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DISCRETE-TIME RANDOM WALKS
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q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
0 0 q3 r3 · · ·
...

...
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...
. . .


pk > 0, qk+1 > 0, rk ≥ 0, pk + rk + qk = 1 for k ≥ 1, p0 + r0 = 1

Define polynomials {Qk (x)}∞k=0 by the recurrence relations

xQk (x) = qk Qk−1(x) + rk Qk (x) + pk Qk+1(x), k ≥ 1,
Q0(x) = 1, p0Q1(x) = x − r0.

The polynomials are orthogonal with respect to a positive measure ν in the interval [−1, 1] of total
mass 1 and infinite support

[Karlin & McGregor, 1959]
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THE SPECTRAL MEASURE

Define constants πk , k ≥ 0, by

π0 = 1, πk =
p0p1 . . . pk−1

q1q2 . . . qk
, k ≥ 1,

The n-step transition probabilities Pij (n) from state i to state j may be represented as

Pij (n) = πj

∫ 1

−1
xnQi (x)Qj (x) dν(x).

The spectral measure originates from the Jacobi symmetric matrix

J =


r0

√
p0q1 0 0 · · ·√

p0q1 r1
√

p1q2 0 · · ·
0

√
p1q2 r2

√
p2q3 · · ·

0 0
√

p1q2 r3 · · ·
...

...
...

...
. . .

 ,

which represents the same linear operator but in new basis obtained by suitable scaling of vectors
of the starting one.
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ORTHOGONAL POLYNOMIALS AND TODA EQUATIONS

The monic versions Q̃k (x) = xk + . . . of the orthogonal polynomials Qk (x) satisfy the following
three-term recurrence relations

xQ̃k (x) = Q̃k+1(x) + bk Q̃k (x) + ak Q̃k−1(x),

where

ak =

∫
[Q̃k (x)]2dν(x)∫

[Q̃k−1(x)]2dν(x)
, bk =

∫
x [Q̃k (x)]2dν(x)∫
[Q̃k (x)]2dν(x)

.

Assume that measure undergoes evolution of the form

dν(x , t) = e−xt dν(x), t ∈ R+,

well known in the theory of continuous-time birth and death processes, then the coefficients of the
three-term relation satisfy the Toda lattice equations in the form given by Flaschka

ȧk (t) = ak (t)(bk−1(t)− bk (t)),

ḃk (t) = ak (t)− ak+1(t).

To obtain the discrete-time Toda lattice equations one considers the following variation of the
measure

dνt (x) = x t dν(x), t ∈ N0.

ADAM DOLIWA (UWM PL) ORTHOGONAL POLYNOMIALS AND QUANTUM WALKS 3-09-2024 6 / 24



OUTLINE

1 OPRL AND DISCRETE-TIME RANDOM WALKS

2 QUANTIZATION PROCEDURE

3 OPUC AND CMV MATRICES

ADAM DOLIWA (UWM PL) ORTHOGONAL POLYNOMIALS AND QUANTUM WALKS 3-09-2024 7 / 24



SZEGEDY’S QUANTIZATION OF MARKOV CHAINS [Szegedy, 2004]

Given a discrete-time classical random walk on a finite set of states V , where |V | = N, can be
represented by an N × N stochastic matrix P, whose entry Pjk represents the probability of
making a transition from j to k , in particular

∑N
k=1 Pjk = 1.

Definition of Szegedy’s quantum walk starts with tensor doubling CN ⊗ CN of the state space —
the state |j⟩ ⊗ |k⟩ = |j, k⟩ will be interpreted as PARTICLE IN POSITION j LOOKS AT THE POSITION k .
The stochastic matrix P allows to define normalized orthogonal vectors

|ϕj ⟩ = |j⟩ ⊗
N∑

k=1

√
Pjk |k⟩ =

N∑
k=1

√
Pjk |j, k⟩.

Π =
∑N

j=1 |ϕj ⟩⟨ϕj | the orthogonal projection on the subspace of the vectors |ϕj ⟩
R = 2Π− I reflection in the subspace spanned by the vectors |ϕj ⟩ (the coin flip operator)
S =

∑N
j,k=1 |j, k⟩⟨k , j| the operator that swaps the position and coin registers

The single step of the quantum walk is defined as the unitary operator U = SR being the
composition of coin flip and the position swap

PROPOSITION

The probability of finding the particle in position k after one step of the quantum walk when
starting from the state |ϕj ⟩ is equal to the classical transition probability Pjk .

