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Classical moving frames



Equivalence of curves or surfaces

Are these two surfaces equivalent (locally)?
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A

classical solution: differential invariants of a surface

(2.3, f(z, 1)

The differential invariants with respect to rotations and
translations in R3, i.e,, the SE(3) group, are

- Gaussian curvature
Kp = det Hessp(f) - (fxxfyy - ffy)‘?
- Mean curvature

1
iy = 5tr Hess,(f) = fox + oy ;—fyy ,
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How does a moving frame work: curves on the plane

Example. Consider a curve C : R — R2, s+ C(s) where s is the
arc length parameter.

- The action of SE(2) on the (z, u)-plane R?,
SE(2) x R? - R?, is

()-e(:)

where SE(2) is the special Euclidean group with elements

1
a R
with a € R? and

0 ind
Rz( oS sin )eSO(Q).

—sinf cos6

=N
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How does a moving frame work: curves on the plane

- Define a map F : R — SE(2) (a moving frame) by
1

F:s— A= < 0 ) ,
C(s) (e(s), ex(s))

where ej(s) = C'(s), and ex(s) is orthogonal to e (s).

- Pulling back the invariant differential form (the
Maurer—-Cartan form) A=1dA on SE(2) by F provides the
(invariant) differential forms

wl=ds, w?=—kds, w?=rds,

where the invariant (curvature) x(s) = || C”(s)|| satisfies
dey(s)
ds
Remark. (e1(s), e2(s)) is @ moving frame: a basis that is moving
along the curve.

= Kkey(s).
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Modern moving frames



Moving frames: modern definition, Fels and Olver (1998, 1999)

all

different

orbits

- Aregular and free group action G x M — M
- Orbits O(z) = {Z=goz| Vg€ G} forany given z € M
Definition. A moving frame isa map p : M — G, such that p(z)

is G-equivalent, namely p(go 2) = p(z) - g~ 1.
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Calculation of a moving frame

all
different

orbits

- Given a cross section K: ¢;(z) =0,i=1,...,r=dim G,
the moving frame p : M — G satisfies p(z) o z = k.
- The normalisation equations will yield p(z):
Yi(goz)=0, i=1,...,dimG.
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Invariants

Definition. A function f(z) is (an) invariant if f(g o z) = f(2).
- G-equivalent, p(go z) = p(2) - g~1, implies

p(go 7)o (go2) = p(2) o

Denote the invariant w.rt. z as I(z) = p(z) o z.

- Replacement rule: The invariantisation of an invariant f(z)

is f(p(2) 0 2) = f(1(2)).
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Example: SE(2) action on R?

Example. Alternatively, the action of SE(2) on the plane
R? > (z,u) can be written as follows:

(Z)-( s e (o) (5 ).

Choose the normalisation equations

81

N

¥=0, ©=0, and O:u}<:du du d‘””).

dz ~ dz/ dz

The moving frame p is given in parametric form

T+ uu TU,
o= ——2= =———"% and 0 = arctan u,.

V1t a2 V14 a2
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Example: SE(2) action on R?

The Euclidean curvature (differential invariant) is obtained

— Uy
K 1= Uy

g=r (1+ u§)3/2’

which is consistent with

det(r’, ")

R
with r7(z) = (z, u(z)) 7.

Remark. Higher order differential invariants can be computed
using either the invariantisation of prolonged group actions, or
using the invariantised total derivative

1
D, and ds=+/1+u2ds.
o= 1+u2 = !

D, = D;

11/29



Mansfield’s sketch

W Swooth U
Cartan Modern Dlscre{'e.
(X‘mudm")‘ e
), €n
® G, e .
»/
J,
‘ﬁ(@/") o (9,0) %
/7
jo(x,u’ ux) - SE(Q) fh()(n,Un,Xn-u, un")
€ SE(R)
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Discrete case: OAEs

The shift operator S is defined as
S:n—n+1.
An induced operator on functions is
S:f(n)— f(n+1).
Notations:

- local coordinates z = (n, ug := u(n)), where n € Z and
ueR

- independent variable n is invariant

Remark. A geometric setting for discrete equations can be

found in Mansfield et al. (2019), and LP and Hydon (2022, 2023).
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Example: scaling

Example. Consider the following scaling transformation

g ug — Uy = e“up.

- Assuming ug > 0, the moving frame is determined by
choosing a section, for instance, uy = 1:

po:  €=Inug.

- This gives the difference (fundamental) invariants
w
b; = ﬂ‘ :7]7 Vj,
& MNg=po w0

and syzygies (relation between invariants):

Us; Iy ;
I i+1 [ . 0,j+1
Uy 9=p1 10,1
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Discrete invariant variational problems

Consider the following invariant discrete variational problem

N
= Z LA(/U'Ov U]_),
n=0
where

o) =L () = L,
Up, U1) = 9 \ u 9 0,1) -
- The invariant difference Euler-Lagrange equation reads
1
(Ip1)?— ——— =0.
(Io,-1)?
- The corresponding (invariant) conservation law, obtained

from Noether's theorem, is

. 1
= const. notingthat SIp 1 = —.
(Io,-1)? 8 =1 Toa
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Discrete Maurer-Cartan invariants, Mansfield et al. (2019)

- pr = S¥py where p; is the moving frame determined by a
cross section at n+ k

- Fundamental invariants: I ; = py o u;

- (Right) discrete Maurer-Cartan group elements/invariants
Ky, = prs1- oy,

- Discrete syzygy
L1, = Ko Iy
- (Differential-difference) syzygy

d d
— K, = (SNy) K, — K3, Ny, where N, = | — e
3 K (SNi) K — KNy, where Ny, (dTPk) Pr
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Invariant Noether’s conservation laws, LP (2013), Mansfield et al.

