Discrete moving frames and invariant discrete conservation laws

Discrete Geometric Structures 2024, TU Wien, 2-6 September 2024 †Based on joint work with Peter Hydon, Elizabeth Mansfield, and Ana Rojo-Echeburúa Classical moving frames Why moving frames? How moving frames work?

Modern moving frames

Invariant variational integrators

Summary

Classical moving frames

Equivalence of curves or surfaces

Are these two surfaces equivalent (locally)?

A classical solution: differential invariants of a surface (x, y, f(x, y))

The differential invariants with respect to rotations and translations in \mathbb{R}^3 , i.e., the SE(3) group, are

• Gaussian curvature

$$K_p = \det \operatorname{Hess}_p(f) = (f_{xx}f_{yy} - f_{xy}^2)|_p$$

Mean curvature

$$H_p = \frac{1}{2} \operatorname{tr} \operatorname{Hess}_p(f) = \frac{f_{xx} + f_{yy}}{2} \Big|_p$$

How does a moving frame work: curves on the plane

Example. Consider a curve $C : \mathbb{R} \to \mathbb{R}^2$, $s \mapsto C(s)$ where s is the arc length parameter.

• The action of SE(2) on the (x, u)-plane \mathbb{R}^2 , $SE(2) \times \mathbb{R}^2 \to \mathbb{R}^2$, is

$$\left(\begin{array}{c} \widetilde{x} \\ \widetilde{u} \end{array}\right) \mapsto R \left(\begin{array}{c} x \\ u \end{array}\right) + \mathbf{a},$$

where SE(2) is the special Euclidean group with elements

$$A = \left(\begin{array}{cc} 1 & 0\\ \mathbf{a} & R \end{array}\right),$$

with $\mathbf{a} \in \mathbb{R}^2$ and

$$R = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \in SO(2).$$

How does a moving frame work: curves on the plane

• Define a map $F : \mathbb{R} \to SE(2)$ (a moving frame) by

$$F: s \mapsto A = \left(\begin{array}{cc} 1 & 0\\ C(s) & (e_1(s), e_2(s)) \end{array}\right),$$

where $e_1(s) = C'(s)$, and $e_2(s)$ is orthogonal to $e_1(s)$.

• Pulling back the invariant differential form (the Maurer–Cartan form) $A^{-1} dA$ on SE(2) by F provides the (invariant) differential forms

$$\omega^1 = \mathrm{d}s, \ \omega^2 = -\kappa \,\mathrm{d}s, \ \omega^3 = \kappa \,\mathrm{d}s,$$

where the invariant (curvature) $\kappa(s) = ||C''(s)||$ satisfies

$$\frac{\mathrm{d}e_1(s)}{\mathrm{d}s} = \kappa e_2(s).$$

Remark. $(e_1(s), e_2(s))$ is a moving frame: a basis that is moving along the curve.

Modern moving frames

Moving frames: modern definition, Fels and Olver (1998, 1999)

- A regular and free group action $G \times M \to M$
- Orbits $\mathcal{O}(z) = \{\widetilde{z} = g \circ z \mid \forall g \in G\}$ for any given $z \in M$

Definition. A moving frame is a map $\rho : M \to G$, such that $\rho(z)$ is *G*-equivalent, namely $\rho(g \circ z) = \rho(z) \cdot g^{-1}$.

Calculation of a moving frame

- Given a cross section \mathcal{K} : $\psi_i(z) = 0, i = 1, ..., r = \dim G$, the moving frame $\rho : M \to G$ satisfies $\rho(z) \circ z = k$.
- The normalisation equations will yield $\rho(z)$:

$$\psi_i(g \circ z) = 0, \quad i = 1, \dots, \dim G.$$

Definition. A function f(z) is (an) invariant if $f(g \circ z) = f(z)$.

+ G-equivalent, $\rho(g\circ z)=\rho(z)\cdot g^{-1}$, implies

$$\rho(g\circ z)\circ(g\circ z)=\rho(z)\circ z.$$

Denote the invariant w.r.t. z as $I(z) = \rho(z) \circ z$.

