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Background

Smooth isothermic surfaces (away from umbilics) allow a conformal
curvature line parametrisation.

Minimal surfaces, CMC surfaces and
surfaces of revolutions are isothermic surfaces.

Smooth isothermic surfaces can be characterised by the existence of a
dual surface (Christoffel, 1869), or equivalently, by the existence of a
Darboux pair (Darboux, 1899). Darboux transforms of an isothermic
surface are given by a Riccati equation with real spectral parameter,
(Hertrich–Jeromin, Pedit, 1997).

Smooth isothermic surfaces are an integrable surface class (Cieslinski,
Goldstein, Sym, 1995), and can be characterised by a R–family of flat
connections (Burstall, Calderbank, Pedit,...). Darboux transforms are
given by its parallel sections, and closing conditions can be controlled
by the parallel sections with multipliers in case of cylinder and tori.
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Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface

, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation,

and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased

,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23)

and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Background
Discrete isothermic surfaces have been obtained by using a discrete
dual surface, Darboux transformation via the discrete Riccati
equation, and via a gauge–theoretic approach (Bobenko–Pinkall,
Hertrich–Jeromin–Hoffman–Pinkall, ...).

Recently, interest in global results for discrete surfaces has increased,
leading to the solution of the global Bonnet Problem
(Bobenko–Hoffmann–Sageman-Furnas, ’23) and constructions of
special discrete isothermic surfaces from discrete holomorphic maps
(Hoffmann–Szewieczek, ’24).

Aim of today’s talk: Use gauge–theoretic approach to give explicit
closed-form discrete isothermic tori.

Model:

H = spanR{1, i , j , k}

with
i2 = j2 = k2 = ijk = −1 .



Discrete isothermic surfaces

Definition

A discrete surface f : Σ2 → H from a simply connected discrete domain is
called discrete isothermic if

cr(fi , fj , fk , f`) := (fi − fj)(fj − fk)−1(fk − f`)(f` − fi )
−1 =

µi`
µij

on every elementary quadrilateral (ijk`) for some real–valued function µ,
µ > 0 or µ < 0, defined on unoriented edges

satisfying the edge-labeling
property, i.e. µij = µk` and µi` = µjk . The function µ is called the
cross-ratios factorising function.
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Discrete Darboux transforms

Definition

Let f : Σ2 → H be a discrete isothermic surface with cross-ratios
factorising function µ. A second discrete surface f̂ : Σ2 → H is called a
Darboux transform of f with spectral parameter ν if

cr(fi , fj , f̂j , f̂i ) =
ν

µij

on every edge (ij).

The two surfaces f and f̂ are called a Darboux pair,
and share the same cross-ratios factorising function.

Equivalently, a discrete Darboux transform f̂ = f + T is given by the
discrete Riccati equation

df̂ij = dfij + dTij = νTj df ∗ij Ti

Aim: Describe discrete Darboux transforms via an associated family of
discrete flat connections.



Discrete Darboux transforms

Definition

Let f : Σ2 → H be a discrete isothermic surface with cross-ratios
factorising function µ. A second discrete surface f̂ : Σ2 → H is called a
Darboux transform of f with spectral parameter ν if

cr(fi , fj , f̂j , f̂i ) =
ν

µij

on every edge (ij). The two surfaces f and f̂ are called a Darboux pair,
and share the same cross-ratios factorising function.

Equivalently, a discrete Darboux transform f̂ = f + T is given by the
discrete Riccati equation

df̂ij = dfij + dTij = νTj df ∗ij Ti

Aim: Describe discrete Darboux transforms via an associated family of
discrete flat connections.



Discrete Darboux transforms

Definition

Let f : Σ2 → H be a discrete isothermic surface with cross-ratios
factorising function µ. A second discrete surface f̂ : Σ2 → H is called a
Darboux transform of f with spectral parameter ν if

cr(fi , fj , f̂j , f̂i ) =
ν

µij

on every edge (ij). The two surfaces f and f̂ are called a Darboux pair,
and share the same cross-ratios factorising function.

