Discrete maximal surfaces from s-embeddings

w/ N. Affolter, F. Dellinger, Ch. Müller, N. Smeenk

Denis Polly

TU Wien

Discrete and geometric structures 2024 Monday 2nd September, 2024

maximal surfaces

Weierstrass-type representation [Kobayashi, 1983]

For any holomorphic function ψ , the surface

$$x(z) = \operatorname{Re} \int_{z_0}^z \left(egin{array}{c} 1 + \psi^2(w) \ i \left(1 - \psi^2(w)
ight) \ 2\psi(w) \end{array}
ight) rac{dw}{\psi_z(w)},$$

has zero mean curvature and is thus a maximal surface in Minkowski space $\mathbb{R}^{2,1}$.



derivation



what we will see

special s-embeddings in the plane

(statistical mechanics)

BIPARTITE DIMER MODEL: PERFECT T-EMBEDDINGS AND LORENTZ-MINIMAL SURFACES

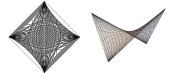


image from [Chelkak et al., 2023]

discrete maximal surfaces (discrete differential geometry)

Minimal surfaces from circle patterns: Geometry from combinatorics

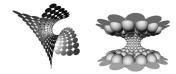
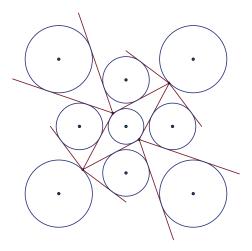


image from [Bobenko et al., 2006]

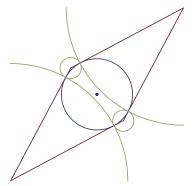
s-embeddings

Definition. An *s*-embedding is a map $s : \mathbb{Z}^2 \to \mathbb{R}^2$ such that the image of each face has an incircle.



s-embeddings

Pitot's theorem. A quadrilateral has an incircle if and only if the sums of opposite side lengths are equal.



Corollary. For an s-embedding s, the 1-form

$$lpha = egin{pmatrix} ds \ \pm |ds| \end{pmatrix}$$
 ,

is closed.

Interlude: Minkowski space

We equip \mathbb{R}^3 with the metric

$$(x,y) = x_1y_1 + x_2y_2 - x_3y_3,$$

- and call $(\mathbb{R}^3, (\cdot, \cdot)) \cong \mathbb{R}^{2,1}$ *Minkowski space.* A vector *v* is called *spacelike*, *timelike* or *isotropic* if (v, v) is positive, negative or vanishes respectively.
 - ▶ A plane is called *spacelike*, *timelike* or *isotropic* if the metric induced on it has signature (++), (+-) or (+0) respectively.

Interlude: Minkowski space

We equip \mathbb{R}^3 with the metric

$$(x, y) = x_1y_1 + x_2y_2 - x_3y_3,$$

and call $(\mathbb{R}^3, (\cdot, \cdot)) \cong \mathbb{R}^{2,1}$ *Minkowski space.* A sphere in $\mathbb{R}^{2,1}$ is given by the equation

$$(x-c,x-c)=r.$$

We call a sphere *spacelike, timelike* or *null* if r < 0, r > 0 or r = 0 respectively. We call *c* the *center* of the sphere. Spacelike spheres have spacelike tangent planes, timelike spheres have timelike tangent planes and null spheres have isotropic tangent planes.

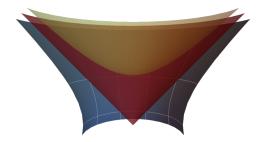
Interlude: Minkowski space

We equip \mathbb{R}^3 with the metric

$$(x, y) = x_1 y_1 + x_2 y_2 - x_3 y_3,$$

and call $(\mathbb{R}^3, (\cdot, \cdot)) \cong \mathbb{R}^{2,1}$ *Minkowski space.* A *sphere* in $\mathbb{R}^{2,1}$ is given by the equation

$$(x-c, x-c) = r.$$

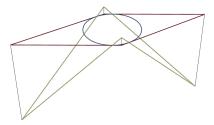


The Lorentz lift

Definition. For an s-embedding s, the map $s^{\mathcal{L}}$ satisfying

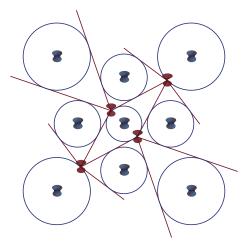
$$ds^{\pounds} = egin{pmatrix} ds \ \pm |ds| \end{pmatrix}$$
 ,

is called the *Lorentz lift* of *s*.