⟨k , ℓ|Uϕj ⟩ = ⟨k , ℓ|Sϕj ⟩ =
N∑

i=1

√
Pji ⟨k , ℓ|i, j⟩ =

√
Pjkδjℓ,

N∑
ℓ=1

|⟨k , ℓ|Uϕj ⟩|2 = Pjk
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SPECTRUM OF SZEGEDY’S QUANTUM WALK OPERATOR

µ +

λ

µ −

−1 1

PROPOSITION [Szegedy, 2004], [Childs, 2010]

When {|λ⟩} denotes the complete set of eigenvectors of the N × N symmetric matrix

D =
N∑

j,k=1

√
Pjk Pkj |j⟩⟨k |,

with eigenvalues {λ}, then the evolution operator U has the corresponding eigenvectors

|µ±⟩ = T |λ⟩ − µ±ST |λ⟩, T =
N∑

j=1

|ϕj ⟩⟨j|,

with eigenvalues
µ± = λ± i

√
1 − λ2 = e±i arccosλ,

The remaining eigenvalues of U are ±1 with eigenvectors orthogonal to the subspace spanned
by T |λ⟩.
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SZEGEDY’S QUANTIZATION OF RANDOM WALKS ON HALF-LINE

The coin space over vertex k ≥ 0 is spanned by vectors
|0, 0⟩, |0, 1⟩, for k = 0, and |k , k − 1⟩, |k , k⟩, |k , k + 1⟩, for k > 0,

and the corresponding distinguished states read
|ϕ0⟩ =

√
r0 |0, 0⟩+

√
p0 |0, 1⟩, and |ϕk ⟩ =

√
qk |k , k − 1⟩+

√
rk |k , k⟩+

√
pk |k , k + 1⟩, k > 0

With the lexicographic ordering of the states the quantum evolution operator U = SR has the
structure induced by the decompositions

R = R0 ⊕ R1 ⊕ R2 ⊕ . . .
where

R0 =

(
2r0 − 1 2

√
p0r0

2
√

p0r0 2p0 − 1

)
, and Rk =

2qk − 1 2
√

qk rk 2
√

pk qk
2
√

qk rk 2rk − 1 2
√

pk rk
2
√

pk qk 2
√

pk rk 2pk − 1

 , k > 0,

and
S = 1 ⊕ A ⊕ 1 ⊕ A ⊕ 1 ⊕ . . . , A =

(
0 1
1 0

)
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ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE (OPUC)

Let D = {z : |z| < 1} ⊂ C be the open unit disk, and let µ be a measure on the unit circle ∂D
We assume that µ is nontrivial (i.e., supported on an infinite set) probability measure (i.e., µ is
nonnegative and normalized by µ(∂D) = 1)

In the Hilbert space H = L2(∂D, dµ) with the inner product antilinear in the left factor, we define
the monic polynomials Φn(z), n = 0, 1, 2, . . . by the Gram-Schmidt orthogonalization procedure
of the standard basis 1, z, z2, . . . . We have then

⟨Φn,Φm⟩ =
1
κ2

n
δnm, κn > 0,

and the orthonormal polynomials φn = κnΦn satisfy ⟨φn, φm⟩ = δnm.

If Pn is a polynomial of degree n, define P∗
n , the reversed polynomial, by

P∗
n (z) = znPn(1/z̄), i.e. Pn(z) =

n∑
j=0

cj z j ⇒ P∗
n (z) =

n∑
j=0

c̄n−j z j .

The orthogonal polynomials Φn are given by the Szegő recurrence

Φ0(z) = 1, Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n (z), αn = −Φn+1(0), n ≥ 0,

where the Verblunsky coefficients α0, α1, α2, . . . satisfy |αj | < 1. By Verblunsky’s theorem the
map µ→ {αj}∞j=1 sets-up a bijection between the set of nontrivial probability measures on ∂D
and ×∞

j=1D. The Szegő recurrence relations for orthonormal polynomials are(
φn+1(z)
φ∗

n+1(z)

)
=

1
ρn

(
z −ᾱn

−αnz 1

)(
φn(z)
φ∗

n (z)

)
= A(αn)

(
φn(z)
φ∗

n (z)

)
,

ρn =
√

1 − |αn|2, φ0(z) = φ∗
0 (z) ≡ 1.
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CANTERO–MORAL–VELÁZQUEZ (CMV) MATRICES

MOTIVATION

One of the key tools in the case of orthogonal polynomials on the real line is the realization of the
measure as the spectral measure of the Jacobi matrix, which comes in as a matrix of
multiplication by the real variable x . In the case of OPUC the corresponding matrix realization of
the measure comes in terms of the CMV martices.