Equivalently, a discrete Darboux transform f̂ = f + T is given by the
discrete Riccati equation

df̂ij = dfij + dTij = νTj df ∗ij Ti

Aim: Describe discrete Darboux transforms via an associated family of
discrete flat connections.



Discrete Darboux transforms

Definition

Let f : Σ2 → H be a discrete isothermic surface with cross-ratios
factorising function µ. A second discrete surface f̂ : Σ2 → H is called a
Darboux transform of f with spectral parameter ν if

cr(fi , fj , f̂j , f̂i ) =
ν

µij

on every edge (ij). The two surfaces f and f̂ are called a Darboux pair,
and share the same cross-ratios factorising function.

Equivalently, a discrete Darboux transform f̂ = f + T is given by the
discrete Riccati equation

df̂ij = dfij + dTij = νTj df ∗ij Ti

Aim: Describe discrete Darboux transforms via an associated family of
discrete flat connections.



The family of discrete flat connections of an isothermic
surface

Let f : Σ2 → H be discrete isothermic with cross–ratios factorising µ and
corresponding dual surface given by df ∗ij = 1

µij
df −1

ij .

Define D(λ)ji : {i} ×H2 → {j} ×H2 with λ ∈ R on every edge (ij) via

D(λ)ji := idji +

(
0 dfij

λ df ∗ij 0

)
,

then D(λ) induces a family of flat connections r(λ)P on the trivial HP1

bundle over Σ2.

Fact: F̂ is a Darboux transform of the associated lift F of f with spectral
parameter ν if and only if F̂ is r(ν)P–parallel.
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The family of discrete flat connections of an isothermic
surface
For computations, it is easier to express this condition in terms of

D(λ)ji := idji +

(
0 dfij

λ df ∗ij 0

)
.

If φ =:

(
a
b

)
for some a, b : Σ2 → H satisfies

D(ν)jiφi = φj ,

i.e., (
daij
dbij

)
= −

(
dfijbi
ν df ∗ij ai

)
,

then f̂ = f + ab−1 is a Darboux transform of f with spectral parameter ν:

dTij = d(ab−1)ij = daijb
−1
i − ajb

−1
j dbijb

−1
i = − dfij + νTj df ∗ij Ti .
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Reduction to curvature lines

Rather than controlling the closing condition on the discrete isothermic
surface, we reduce the closing condition to the discrete curvature lines.

Let
Σ2 = Σ1 × Σ̃1 ⊂ Z2

for simply-connected domains Σ1, Σ̃1 ⊂ Z.

Denote by f 0 : Σ1 → H any discrete curvature line of f defined on the
corresponding simply-connected domain Σ1.

Then the restriction to the unoriented edges of Σ1 of the cross-ratios
factorising function µ defines a polarisation of f 0, i.e., f 0 : (Σ1, 1µ)→ H is
a discrete polarised curve (Burstall–Hertrich–Jeromin-Müller–Rossman).

Similarly to the case of discrete isothermic surfaces it is now possible to
define a Darboux transformation of discrete polarised curves and solve the
closing conditions (see Ogata’s talk).
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Reduction of the monodromy
Assume that the discrete isothermic surface f is periodic with period
M ∈ N:

fm,n = fm+M,n

and let f̂ be a Darboux transformation of f with spectral parameter ν.

If one of the m-curvature lines of f̂ is periodic with

f̂m,n0 = f̂m+M,n0

for some fixed n0 then

cr(fm,n0 , fm,n0+1, f̂m,n0+1, f̂m,n0) =
ν

µ(n0,n0+1)

for any m implies that f̂m,n0+1 is determined uniquely from the M–periodic

fm,n0 , fm,n0+1, f̂m,n0 , ν, µ(n0,n0+1).

Hence f̂m,n0+1 must also be periodic, that is,

f̂m,n0+1 = f̂m+M,n0+1.
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Reduction of the monodromy

Propogating to the entire domain, we conclude that the entire surface is
periodic, i.e., for any n,

f̂m,n = f̂m+M,n.

