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Euclidean problems
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Transformable design

Chuck Hoberman HAPPHO
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New quad-mesh mechanisms aka flexible nets
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Freeform architecture
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New asymptotic nets with a constant angle and webs
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A general approach to problems in Euclidean geometry

1 First solve the problem in isotropic geometry
(structure-preserving simplification of Euclidean geometry)

2 Optimize to Euclidean solutions (and get insight)
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Classical roots

Plateau’s Problem (1760). Prove the existence of a
minimal surface with a given boundary.

Partial Solution (Müntz, 1911): by deformation of a graph
of a harmonic function (=isotropic minimal surface)

©Wikipedia
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Isotropic geometry
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Isotropic space I 3, distances, and angles

The isotropic distance between (x1, y1, z1) and (x2, y2, z2) is√
(x2 − x1)2 + (y2 − y1)2

parallel points ⇔ vanishing isotropic distance
⇔ same top view ⇔ lie on z-parallel line (isotropic line)

The isotropic congruence transformations are special
affine transformations preserving the isotropic distance:
x ′ = a + x cosϕ± y sinϕ,

y ′ = b ∓ x sinϕ+ y cosϕ,

z ′ = c + c1x + c2y + z .

The isotropic angle between non-isotropic lines is the
Euclidean angle in the top view

The isotropic angle between non-isotropic planes is the
difference of their slopes (= tangent of inclination angle)
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Isotropic spheres

An isotropic sphere (of cylindrical type) is the set of
points at a constant isotropic distance from a given point

An isotropic sphere of parabolic type (surface of constant
normal curvature) is

2z = a(x2 + y 2) + bx + cy + d , a ̸= 0
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Metric duality

The metric duality is the polarity with respect to isotropic
unit sphere 2z = x2 + y 2:

point (x∗, y ∗, z∗) 7→ plane z + z∗ = x∗x + y ∗y .

Points at the isotropic distance d 7→ planes forming the
isotropic angle d

Parallel points 7→ parallel planes

Surface 7→ the set of points dual to tangent planes
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Isotropic Gaussian curvature

The isotropic Gauss map takes a point of the surface to
the point of the isotropic unit sphere such that the
tangent planes at the two points are parallel

The total isotropic Gaussian curvature
= the isotropic area of the Gaussian image (if it is 1–1)

= the oriented area of the top view of the Gaussian image
= the oriented area of the top view of the metric dual
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Isotropic isometries

A nondegenerate definition of an isotropic isometry was
invented only recently by Müller–Pottmann’24

Difficulty: preservation of distances is insufficient!

Insight: Gauss’ Theorem Egregium. Euclidean
isometries of a surface preserve Gaussian curvature.

An isotropic isometry is a map preserving both isotropic
distances and the isotropic Gaussian curvature.
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Flexible nets

14:15 Olimjoni Pirahmad
14:30 Alisher Aikyn
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Dual-convex m × n nets

An m × n net is a collection of (m + 1)(n + 1) points
Fij ∈ I 3 indexed by two integers 0 ≤ i ≤ m and 0 ≤ j ≤ n
such that Fij ,Fi+1,j ,Fi+1,j+1,Fi ,j+1 are consecutive vertices
of a convex quadrilateral pij for all 0 ≤ i < m, 0 ≤ j < n.

A convex polyhedral angle in I 3 is admissible if the
isotropic line through its vertex intersects its interior.

the
planes of the four consecutive flat angles of some
admissible 4-hedral angle.
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F10

F01

F12
F22

F20F00
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p11

p10p00
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Discrete isotropic Gaussian curvature

Let Fij be a non-boundary vertex and p1, p2, p3, p4 be the
consecutive faces around it.

Let p∗j be the top view of the
metric dual of pj . The total isotropic Gaussian curvature at
the vertex Fij , or the curvature at Fij , is the oriented area

Ω(Fij) := Area(p∗1 p
∗
2 p

∗
3 p

∗
4) =

1

2

4∑
j=1

det(p∗j , p
∗
j+1).