Define the CMV basis {χn}∞n=1 by orthonormalizing the sequence 1, z, z−1, z2, z−2, . . . , and
define matrix C by

Cmn = ⟨χm, zχn⟩.
The matrix is unitary and pentadiagonal

C =



ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 0 · · ·
ρ0 −ᾱ1α0 −ρ1α0 0 0 0 · · ·
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 0 · · ·
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 0 · · ·
0 0 0 ᾱ4ρ3 −ᾱ4α3 ᾱ5ρ4 · · ·
0 0 0 ρ4ρ3 −ρ4α3 −ᾱ5α4 · · ·
· · · · · · · · · · · · · · · · · · · · ·


,

and has decomposition C = LM, where

L = Θ0 ⊕Θ2 ⊕Θ4 ⊕ . . . , M = 1 ⊕Θ3 ⊕Θ5 ⊕ . . . , and Θk =

(
ᾱk ρk
ρk −αk

)
.
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CMV MATRICES AND CYCLIC UNITARY MODELS

The monic orthogonal polynomials associated to the measure µ used to define C can be found by

Φn(z) = det(zIn − C(n)),

where C(n) is restriction of C to the upper n × n block, and the CMV basis can be expressed in
terms of φ and φ∗ by

χ2k (z) = z−kφ∗
2k (z), χ2k+1(z) = z−kφ2k+1(z),

where in order to have formulas consistent it is custom to define α−1 = −1.

Recall that a cyclic unitary model is a unitary operator U on a separable Hilbert space H with a
distinguished unit vector v0 such that finite linear combinations of {Unv0}n∈Z are dense in H. Two
cyclic unitary models (H,U, v0) and (H̃, Ũ, ṽ0) are called equivalent if there is unitary W from H
onto H̄ such that

WUW−1 = Ũ, Wv0 = ṽ0.

When all αk ∈ D then the vector e0 = (1, 0, 0, 0, . . . )T is cyclic for C in ℓ2(N). It turns out that
each cyclic unitary model is equivalent to a unique CMV model (ℓ2(N), C, e0).
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SZEGŐ PROJECTION AND GERONIMUS RELATIONS

For OPUC with real Verblunsky coefficients, or equivalently the measure µ being symmetric with
respect to complex conjugation one can define the measure ν on the segment [−1, 1] by∫ 1

−1
g(x) dν(x) =

∫
∂D

g(cos θ) dµ(θ).

The relation between spectral measures

dµ(θ) = w(θ)
dθ
2π

+ dµs, and dν(x) = u(x)dx + dνs,

has the form

u(x) =
w(arccos x)

π
√

1 − x2
, w(θ) = π| sin θ|u(cos θ).

The polynomials orthonormal pk (x) with respect to the measure dν(x) are expressed by the
polynomials φk (z) orthonormal with respect to the measure dµ(θ) as follows

pk (x) =
1√

2(1 − α2k−1)

(
z−kφ2k (z) + zkφ2k (z−1)

)
, x =

1
2

(
z + z−1

)
.

[Szegő, 1939]

The coefficients (rk , sk ), k = 0, 1, 2, . . . , of the corresponding symmetric Jacobi matrix are given
in terms of the Verblunsky coefficients by

rk =
1
2

(
α2k (1 − α2k−1)− α2k−2(1 + α2k−1)

)
,

sk =
1
2

√
(1 − α2k−1)(1 − α2

2k )(1 + α2k+1)
[Geronimus, 1958]
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THE DISCRIMINANT MATRIX AND CMV SPACE

Define
|ψk ⟩ = S|ϕk ⟩ =

√
qk |k − 1, k⟩+

√
rk |k , k⟩+

√
pk |k + 1, k⟩, k ≥ 0,

then the elements of the discriminant matrix are given by

Djk = ⟨ϕj |Uϕk ⟩ = ⟨ϕj |ψk ⟩,

and the matrix coincides with the Jacobi matrix J of Karlin and McGregor

PROPOSITION

The CMV basis of the quantum evolution operator for Szegedy’s quantization of the random walk
on the half-line with the cyclic vector e0 = |ϕ0⟩ has the Verblunsky coefficients related with the
random walk transition probabilities by the formulas

qk =
1
2
(1 + α2k−2)(1 + α2k−1),

rk =
1
2
(α2k (1 − α2k−1)− α2k−2(1 + α2k−1)) , k ≥ 0,

pk =
1
2
(1 − α2k−1)(1 − α2k )

COROLLARY

The measures and orthogonal polynomials of the discrete-time random walk and of its
quantization are related by the Szegő projection