Theorem (Cho–L–Ogata)

Let f : (Σ2, 1µ)→ H be a discrete isothermic surface with one family of

periodic curvature lines. If f̂ : (Σ2, 1µ)→ H is a Darboux transform of f ,

then the corresponding family of curvature lines of f̂ are also periodic with
the same period if and only if one of the corresponding family of curvature
lines is periodic.
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Constructing discrete isothermic tori
Let f be a discrete isothermic torus.

1 Choose any base point fm0,n0 of f , and take the m-curvature line fm,n0
and n-curvature line fm0,n through that point.

2 Viewing both curves as closed discrete polarised curves, find a
spectral parameter ν and an initial condition f̂m0,n0 to obtain
simultaneously closed Darboux transforms f̂m,n0 and f̂m0,n of fm,n0 and
fm0,n, respectively.

3 Use the spectral parameter ν and the initial condition f̂m0,n0 to obtain
a new periodic discrete isothermic torus f̂ .



Constructing discrete isothermic tori
Let f be a discrete isothermic torus.

1 Choose any base point fm0,n0 of f , and take the m-curvature line fm,n0
and n-curvature line fm0,n through that point.

2 Viewing both curves as closed discrete polarised curves, find a
spectral parameter ν and an initial condition f̂m0,n0 to obtain
simultaneously closed Darboux transforms f̂m,n0 and f̂m0,n of fm,n0 and
fm0,n, respectively.

3 Use the spectral parameter ν and the initial condition f̂m0,n0 to obtain
a new periodic discrete isothermic torus f̂ .



Constructing discrete isothermic tori
Let f be a discrete isothermic torus.

1 Choose any base point fm0,n0 of f , and take the m-curvature line fm,n0
and n-curvature line fm0,n through that point.

2 Viewing both curves as closed discrete polarised curves, find a
spectral parameter ν and an initial condition f̂m0,n0 to obtain
simultaneously closed Darboux transforms f̂m,n0 and f̂m0,n of fm,n0 and
fm0,n, respectively.

3 Use the spectral parameter ν and the initial condition f̂m0,n0 to obtain
a new periodic discrete isothermic torus f̂ .



Constructing discrete isothermic tori
Let f be a discrete isothermic torus.

1 Choose any base point fm0,n0 of f , and take the m-curvature line fm,n0
and n-curvature line fm0,n through that point.

2 Viewing both curves as closed discrete polarised curves, find a
spectral parameter ν and an initial condition f̂m0,n0 to obtain
simultaneously closed Darboux transforms f̂m,n0 and f̂m0,n of fm,n0 and
fm0,n, respectively.

3 Use the spectral parameter ν and the initial condition f̂m0,n0 to obtain
a new periodic discrete isothermic torus f̂ .



Constructing discrete isothermic tori
Let f be a discrete isothermic torus.

1 Choose any base point fm0,n0 of f , and take the m-curvature line fm,n0
and n-curvature line fm0,n through that point.

2 Viewing both curves as closed discrete polarised curves, find a
spectral parameter ν and an initial condition f̂m0,n0 to obtain
simultaneously closed Darboux transforms f̂m,n0 and f̂m0,n of fm,n0 and
fm0,n, respectively.

3 Use the spectral parameter ν and the initial condition f̂m0,n0 to obtain
a new periodic discrete isothermic torus f̂ .



Constructing discrete isothermic tori



Constructing discrete isothermic tori



Explicit discrete isothermic bubbletons (Cho–L–Ogata)

In cases of a discrete cylinder

fm,n = i
n

N
+ je

2π
M

m ,

we can solve the definining recurrence relation for parallel section
explicititely

and hence determine all Darboux transforms explicitly.

