## Kœnigs nets and autoconjugate curves

Alexander Yves Fairley

## 5 September 2024

### Discrete Geometric Structures Workshop, Vienna



# Motivation

The aim is to discretise classical results concerning Laplace sequences of Kœnigs nets.

Collaboration with Niklas Affolter.

# Outline

- Laplace sequences
- Two discretisations of Kœnigs nets
- Kœnigs nets with d-dim parameter lines
- Autoconjugate curves of quadrics

A function 
$$P : \mathbb{Z}^2 \to \mathbb{R}\mathrm{P}^n$$
 is a Q-net if  $\forall (i, j) \in \mathbb{Z}^2$ 

$$P(i,j), P(i+1,j), P(i+1,j+1), P(i,j+1)$$

are coplanar points.



A function  $P: \mathbb{Z}^2 \to \mathbb{R}\mathrm{P}^n$  is a Q-net if  $\forall (i,j) \in \mathbb{Z}^2$ 

$$P(i,j), P(i+1,j), P(i+1,j+1), P(i,j+1)$$

are coplanar points.

Q-nets were introduced by R. Sauer in the 1930s. Q-nets provide a discretisation of *conjugate nets*. Any Q-net  $P: \mathbb{Z}^2 \to \mathbb{R}P^n$  has two Laplace transforms  $P_1$  and  $P_{-1}$ 



The Laplace transforms are also Q-nets.



So, Laplace transformations can be iterated.

$$\ldots \leftarrow P_{-3} \leftarrow P_{-2} \leftarrow P_{-1} \leftarrow P \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow \ldots$$

$$\ldots \leftarrow P_{-3} \leftarrow P_{-2} \leftarrow P_{-1} \leftarrow P \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow \ldots$$

Discrete Laplace sequences were introduced by A. Doliwa.

[A. Doliwa. Geometric discretization of the Toda system, 1997.]

$$\ldots \leftarrow P_{-3} \leftarrow P_{-2} \leftarrow P_{-1} \leftarrow P \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow \ldots$$

Discrete Laplace sequences were introduced by A. Doliwa.

[A. Doliwa. Geometric discretization of the Toda system, 1997.]

#### Definition

The Laplace sequence terminates if an iterated Laplace transform degenerates to a discrete curve.

$$\ldots \leftarrow P_{-3} \leftarrow P_{-2} \leftarrow P_{-1} \leftarrow P \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow \ldots$$

Discrete Laplace sequences were introduced by A. Doliwa.

[A. Doliwa. Geometric discretization of the Toda system, 1997.]

#### Definition

The Laplace sequence terminates if an iterated Laplace transform degenerates to a discrete curve.

There are two types of terminations.

Let P be a Q-net with Laplace transforms  $P_1$  and  $P_{-1}$ 

- $P_1$  is Laplace degenerate if  $P_1(i,j)$  is independent of i
- $P_1$  is Goursat degenerate if  $P_1(i,j)$  is independent of j

Let P be a Q-net with Laplace transforms  $P_1$  and  $P_{-1}$ 

- $P_1$  is Laplace degenerate if  $P_1(i,j)$  is independent of i
- $P_1$  is Goursat degenerate if  $P_1(i,j)$  is independent of j
- $P_{-1}$  is Laplace degenerate if  $P_{-1}(i,j)$  is independent of j
- $P_{-1}$  is Goursat degenerate if  $P_{-1}(i,j)$  is independent of i

# Example



Q-net with a Laplace transform that is Goursat degenerate. It has one family of parameter lines that are straight lines.

# Outline

- ✓ Laplace sequences
- Two discretisations of Kœnigs nets
- Kœnigs nets with d-dim parameter lines
- Autoconjugate curves of quadrics

Let 
$$P: \mathbb{Z}^2 \to \mathbb{R}P^n$$
 be a Q-net. The Laplace invariants  
 $H: \mathbb{Z}^2 \to \mathbb{R}$  and  $K: \mathbb{Z}^2 \to \mathbb{R}$  are defined as  
 $H(i,j) := \operatorname{cr}(P(i,j), P_1(i,j), P(i,j+1), P_1(i-1,j)),$   
 $K(i,j) := \operatorname{cr}(P(i,j), P_{-1}(i,j), P(i+1,j), P_{-1}(i,j-1)).$ 

[A. Doliwa. Geometric discretization of the Toda system, 1997.]

Let 
$$P: \mathbb{Z}^2 \to \mathbb{R}P^n$$
 be a Q-net. The Laplace invariants  
 $H: \mathbb{Z}^2 \to \mathbb{R}$  and  $K: \mathbb{Z}^2 \to \mathbb{R}$  are defined as  
 $H(i,j) := \operatorname{cr}(P(i,j), P_1(i,j), P(i,j+1), P_1(i-1,j)),$   
 $K(i,j) := \operatorname{cr}(P(i,j), P_{-1}(i,j), P(i+1,j), P_{-1}(i,j-1)).$ 

[A. Doliwa. Geometric discretization of the Toda system, 1997.]

We would like to define discrete Koenigs nets as Q-nets with equal Laplace invariants. There are two ways to do this.



