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Classical moving frames



Equivalence of curves or surfaces

Are these two surfaces equivalent (locally)?
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A classical solution: differential invariants of a surface
(x, y, f (x, y))

The differential invariants with respect to rotations and
translations in R3, i.e., the SE(3) group, are

• Gaussian curvature

Kp = detHessp(f ) = (fxx fyy − f 2
xy)|p

• Mean curvature

Hp =
1
2
trHessp(f ) =

fxx + fyy
2

∣∣∣
p
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How does a moving frame work: curves on the plane

Example. Consider a curve C : R → R2, s 7→ C(s) where s is the
arc length parameter.

• The action of SE(2) on the (x, u)-plane R2,
SE(2)× R2 → R2, is(

x̃
ũ

)
7→ R

(
x
u

)
+ a,

where SE(2) is the special Euclidean group with elements

A =

(
1 0
a R

)
,

with a ∈ R2 and

R =

(
cos θ sin θ

− sin θ cos θ

)
∈ SO(2).
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How does a moving frame work: curves on the plane

• Define a map F : R → SE(2) (a moving frame) by

F : s 7→ A =

(
1 0

C(s) (e1(s), e2(s))

)
,

where e1(s) = C ′(s), and e2(s) is orthogonal to e1(s).
• Pulling back the invariant differential form (the
Maurer–Cartan form) A−1 dA on SE(2) by F provides the
(invariant) differential forms

ω1 = ds, ω2 = −κds, ω3 = κds,

where the invariant (curvature) κ(s) = ‖C ′′(s)‖ satisfies
de1(s)
ds

= κe2(s).

Remark. (e1(s), e2(s)) is a moving frame: a basis that is moving
along the curve.
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Modern moving frames



Moving frames: modern definition, Fels and Olver (1998, 1999)

• A regular and free group action G × M → M

• Orbits O(z) = {z̃ = g ◦ z | ∀g ∈ G} for any given z ∈ M

Definition. A moving frame is a map ρ : M → G, such that ρ(z)
is G-equivalent, namely ρ(g ◦ z) = ρ(z) · g−1.
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Calculation of a moving frame

• Given a cross section K: ψi(z) = 0, i = 1, . . . , r = dimG,
the moving frame ρ : M → G satisfies ρ(z) ◦ z = k.

• The normalisation equations will yield ρ(z):

ψi(g ◦ z) = 0, i = 1, . . . , dimG.
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Invariants

Definition. A function f (z) is (an) invariant if f (g ◦ z) = f (z).

• G-equivalent, ρ(g ◦ z) = ρ(z) · g−1, implies

ρ(g ◦ z) ◦ (g ◦ z) = ρ(z) ◦ z.

Denote the invariant w.r.t. z as I (z) = ρ(z) ◦ z.

• Replacement rule: The invariantisation of an invariant f (z)
is f (ρ(z) ◦ z) = f (I (z)).
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Example: SE(2) action on R2

Example. Alternatively, the action of SE(2) on the plane
R2 3 (x, u) can be written as follows:(

x̃
ũ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
u

)
+

(
a
b

)
.

Choose the normalisation equations

x̃ = 0, ũ = 0, and 0 = ũx

(
=

dũ
dx̃

=
dũ
dx

/dx̃
dx

)
.

The moving frame ρ is given in parametric form

a = − x + uux√
1 + u2

x
, b = − u − xux√

1 + u2
x
, and θ = arctan ux .
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Example: SE(2) action on R2

The Euclidean curvature (differential invariant) is obtained

κ := ũxx

∣∣∣
g=ρ

=
uxx

(1 + u2
x)

3/2 ,

which is consistent with

κ =
det(r ′, r ′′)

‖r ′‖3

with r(x) = (x, u(x))T .

Remark. Higher order differential invariants can be computed
using either the invariantisation of prolonged group actions, or
using the invariantised total derivative

Ds = Dx̃

∣∣∣
g=ρ

=
1√

1 + u2
x

Dx , and ds =
√

1 + u2
x dx.
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Mansfield’s sketch
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Discrete case: O∆Es

The shift operator S is defined as

S : n 7→ n + 1.

An induced operator on functions is

S : f (n) 7→ f (n + 1).

Notations:

• local coordinates z = (n, u0 := u(n)), where n ∈ Z and
u ∈ R

• independent variable n is invariant

Remark. A geometric setting for discrete equations can be
found in Mansfield et al. (2019), and LP and Hydon (2022, 2023).
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Example: scaling

Example. Consider the following scaling transformation

g : u0 7→ ũ0 = eεu0.

• Assuming u0 > 0, the moving frame is determined by
choosing a section, for instance, ũ0 = 1:

ρ0 : ε = ln u0.

• This gives the difference (fundamental) invariants

I0,j := ũj

∣∣∣
g=ρ0

=
uj
u0
, ∀j,

and syzygies (relation between invariants):

SI0,j =
uj+1
u1

= I1,j+1

(
= ũj+1

∣∣∣
g=ρ1

)
=

I0,j+1
I0,1

.
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Discrete invariant variational problems

Consider the following invariant discrete variational problem

L M[u] =
N∑

n=0
LM(u0, u1),

where

LM(u0, u1) =
1
2

(
u1
u0

)2
=

1
2
(I0,1)

2 .

• The invariant difference Euler–Lagrange equation reads

(I0,1)
2 − 1

(I0,−1)
2 = 0.