ADAM DOLIWA (UWM PL) ORTHOGONAL POLYNOMIALS AND QUANTUM WALKS 3-09-2024 16 / 24



RANDOM WALKS RELATED TO JACOBI POLYNOMIALS

P(α,β)
n (x) =

(−1)n

n!2n
(1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)α+n(1 + x)β+n

)
, n ≥ 0,

are orthogonal with respect to the measure on [−1, 1]

dν(x) = (1 − x)α(1 + x)βdx , α, β > −1.
They reduce to the Gegenbauer (α = β), Legendre (α = β = 0), Chebyshev polynomials of the
first (α = β = − 1

2 ) or the second (α = β = 1
2 ) kind. Also the Laguerre and Hermite polynomials

can be derived as certain limiting cases of the Jacobi polynomials.

The corresponding polynomials defined by

Q(α,β)
n (x) =

P(α,β)
n (x)

P(α,β)
n (1)

,

satisfy three term recurrence

xQ(α,β)
n (x) = p(α,β)

n Q(α,β)
n+1 (x) + r (α,β)

n Q(α,β)
n (x) + q(α,β)

n Q(α,β)
n−1 (x),

with the coefficients

p(α,β)
n =

2(n + α+ 1)(n + α+ β + 1)
(2n + α+ β + 1)(2n + α+ β + 2)

,

r (α,β)
n =

β2 − α2

(2n + α+ β)(2n + α+ β + 2)
,

q(α,β)
n =

2n(n + β)

(2n + α+ β)(2n + α+ β + 1)
,
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QUANTUM WALKS RELATED TO JACOBI POLYNOMIALS

In the above

p(α,β)
n +r (α,β)

n +q(α,β)
n = 1, p(α,β)

0 > 0, q(α,β)
0 = 0, p(α,β)

n > 0, qn > 0 for n > 0.

In order to be random walk polynomials they have to satisfy the recurrence with r (α,β)
n ≥ 0, which

needs α = β or β ≥ |α|.

The corresponding quantum walks are governed by circular analogs of the Jacobi polynomials,
obtained by Szegő, are given by the weight

w(θ) = (1 − cos θ)α+1/2(1 + cos θ)β+1/2, α, β > −1, θ ∈ [0, 2π].

The Verblunsky coefficients for the measure have been found by Golinskii and Badkov and read

αn = −
α+ 1

2 + (−1)n+1(β + 1
2 )

n + α+ β + 2
.
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ORTHOGONAL POLYNOMIALS AND THE ABLOWITZ–LADIK EQUATIONS

THEOREM [Golinskii, 2006]

Assume that measure on ∂D undergoes evolution of the form

dµ(ζ, t) = C(t)et(ζ+ζ−1)dµ(ζ, 0), C−1(t) =
∫
∂D

et(ζ+ζ−1)dµ(ζ, 0), t ∈ R+,

then the Verblunsky coefficients satisfy the first equation of the Ablowitz–Ladik hierarchy (known
as the Schur flow in OPUC community)

α̇k (t) = (1 − |αk (t)|2)(αk+1(t)− αk−1(t)) [Ablowitz & Ladik, 1976]

b
b b

k

k+1 k+1

k−1

k

θ
k

k+1

k+2

φk

ABLOWITZ–LADIK HIERARCHY AND DISCRETE CURVES [AD & Santini, 1995]

When φk is the angle of curvature of a discrete curve in E3, and θk is the angle of torsion then in
the SU(2) representation of the Frenet frame we have

αk = sin(φk/2)eiσk ,

where σk =
∑k

j θj is the discrete analogue of the Hasimoto transformation
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CONCLUSION

We define quantization scheme for discrete-time random walks on the half-line consistent
with Szegedy’s quantization of finite Markov chains

Motivated by the Karlin and McGregor description of discrete-time random walks in terms of
polynomials orthogonal with respect to a measure with support in the segment [−1, 1], we
represent the unitary evolution operator of the quantum walk in terms of orthogonal
polynomials on the unit circle

We find the relation between transition probabilities of the random walk with the Verblunsky
coefficients of the corresponding polynomials of the quantum walk

We show that the both polynomial systems and their measures are connected by the
classical Szegő projection map

Our scheme can be applied to arbitrary Karlin and McGregor random walks and improves
the so called Cantero–Grünbaum–Moral–Velázquez method

RESEARCH IN PROGRESS

Quantum walks on discrete curves with evolution operators induced by their shapes

Quantum walks without classical interpretation

THANK YOU FOR YOUR ATTENTION
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