*H* is assigned to the vertical edges of  $\mathbb{Z}^2$ *K* is assigned to the horizontal edges of  $\mathbb{Z}^2$ 

Let  $P\colon \mathbb{Z}^2 o \mathbb{R}\mathrm{P}^n$  be a Q-net. It is a BS-Kœnigs net if  $orall (i,j)\in \mathbb{Z}^2$ 

$$H(i,j)\cdot H(i,j+1)=K(i,j+1)\cdot K(i-1,j+1).$$

$$H(i, j+1)$$

$$K(i-1, j+1)$$

$$K(i, j+1)$$

$$H(i, j)$$

$$H(i, j)$$

Let  $P: \mathbb{Z}^2 \to \mathbb{R}\mathrm{P}^n$  be a Q-net. It is a BS-Kœnigs net if  $\forall (i,j) \in \mathbb{Z}^2$ 

$$H(i,j) \cdot H(i,j+1) = K(i,j+1) \cdot K(i-1,j+1).$$

### Equivalent to the Kœnigs nets of Bobenko and Suris.

[A. I. Bobenko and Y. B. Suris. *Discrete Koenigs Nets and Discrete Isothermic Surfaces*, 2009.]

Let  $P\colon \mathbb{Z}^2 o \mathbb{R}\mathrm{P}^n$  be a Q-net. It is a D-Kœnigs net if  $orall (i,j)\in \mathbb{Z}^2$ 

$$H(i,j) \cdot H(i+1,j) = K(i,j) \cdot K(i,j+1)$$



Let  $P\colon \mathbb{Z}^2 o \mathbb{R}\mathrm{P}^n$  be a Q-net. It is a D-Kœnigs net if  $orall (i,j)\in \mathbb{Z}^2$ 

$$H(i,j) \cdot H(i+1,j) = K(i,j) \cdot K(i,j+1)$$

#### Equivalent to the discrete Kœnigs nets introduced by Doliwa.

[A. Doliwa. Geometric discretization of the Koenigs nets, 2003.]



Let  $P : \mathbb{Z}^2 \to \mathbb{R}P^n$  be a Q-net.

Define the diagonal intersection net  $D:\mathbb{Z}^2 o\mathbb{R}\mathrm{P}^n$  such that

 $D(i,j) := (P(i,j) \lor P(i+1,j+1)) \cap (P(i+1,j) \lor P(i,j+1)).$ 



If  $P : \mathbb{Z}^2 \to \mathbb{R}P^n$  is a BS-Kœnigs net, then the diagonal intersection net  $D : \mathbb{Z}^2 \to \mathbb{R}P^n$  is a D-Kœnigs net.

[A. I. Bobenko, Y. B. Suris. *Discrete Differential Geometry: Integrable Structure*, 2008.]

# Outline

- ✓ Laplace sequences
- $\checkmark\,$  Two discretisations of Kœnigs nets
- Kœnigs nets with d-dim parameter lines
- Autoconjugate curves of quadrics

Let  $P: \mathbb{Z}^2 \to \mathbb{R}\mathrm{P}^n$  be a net.

It has *d*-dimensional parameter lines if  $\forall i, j \in \mathbb{Z}$ 

 $U(j) := \operatorname{join} \{ P(i,j) \mid i \in \mathbb{Z} \}$  $V(i) := \operatorname{join} \{ P(i,j) \mid j \in \mathbb{Z} \}$ 

are *d*-dimensional projective subspaces.

#### Theorem

Let  $P : \mathbb{Z}^2 \to \mathbb{R}P^{2d}$  be a BS-Kœnigs net with *d*-dimensional parameter lines,  $d \ge 1$ . Then,

 (i) there is a quadric Q such that each d-space V(i) and each d-space U(j) is tangent to Q along an isotropic (d − 1)-space of Q,

(ii) the diagonal intersection D-Kœnigs net  $D: \mathbb{Z}^2 \to \mathbb{R}P^{2d}$  has *d*-dimensional parameter lines and the vertices of the Laplace transforms  $D_{\pm 1}, \ldots, D_{\pm d}$ are contained in Q,

(iii)  $P_{\pm d}$  and  $D_{\pm d}$  are Goursat degenerate.



[A. I. Bobenko and A. Y. Fairley. *Nets of Lines with the Combinatorics of the Square Grid and with Touching Inscribed Conics*, 2021.]

The case d = 1 of the theorem.

The theorem is a discretisation of a completely analogous theorem for smooth Kœnigs nets with d-dimensional parameter lines.

[G. Tzitzéica. Géométrie différentielle projective des réseaux, 1924.]

[E. Bompiani. *Risoluzione geometrica del problema di Moutard sulla costruzione delle equazioni di Laplace ad integrale esplicito*, 1915.]