• Replacement rule: The invariantisation of an invariant f(z)is $f(\rho(z) \circ z) = f(I(z))$. **Example.** Alternatively, the action of SE(2) on the plane $\mathbb{R}^2 \ni (x, u)$ can be written as follows:

$$\left(\begin{array}{c} \widetilde{x} \\ \widetilde{u} \end{array}\right) = \left(\begin{array}{c} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} x \\ u \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right)$$

Choose the normalisation equations

$$\widetilde{x} = 0$$
, $\widetilde{u} = 0$, and $0 = \widetilde{u_x} \left(= \frac{\mathrm{d}\widetilde{u}}{\mathrm{d}\widetilde{x}} = \frac{\mathrm{d}\widetilde{u}}{\mathrm{d}x} / \frac{\mathrm{d}\widetilde{x}}{\mathrm{d}x} \right)$

The moving frame ρ is given in parametric form

$$a = -\frac{x + uu_x}{\sqrt{1 + u_x^2}}, \quad b = -\frac{u - xu_x}{\sqrt{1 + u_x^2}}, \quad \text{and} \quad \theta = \arctan u_x.$$

Example: SE(2) action on \mathbb{R}^2

The Euclidean curvature (differential invariant) is obtained

$$\kappa := \widetilde{u_{xx}}\Big|_{g=\rho} = \frac{u_{xx}}{\left(1 + u_x^2\right)^{3/2}},$$

which is consistent with

$$\kappa = \frac{\det(r',r'')}{\|r'\|^3}$$

with $r(x) = (x, u(x))^{T}$.

Remark. Higher order differential invariants can be computed using either the invariantisation of prolonged group actions, or using the invariantised total derivative

$$D_s = D_{\widetilde{x}}\Big|_{g=\rho} = \frac{1}{\sqrt{1+u_x^2}} D_x$$
, and $ds = \sqrt{1+u_x^2} dx$.

Mansfield's sketch

Discrete case: $O\Delta Es$

The shift operator ${\bf S}$ is defined as

 $S: n \mapsto n+1.$

An induced operator on functions is

 $S: f(n) \mapsto f(n+1).$

Notations:

- local coordinates $z = (n, u_0 := u(n))$, where $n \in \mathbb{Z}$ and $u \in \mathbb{R}$
- independent variable *n* is invariant

Remark. A geometric setting for discrete equations can be found in Mansfield et al. (2019), and LP and Hydon (2022, 2023).

Example: scaling

Example. Consider the following scaling transformation

$$g: u_0 \mapsto \widetilde{u}_0 = e^{\varepsilon} u_0.$$

• Assuming $u_0 > 0$, the moving frame is determined by choosing a section, for instance, $\tilde{u}_0 = 1$:

$$\rho_0: \quad \varepsilon = \ln u_0.$$

• This gives the difference (fundamental) invariants

$$I_{0,j} := \widetilde{u}_j \Big|_{g=\rho_0} = \frac{u_j}{u_0}, \quad \forall j,$$

and syzygies (relation between invariants):

$$SI_{0,j} = \frac{u_{j+1}}{u_1} = I_{1,j+1} \left(= \widetilde{u}_{j+1} \Big|_{g=\rho_1} \right) = \frac{I_{0,j+1}}{I_{0,1}}$$

Discrete invariant variational problems

Consider the following invariant discrete variational problem

$$\mathscr{L}^{\vartriangle}[u] = \sum_{n=0}^{N} L^{\vartriangle}(u_0, u_1),$$

where

$$L^{\Delta}(u_0, u_1) = \frac{1}{2} \left(\frac{u_1}{u_0}\right)^2 = \frac{1}{2} (I_{0,1})^2.$$

• The invariant difference Euler–Lagrange equation reads

$$(I_{0,1})^2 - \frac{1}{(I_{0,-1})^2} = 0.$$

• The corresponding (invariant) conservation law, obtained from Noether's theorem, is

$$\frac{1}{(I_{0,-1})^2} =$$
const. noting that S $I_{0,-1} = \frac{1}{I_{0,1}}$.