• The corresponding (invariant) conservation law, obtained
from Noether’s theorem, is

1
(I0,−1)

2 = const. noting that S I0,−1 =
1

I0,1
.
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Discrete Maurer–Cartan invariants, Mansfield et al. (2019)

• ρk = Skρ0 where ρk is the moving frame determined by a
cross section at n + k

• Fundamental invariants: Ik,j = ρk ◦ uj

• (Right) discrete Maurer–Cartan group elements/invariants

Kk = ρk+1 · ρ−1
k

• Discrete syzygy
Ik+1,j = Kk ◦ Ik,j

• (Differential-difference) syzygy

d

dτ
Kk = (SNk)Kk − KkNk, where Nk =

(
d

dτ
ρk

)
ρ−1

k
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Invariant Noether’s conservation laws, LP (2013), Mansfield et al.
(2019)

• The invariant EL equations H∗Eκ(LM(n,κ,κ1, . . .)) = 0,
where the difference Euler operator reads Eκ = Sj

−1
∂

∂κj
,

are obtained by using syzygies of invariants κ (the I0,1 in
the example, related to K0) and σ (related to N0),

d

dτ
κ = Hσ,

where H is a (pre-)Hamiltonian operator.
• Invariant CLs are obtained via the invariant Noether’s
theorem based on adjoint representation of moving
frames, i.e., the tangent map Adρ : g → g induced by the
conjugation h 7→ ghg−1, by identifying the variation
parameter τ as each parameter of the symmetry group.
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Invariant variational integrators



Variational integrators, Veselov (1988, 1991), Marsden & West
(2001)

Numerical methods derived from discrete variational calculus

• ordinary difference (u0 = u(n), etc.):

L M[u] =
∑

n
LM(u0, u1, . . .)

• partial difference (u0,0 = u(i, j), etc.):

L M[u] =
∑
i,j

LM(u0,0, u1,0, u0,1, . . .)

• Preservation of symplectic structure: better long-term
behavior
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Invariant variational integrators: Elasticity, Galileo (1638)
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Invariant variational integrators: Euler’s variational approach

Euler (1744): ut, inter omnes curvas ejusdem longitudinis,
quæ non solum per puncta A & B transeant, sed etiam in his
punctis a rectis positione datis tangantur, definiatur ea in qua
sit valor hujus expressionis

∫
ds
RR minimus.

• Elastica in the variational formulation∫
κ2 ds,

where the curvature κ = 1/R and acr length s of a curve
(x, u(x)), i.e., SE(2) invariants, are

κ =
uxx

(1 + u2
x)

3/2 , ds =
√

1 + u2
x dx

• The invariant Euler–Lagrange equation reads

κss +
1
2
κ3 = 0
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Invariant variational integrators: Euler’s elastica
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Invariant variational integrators: Euler’s elastica
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Invariant variational integrator of Euler’s elastica, Mansfield et
al. (2019)

Discrete generating invariants determined by the discrete
moving frame about SE(2) acting on (xj , uj):

• discrete analogue of arc length ds

` = |(x1, u1)− (x0, u0)|

• discrete curvature
κ = `−1 sin hθ

where hθ = θ1 − θ0 with

sin θ0 = −u1 − u0
`

, cos θ0 =
x1 − x0
`

, . . .

The discrete invariant variational problem corresponding to∫
κ2 ds is ∑

`−1 sin2 hθ
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Invariant variational integrator of Euler’s elastica, Mansfield et
al. (2019)

• Discrete invariant EL equations (O∆Es):(
S−1

(
`−1 sin hθ

)
(S2

−1−S−1)
)

Ehθ
(LM)

+ (S−1(cos hθ) S−1 − id)E`(LM) = 0,(
`−1(S−1−id)− S−1

(
`−1 cos hθ

)
(S2

−1−S−1)
)

Ehθ
(LM)

+ (S−1(sin hθ) S−1)E`(LM) = 0,

where
Ehθ

(LM) =
∂L
∂hθ

= `−1 sin(2hθ),

E`(LM) =
∂LM

∂`
= −`−2 sin2 hθ.
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Invariant variational integrator of Euler’s elastica, Mansfield et
al. (2019)

• Discrete invariant CLs corresponding to SE(2):

(V1 V2 V3)

(
Rθ0 JRθ0(x0, u0)

T

0 1

)
= (c1 c2 c3),

where

Rθ0 =

(
cos θ0 − sin θ0

sin θ0 cos θ0

)
, J =

(
0 −1
1 0

)
,

and

V1 = S−1(cos hθE`(LM)) +
(
S−1(`

−1 sin hθ)(S2
−1 −S−1)

)
Ehθ

(LM),

V2 = S−1(sin hθE`(LM))−
(
S−1(`

−1 cos hθ)(S2
−1 −S−1)

)
Ehθ

(LM),

V3 = −S−1 (Ehθ
(LM)) .
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Invariant variational integrator of Euler’s elastica

Right: numerical solutions obtained from the invariant
Euler–Lagrange equations
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Invariant variational integrator of Euler’s elastica

Left: conserved quantities are constants. Right: error of
solution
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Summary



Summary

Moving frames, differential and difference invariants, invariant
variational calculus, symmetry-preserving (and hence conservation
law-preserving) variational integrators

• “In contrast” to Ge and Marsden (1988): a symplectic integrator,
possibly after reduction so that only the conservation of energy
remains, cannot exactly preserve the smooth energy without
computing the exact solution.

• Practical applications, such as reassembly of jigsaw puzzles,
signature of geometric objects and detection
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Thank you for your attention!
Return!
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