(2019)

- The invariant EL equations H*E, (L*(n, k, K1,...)) =0,

where the difference Euler operator reads E,, = S{l a%j,
are obtained by using syzygies of invariants & (the Iy in
the example, related to Kjp) and o (related to Ny),

d

EK'/ = HO',

where #H is a (pre-)Hamiltonian operator.

 Invariant CLs are obtained via the invariant Noether's

theorem based on adjoint representation of moving
frames, i.e,, the tangent map Ad, : g — g induced by the
conjugation h — ghg~?!, by identifying the variation
parameter T as each parameter of the symmetry group.
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Invariant variational integrators




Variational integrators, Veselov (1988, 1991), Marsden & West

(2001)

Numerical methods derived from discrete variational calculus

- ordinary difference (ug = u(n), etc.):
LA u] = ZLA(UQ, u,...)
- partial difference (ugo = u(4, 5), etc.):

L] = Z L* (up 0, u1,0, U015 - - -)

Y]

- Preservation of symplectic structure: better long-term
behavior
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Invariant variational integrators: Elasticity, Galileo (1638)

S

DUONSNS

(From the Discorsi, Leiden 1638.)
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Invariant variational integrators: Euler’s variational approach

Euler (1744): ut, inter omnes curvas ejusdem longitudinis,

qua non solum per puncta A & B transeant, sed etiam in his
punctis a rectis positione datis tangantur, definiatur ea in qua
sit valor hujus expressionis [ % minimus.
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Invariant variational integrators: Euler’s variational approach

Euler (1744): ut, inter omnes curvas ejusdem longitudinis,

qua non solum per puncta A & B transeant, sed etiam in his
punctis a rectis positione datis tangantur, definiatur ea in qua
sit valor hujus expressionis [ % minimus.

- Elastica in the variational formulation

//@2 ds,

where the curvature k = 1/R and acr length s of a curve
(z,u(z)), .e., SE(2) invariants, are

H_l‘wﬂﬂ)m, ds=4/1+u2dz

(14 u2
- The invariant Euler-Lagrange equation reads
1
Kss + 5/{3 =0
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Invariant variational integrators: Euler’s elastica

viv 23,
o Lddetamentum .

Tabulalll
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Invariant variational integrators: Euler’s elastica

cAddditamentun .

Tabuda. 1V, B
l"{g, 8. \f'(r/.().

/T/\\ .
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Invariant variational integrator of Euler’s elastica, Mansfield et

al. (2019)

Discrete generating invariants determined by the discrete
moving frame about SE(2) acting on (z;, u;):

- discrete analogue of arc length ds

t=|(z1, 1) — (20, uo)|
- discrete curvature
R =/("sinhy
where hg = 01 — 6y with
Ul — Uy T — 20
T2 I
The discrete invariant variational problem corresponding to

[rK2dsis
Zﬁfl sin? hy

sinfy = — cosfy =
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Invariant variational integrator of Euler’s elastica, Mansfield et

al. (2019)

- Discrete invariant EL equations (OAESs):

(S—1 (¢ sinhg) (S2,—S_1)) Ep, (L)

+ (S_1(cos hg) S_1 —id) E,(L*) = 0,
(¢71(S_1—id) — S_1(¢" " cos hg) (S%;—S_1)) En, (L*)

+ (S_1(sin hy) S_1) E¢(L?) = 0,

where B
Ep, (L°) = o =L "sin(2hy),
oL” 9 .
Eg(LA) ol =/ 281112 h@.
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Invariant variational integrator of Euler’s elastica, Mansfield et

al. (2019)

- Discrete invariant CLs corresponding to SE(2):

Ry, JR T
(Vl VQ V3) ( 060 00(1110’1'&0) > — (Cl o 63),

where
Ry, cosby —sinfy . 0 -1 ’
sinfy  cos b 1 0

Vi = S_i(cos hgBg(L*)) + (S—1(€ " sin hy)(S2; —S_1)) Ep, (L),
Vo = S_l(sin h@Eg(LA)) = (S_l(g_l COS h@)(SQ_l = S_l)) E;, (LA),
Va = —5_1 (En (L))

and

0
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Invariant variational integrator of Euler’s elastica

2

L >
>

-2 -1 0 1

¢+ Discrete solution I+ Discrete solution 2 Smooth solution|

Right: numerical solutions obtained from the invariant
Euler-Lagrange equations
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Invariant variational integrator of Euler’s elastica
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Summary




Moving frames, differential and difference invariants, invariant
variational calculus, symmetry-preserving (and hence conservation
law-preserving) variational integrators

- “In contrast” to Ge and Marsden (1988): a symplectic integrator,
possibly after reduction so that only the conservation of energy
remains, cannot exactly preserve the smooth energy without
computing the exact solution.

- Practical applications, such as reassembly of jigsaw puzzles,
signature of geometric objects and detection
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Thank you for your attention!
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