Discrete Maurer-Cartan invariants, Mansfield et al. (2019)

- $\rho_k = S^k \rho_0$ where ρ_k is the moving frame determined by a cross section at n + k
- Fundamental invariants: $I_{k,j} = \rho_k \circ u_j$
- (Right) discrete Maurer-Cartan group elements/invariants

$$K_k = \rho_{k+1} \cdot \rho_k^{-1}$$

Discrete syzygy

$$I_{k+1,j} = K_k \circ I_{k,j}$$

• (Differential-difference) syzygy

$$\frac{\mathrm{d}}{\mathrm{d}\tau}K_k = (\mathrm{S}N_k) K_k - K_k N_k$$
, where $N_k = \left(\frac{\mathrm{d}}{\mathrm{d}\tau}\rho_k\right)\rho_k^{-1}$

Invariant Noether's conservation laws, LP (2013), Mansfield et al. (2019)

• The invariant EL equations $\mathcal{H}^* \mathbf{E}_{\kappa}(L^{\Delta}(n, \kappa, \kappa_1, \ldots)) = 0$, where the difference Euler operator reads $\mathbf{E}_{\kappa} = \mathbf{S}_{-1}^j \frac{\partial}{\partial \kappa_j}$, are obtained by using syzygies of invariants κ (the $I_{0,1}$ in the example, related to K_0) and σ (related to N_0),

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\boldsymbol{\kappa} = \mathcal{H}\boldsymbol{\sigma},$$

where ${\cal H}$ is a (pre-)Hamiltonian operator.

• Invariant CLs are obtained via the invariant Noether's theorem based on adjoint representation of moving frames, i.e., the tangent map $Ad_{\rho} : \mathfrak{g} \to \mathfrak{g}$ induced by the conjugation $h \mapsto ghg^{-1}$, by identifying the variation parameter τ as each parameter of the symmetry group.

Invariant variational integrators

Variational integrators, Veselov (1988, 1991), Marsden & West (2001)

Numerical methods derived from discrete variational calculus

• ordinary difference ($u_0 = u(n)$, etc.):

$$\mathscr{L}^{\Delta}[u] = \sum_{n} L^{\Delta}(u_0, u_1, \ldots)$$

• partial difference ($u_{0,0} = u(i,j)$, etc.):

$$\mathscr{L}^{\Delta}[u] = \sum_{i,j} L^{\Delta}(u_{0,0}, u_{1,0}, u_{0,1}, \ldots)$$

• Preservation of symplectic structure: better long-term behavior

Invariant variational integrators: Elasticity, Galileo (1638)

(From the Discorsi, Leiden 1638.)

Invariant variational integrators: Euler's variational approach

Euler (1744): ut, inter omnes curvas ejusdem longitudinis, quæ non solum per puncta A & B transeant, sed etiam in his punctis a rectis positione datis tangantur, definiatur ea in qua sit valor hujus expressionis $\int \frac{ds}{BR}$ minimus.

Invariant variational integrators: Euler's variational approach

Euler (1744): ut, inter omnes curvas ejusdem longitudinis, quæ non solum per puncta A & B transeant, sed etiam in his punctis a rectis positione datis tangantur, definiatur ea in qua sit valor hujus expressionis $\int \frac{ds}{BB}$ minimus.

• Elastica in the variational formulation

$$\int \kappa^2 \,\mathrm{d}s,$$

where the curvature $\kappa = 1/R$ and acr length s of a curve (x, u(x)), i.e., SE(2) invariants, are

$$\kappa = \frac{u_{xx}}{(1+u_x^2)^{3/2}}, \quad \mathrm{d}s = \sqrt{1+u_x^2}\,\mathrm{d}x$$

• The invariant Euler–Lagrange equation reads

$$\kappa_{ss} + \frac{1}{2}\kappa^3 = 0$$

Invariant variational integrators: Euler's elastica

Invariant variational integrators: Euler's elastica

22 / 29

Invariant variational integrator of Euler's elastica, Mansfield et al. (2019)

Discrete generating invariants determined by the discrete moving frame about SE(2) acting on (x_i, u_i) :