# Outline

- ✓ Laplace sequences
- $\checkmark\,$  Two discretisations of Kœnigs nets
- $\checkmark$  Kœnigs nets with *d*-dim parameter lines
- Autoconjugate curves of quadrics

Let  $[\gamma]$  be a curve in  $\mathbb{R}P^n$  represented by a smooth curve  $\gamma \colon \mathbb{R} \to \mathbb{R}^{n+1}$ . For any  $d \in \mathbb{N}$ , the osculating d-space at  $[\gamma(t)]$  is the projective subspace

 $[\operatorname{span}\{\gamma(t),\dot{\gamma}(t),\ldots,\gamma^{(d)}(t)\}].$ 

Let  $[\gamma]$  be a curve in  $\mathbb{R}P^n$  represented by a smooth curve  $\gamma \colon \mathbb{R} \to \mathbb{R}^{n+1}$ . For any  $d \in \mathbb{N}$ , the osculating d-space at  $[\gamma(t)]$  is the projective subspace

 $[\operatorname{span}\{\gamma(t),\dot{\gamma}(t),\ldots,\gamma^{(d)}(t)\}].$ 

Geometric interpretation: limit of the space spanned by d+1 points on the curve near  $[\gamma(t)]$ .

In general, the osculating *d*-space is *d*-dimensional provided  $d \leq n$ .

A curve in  $\mathbb{R}P^n$  is an autoconjugate curve of a quadric  $\mathcal{Q}$  if for every point P of the curve, the polar  $P^{\perp}$  equals the osculating hyperplane of the curve at P.

A curve in  $\mathbb{R}P^n$  is an autoconjugate curve of a quadric Q if for every point P of the curve, the polar  $P^{\perp}$  equals the osculating hyperplane of the curve at P.

In fact, it suffices to consider autoconjugate curves of quadrics in  $\mathbb{R}P^n$  for *even n*.

Equivalent definition (which is easier to discretise)

A curve in  $\mathbb{R}P^{2n}$  is an autoconjugate curve of a quadric Q if every osculating (n-1)-space is contained in Q.

[G. Tzitzéica. Géométrie différentielle projective des réseaux, 1924.]

Example: an autoconjugate curve of a non-degenerate conic  $\mathcal{C}\subset \mathbb{R}P^2 \text{ is just a piece of } \mathcal{C}.$ 

Example: an autoconjugate curve of a non-degenerate conic  $\mathcal{C} \subset \mathbb{R}P^2 \text{ is just a piece of } \mathcal{C}.$ 

Example: an autoconjugate curve of a quadric  $\mathcal{Q} \subset \mathbb{R}P^4$  of signature (+++--) is a curve in  $\mathcal{Q}$  with tangent lines that are contained in  $\mathcal{Q}$ .

A function  $\alpha \colon \mathbb{Z} \to \mathbb{R}P^{2n}$  is a discrete autoconjugate curve of a quadric  $\mathcal{Q}$  if the join of any *n* consecutive points is a (n-1)-dimensional space that is contained in  $\mathcal{Q}$ .

A function  $\alpha \colon \mathbb{Z} \to \mathbb{R}P^{2n}$  is a discrete autoconjugate curve of a quadric  $\mathcal{Q}$  if the join of any *n* consecutive points is a (n-1)-dimensional space that is contained in  $\mathcal{Q}$ .

In fact, we have already seen examples of discrete autoconjugate curves.

#### Theorem

Let  $P : \mathbb{Z}^2 \to \mathbb{R}P^{2d}$  be a BS-Kœnigs net with *d*-dimensional parameter lines,  $d \ge 1$ . Then,

 (i) there is a quadric Q such that each d-space V(i) and each d-space U(j) is tangent to Q along an isotropic (d − 1)-space of Q,

(ii) the diagonal intersection D-Kœnigs net  $D: \mathbb{Z}^2 \to \mathbb{R}P^{2d}$  has *d*-dimensional parameter lines and the vertices of the Laplace transforms  $D_{\pm 1}, \ldots, D_{\pm d}$ are contained in Q,

(iii)  $P_{\pm d}$  and  $D_{\pm d}$  are Goursat degenerate,  $D_{\pm d}$  are discrete autoconjugate curves. Actually, there is a correspondence between pairs of discrete autoconjugate curves of quadrics and Kœnigs nets with *d*-dimensional parameter lines.

This is in complete agreement with the smooth theory.

[G. Tzitzéica. Géométrie différentielle projective des réseaux, 1924.]

#### Theorem

Let  $\sigma, \tau : \mathbb{Z} \to \mathbb{R}P^{2d}$  be two discrete autoconjugate curves of a non-degenerate quadric hypersurface  $\mathcal{Q} \subset \mathbb{R}P^{2d}$ . For all  $i, j \in \mathbb{Z}$ , consider the osculating (d - 1)-spaces

$$S(j) := \sigma(j) \lor \ldots \lor \sigma(j+d-1),$$
  
$$T(i) := \tau(i) \lor \ldots \lor \tau(i+d-1).$$

Let  $S^{\perp}(j)$  and  $T^{\perp}(i)$  be the polars. Define  $P : \mathbb{Z}^2 \to \mathbb{R}P^{2d}$ such that  $P(i,j) := S^{\perp}(j) \cap T^{\perp}(i)$ . Then, P is a BS-Kœnigs net with d-dimensional parameter lines.

## Thanks for your attention!

