \langle l_w, n_{uw}
angle^2 + \langle rac{w-u}{||w-u||}, n_{uw}
angle^2$$

• Sphere fitting

$$E_{sphere} = \sum_{f \in F} \sum_{q_i \in f} \psi(q_i)^2 \quad E_{unit} = \sum_{f \in F} arphi^2(f)$$

SQ Meshes

SQ Meshes

ST-Meshes and Sphere Linear Complexes

Extra slides: Non-Euclidean Minimal Surfaces

Extra slides: Non-Euclidean Minimal Surfaces

Extra slides: Non-Euclidean Minimal Surfaces

Pliant Remeshing with central spheres

Least squares spheres orthogonal to

 S_{2}