In the case when the spectral parameter is

0 > ν =
1

4
(1− cot2

π

M
tan2 kπ

ρM
), k , ρ ∈ N

every Darboux transform with parameter ν is closed on the ρ–fold cover
and we obtain the following closed-form formulae:
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Explicit discrete isothermic bubbletons (Cho–L–Ogata)

f̂ = f + ab−1 = f +
1

C
(iT 0 + jT 1)

where c2 ∈ C and

Am = e
kπi
ρM

m + e−
kπi
ρM

mc2

Bm = e
kπi
ρM

m sin (ρ+k)π
ρM + e−

kπi
ρM

m sin (ρ−k)π
ρM c2

Cm,n = 2
(
(N −

√
−ν)n + (N +

√
−ν)n

)2|Bm|2

+
(
(N −

√
−ν)n − (N +

√
−ν)n

)2|Am|2(cos 2π
M − cos 2kπ

ρM )

T 0
m,n =

1√
−ν
(
(N −

√
−ν)2n − (N +

√
−ν)2n

)
·(

2|Bm|2 + |Am|2(cos 2π
M − cos 2kπ

ρM )
)

T 1
m,n = −16e

2πi
M

m(N −
√
−ν)n(N +

√
−ν)n sin π

M cos kπ
ρMAmBm



Explicit discrete isothermic bubbletons (Cho–L–Ogata)

Figure: Discrete isothermic bubbletons with k = 2, ρ = 1, and c2 = −10 and
k = 3, ρ = 1, c2 = −4



Explicit discrete CMC bubbletons (Cho–L–Ogata)

Figure: Discrete cmc bubbletons k = 5, with varying number of covers (top row
from the left: ρ = 1, 2; bottom row from the left: ρ = 3, 4).



Explicit discrete isothermic tori (Cho–L—Ogata)
Similarly, we have explicit parametrisations for all Darboux transforms of
discrete homogeneous tori

fm,n = qe
2πin
N + jpe

2πim
N , p2 + q2 = 1

.

To obtain non–trivial closed Darboux transforms we choose
k1, k2, ρ1, ρ2 ∈ N and define p, q by

0 < p2 =
1− cot2 π

M tan2 k1π
ρ1M

cot2 π
N tan2 k2π

ρ2N
− cot2 π

M tan2 k1π
ρ1M

,

0 < q2 =
1− cot2 π

N tan2 k2π
ρ2N

cot2 π
M tan2 k1π

ρ1M
− cot2 π

N tan2 k2π
ρ2N

.

Then for

ν =
1

4p2

(
1− cot2

π

M
tan2 k1π

ρ1M

)
= − 1

4q2

(
1− cot2

π

N
tan2 k2π

ρ2N

)
all Darboux transforms are discrete isothermic tori.
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Explicit discrete isothermic tori (Cho–L—Ogata)
We obtain explicit parametrisations of Darboux transforms of fm,n which
are discrete isothermic tori in S3, in analogy to the smooth Bernstein’s tori
(2001).

Figure: Discrete isothermic tori in S3 with k1 = 4, ρ1 = 3, k2 = 2, ρ2 = 3, (on the
top left: M = 12, N = 40; on the top right: M = 40, N = 40; on the bottom
left: M = 160, N = 40; on the bottom right: M = 160, N = 160).



Explicit discrete isothermic tori (Cho–L—Ogata)

Figure: Discrete isothermic tori in S3 (on the left: k1 = 2, ρ1 = 3, k2 = 3, ρ2 = 2,
M = 12, N = 12; on the right: k1 = 3, ρ1 = 2, k2 = 2, ρ2 = 3, M = 60, N = 40).



The smooth case (Cho–Leschke–Ogata)
The continuum limit M,N →∞ gives smooth isothermic surfaces in
the discussed examples.

In particular, in the case of the homogeneous tori, the parameter p, q
converge to the radii p, q,

1− 4νp2 =
k1
ρ1
, 1 + 4νq2 =

k2
ρ2

of homogenous tori which allow closed Bernstein Darboux transforms.

Constructions carry through in the smooth case.
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Thank you!
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