+ discrete analogue of arc length $\mathrm{d}s$

$$\ell = |(x_1, u_1) - (x_0, u_0)|$$

discrete curvature

$$\overline{\kappa} = \ell^{-1} \sin h_{\theta}$$

where $h_{\theta} = \theta_1 - \theta_0$ with

$$\sin \theta_0 = -\frac{u_1 - u_0}{\ell}, \quad \cos \theta_0 = \frac{x_1 - x_0}{\ell}, \quad \dots$$

The discrete invariant variational problem corresponding to $\int \kappa^2 ds$ is

$$\ell^{-1}\sin^2 h_\theta$$
23 / 29

Invariant variational integrator of Euler's elastica, Mansfield et al. (2019)

• Discrete invariant EL equations (O Δ Es):

$$(\mathbf{S}_{-1}(\ell^{-1}\sin h_{\theta}) (\mathbf{S}_{-1}^{2} - \mathbf{S}_{-1})) \mathbf{E}_{h_{\theta}}(L^{\Delta}) + (\mathbf{S}_{-1}(\cos h_{\theta}) \mathbf{S}_{-1} - \mathrm{id}) \mathbf{E}_{\ell}(L^{\Delta}) = 0, (\ell^{-1}(\mathbf{S}_{-1} - \mathrm{id}) - \mathbf{S}_{-1}(\ell^{-1}\cos h_{\theta}) (\mathbf{S}_{-1}^{2} - \mathbf{S}_{-1})) \mathbf{E}_{h_{\theta}}(L^{\Delta}) + (\mathbf{S}_{-1}(\sin h_{\theta}) \mathbf{S}_{-1}) \mathbf{E}_{\ell}(L^{\Delta}) = 0,$$

where

$$\mathbf{E}_{h_{\theta}}(L^{\Delta}) = \frac{\partial L}{\partial h_{\theta}} = \ell^{-1} \sin(2h_{\theta}),$$
$$\mathbf{E}_{\ell}(L^{\Delta}) = \frac{\partial L^{\Delta}}{\partial \ell} = -\ell^{-2} \sin^2 h_{\theta}.$$

Invariant variational integrator of Euler's elastica, Mansfield et al. (2019)

• Discrete invariant CLs corresponding to SE(2):

$$(V_1 \ V_2 \ V_3) \begin{pmatrix} R_{\theta_0} & JR_{\theta_0}(x_0, u_0)^T \\ 0 & 1 \end{pmatrix} = (c_1 \ c_2 \ c_3),$$

where

$$R_{\theta_0} = \begin{pmatrix} \cos \theta_0 & -\sin \theta_0 \\ \sin \theta_0 & \cos \theta_0 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

and

$$V_{1} = S_{-1}(\cos h_{\theta} \mathbf{E}_{\ell}(L^{\Delta})) + (S_{-1}(\ell^{-1} \sin h_{\theta})(S_{-1}^{2} - S_{-1})) \mathbf{E}_{h_{\theta}}(L^{\Delta}),$$

$$V_{2} = S_{-1}(\sin h_{\theta} \mathbf{E}_{\ell}(L^{\Delta})) - (S_{-1}(\ell^{-1} \cos h_{\theta})(S_{-1}^{2} - S_{-1})) \mathbf{E}_{h_{\theta}}(L^{\Delta}),$$

$$V_{3} = -S_{-1}(\mathbf{E}_{h_{\theta}}(L^{\Delta})).$$

Invariant variational integrator of Euler's elastica

Right: numerical solutions obtained from the invariant Euler–Lagrange equations

Invariant variational integrator of Euler's elastica

Left: conserved quantities are constants. Right: error of solution

Summary

Moving frames, differential and difference invariants, invariant variational calculus, symmetry-preserving (and hence conservation law-preserving) variational integrators

- "In contrast" to Ge and Marsden (1988): a symplectic integrator, possibly after reduction so that only the conservation of energy remains, cannot exactly preserve the smooth energy without computing the exact solution.
- Practical applications, such as reassembly of jigsaw puzzles, signature of geometric objects and detection

Thank you for your attention!

▶ Return!