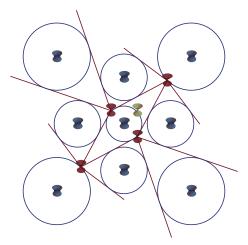
The Lorentz lift comes with null spheres at each vertex and timelike spheres at each face \rightarrow *null congruence*.

isothermic nets



Schematic of a null congruence

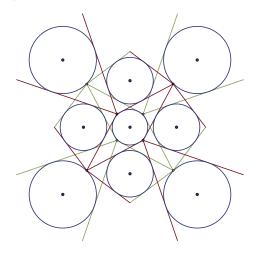
isothermic nets



Schematic of a null congruence

isothermic s-embeddings

Definition. An *isothermic s-embedding* is an s-embedding such that the other tangents also constitute an s-embedding (for the same incircles).



s-isothermic nets

Definition. A (spacelike) *s-isothermic net h* is a map

$$\begin{split} h_{\bullet} : \mathbb{Z}_{\bullet}^{2} &\to \text{circles in } \mathbb{R}^{2,1}, \\ h_{\circ} : \mathbb{Z}_{\circ}^{2} &\to \text{timelike spheres in } \mathbb{R}^{2,1}, \\ h_{\Box} : F(\mathbb{Z}^{2}) &\to \mathbb{R}^{2,1}, \end{split}$$

such that around each face f

- 1. spheres touch in $h_{\Box}(f)$, and
- 2. spheres intersect circles orthogonally.

Theorem

s-isothermic nets are precisely the Lorentz lifts of isothermic s-embeddings.

discrete maximal surfaces

Definition. The (discrete) dual of an s-isothermic net h is obtained by integrating

$$\pm rac{R(w)^{-1} + R(w')^{-1}}{R(w) + R(w')} dm_{\circ}(w, w').$$

Facts:

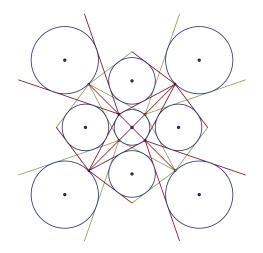
- the dual is also an s-isothermic net
- duals are edge-parallel

Definition. An s-isothermic net is called *maximal* if the circles of the Christoffel dual are contained in the space-like unit sphere.

Maximal s-isothermic nets are in bijection to orthogonal hyperbolic circle patterns (Minkowski version of [Bobenko et al., 2006]).

Koebe s-embeddings

Definition. A *Koebe s-embedding* is an isothermic s-embedding such that the connecting lines of vertices intersect in one point.



Theorem

The Lorentz lift $s^{\mathcal{X}}$ of a Koebe s-embedding lifts to an s-isothermic net such that the circles are contained in a spacelike sphere (generically). The duals of $s^{\mathcal{X}}$ are maximal s-isothermic nets. All maximal s-isothermic nets arise this way.

Theorem

The Lorentz lift $s^{\mathcal{L}}$ of a Koebe s-embedding lifts to an s-isothermic net such that the circles are contained in a spacelike sphere (generically). The duals of $s^{\mathcal{L}}$ are maximal s-isothermic nets. All maximal s-isothermic nets arise this way.

Further results and considerations:

- W-type representation for maximal s-isothermic nets
- associated families
- more connections to Ising model (X-variables)
- more sphere geometries
- more nicer pictures

Thank you for your attention!

References

Tokyo Journal of Mathematics, 06(2):297-309.

15/15