(Different from Bobenko–Pottmann–Wallner’10)

Fij p1

p3

p2

p4

p∗1

p∗2

p∗3

p∗4

p∗1 p∗2
p∗3

p∗4
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Flexible nets in Euclidean geometry

An m × n net Fij is flexible if contained in a continuous family
of non-congruent m × n nets Fij(t) with congruent
corresponding faces, where t ∈ (−ε, ε) for some ε > 0.
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Flexible nets in Euclidean geometry

An m × n net Fij is flexible if contained in a continuous family
of non-congruent m × n nets Fij(t) with congruent
corresponding faces, where t ∈ (−ε, ε) for some ε > 0.

Problem. Construct examples of flexible m × n nets.

Examples:

Voss nets’1888

Graf–Sauer’s T-nets’1931

classification of all flexible 3× 3 nets (Izmestiev’2017)

combination to larger nets (He–Guest’2020)

nonplanar faces (Nawratil’2023, Aikyn et al’ 2024)
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Flexible nets in isotropic geometry

A dual-convex m × n net Fij is flexible in I 3 if contained in a
continuous family of m × n non-isotropically-congruent nets
Fij(t), where t ∈ (−ε, ε) for some ε > 0, satisfying

face conditions: corresponding faces of all m × n nets Fij(t)
are isotropically congruent; and

vertex conditions: corresponding vertices of all m × n nets
Fij(t) have the same curvatures.

Problem. Find all flexible m × n nets in I 3.
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Flexible nets in isotropic geometry: an auxiliary notion

Fij = a non-boundary vertex of a dual-convex m × n net
e = an edge emanating from the vertex
p1 , p2 , p3 , p4 = the consecutive faces around the vertex
such that p1 ∩ p4 = e
p = the plane spanned by the lines p1 ∩ p3 and p2 ∩ p4
∠(p1 , p) = the isotropic angle between p1 and p
the opposite ratio of Fij with respect to e is

∠(p3, p)
∠(p1, p)

· ∠(p4, p)
∠(p2, p)

.

Fij

p4
p1

p2

p3

p

e
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Flexible nets in isotropic geometry: classification

Theorem (Pirahmad–Pottmann–S.’24+)

A dual-convex m × n net with pairwise-non-parallel faces pkl is
flexible in I 3 iff at least one of the following conditions holds:

(i) n lines pk,0 ∩ pk+2,0, . . . , pk,n−1 ∩ pk+2,n−1 lie in one
isotropic plane for each 0 ≤ k ≤ m − 3 or
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Flexible nets in isotropic geometry: classification

Proof: by the metric duality, the theorem reduces to the
classification of area-preserving Combescure transformations
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Flexible nets in isotropic geometry: example

A generalized T -net is a dual-convex m × n net with planar
parameter lines, where one family of parameter lines lie in
isotropic planes.

a particular case of m× n nets with planar parameter lines
(Bobenko–Rörig’19, Fairley’23, Wang et al.’22)

a particular case of metric duals of double cone-nets
(Kilian–Müller–Tervooren’23)
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Flexible nets in isotropic geometry: example

A generalized T -net is a dual-convex m × n net with planar
parameter lines, where one family of parameter lines lie in
isotropic planes.

a particular case of class (i) ⇒ flexible in I 3

generate the whole class (i) by “truncation of edges”
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Flexible nets in isotropic geometry: example

A generalized T -net is a dual-convex m × n net with planar
parameter lines, where one family of parameter lines lie in
isotropic planes.

generalize flexible T -nets by Graf–Sauer’31
(parameter lines lie in two orthogonal families of planes)

©Sharifmoghaddam et al.’21
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Flexible nets in isotropic geometry: example (ii)
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From isotropic to Euclidean flexible nets

Use a flexible net in I 3 to initialize numerical optimization
towards a Euclidean flexible net:

Isotropic

Euclidean
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From isotropic to Euclidean flexible nets

Use a flexible net in I 3 to initialize numerical optimization
towards a Euclidean flexible net:

Isotropic

Euclidean
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From isotropic to Euclidean flexible nets

A projective transformation preserving the isotropic direction:
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From isotropic to Euclidean flexible nets

Flexion of the transformed net:
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Asymptotic nets
with a constant angle
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Examples of CRPC surfaces

Problem. Construct examples of surfaces
with a constant angle between asymptotic curves

⇔ a constant negative ratio of principal curvatures

Jiang Pirahmad Pottmann Skopenkov Wang Yorov Solving Euclidean problems by isotropic initialization



Examples of CRPC surfaces

Problem. Construct examples of surfaces
with a constant angle between asymptotic curves
⇔ a constant negative ratio of principal curvatures

Jiang Pirahmad Pottmann Skopenkov Wang Yorov Solving Euclidean problems by isotropic initialization



Examples of CRPC surfaces

Problem. Construct examples of CRPC surfaces
⇔ a constant angle between asymptotic curves
⇔ a constant negative ratio of principal curvatures

Jiang Pirahmad Pottmann Skopenkov Wang Yorov Solving Euclidean problems by isotropic initialization



Examples of CRPC surfaces

Problem. Construct examples of CRPC surfaces
⇔ a constant angle between asymptotic curves
⇔ a constant negative ratio of principal curvatures

Examples:

Minimal surfaces: the angle is right, the ratio is −1
Rotational CRPC surfaces (Hopf’51):

z =

∫
dr√

r−2a−1
= r1+a

1+a 2F1

(
1
2 ,

1
2 + 1

2a ;
3
2 + 1

2a ; r
2a
)

Helical CRPC surfaces
(Liu–Pirahmad–Wang–Michels–Pottmann’23)

. . . and no other ones are known!
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Examples of isotropic CRPC surfaces

Problem. Construct examples of isotropic CRPC surfaces
⇔ a constant isotropic angle between asymptotic curves
⇔ a constant negative ratio of isotropic principal curvatures

Examples:

Isotropic minimal surfaces: the angle is right, ratio is −1
Isotropic rotational CRPC surfaces:

z =

∫
dr√

r−2a��ZZ−1
= r1+a

1+a((((((((((((hhhhhhhhhhhh
2F1

(
1
2 ,

1
2 + 1

2a ;
3
2 + 1

2a ; r
2a
)

Isotropic Helical, ruled, channel, translational (with planar
parameter lines), Voss CRPC surfaces
(Yorov–S.–Pottmann’23)

Jiang Pirahmad Pottmann Skopenkov Wang Yorov Solving Euclidean problems by isotropic initialization



Examples of isotropic CRPC surfaces

Problem. Construct examples of isotropic CRPC surfaces
⇔ a constant isotropic angle between asymptotic curves
⇔ a constant negative ratio of isotropic principal curvatures

Isotropic Helical, ruled, channel, translational (with planar
parameter lines), Voss CRPC surfaces
(Yorov–S.–Pottmann’23)
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Changing the angle between asymptotic curves
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Changing the angle between asymptotic curves

These surfaces are obtained by changing the right an-
gle between asymptotic directions in discrete minimal
surfaces (middle column) to another constant angle.
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Changing the isotropic angle between asymptotic curves

Theorem (Yorov–S.’24+)

Each isotropic minimal surface Φ0 with an analytic
boundary and without flat points (even on the boundary),
which is a graph of a C 1 function in a Jordan domain, is
contained in a unique real analytic family of surfaces Φs

with the same boundary and the ratio of isotropic
principle curvatures equal s − 1.

Remark. If Φ0 has a non-degenerate flat point (where
K = Kx = Ky = 0 but KxxKyy − K 2

xy ̸= 0), then Φ0 is not
contained in a C 4 family of surfaces Φs as in the theorem.

Proof: the Schauder estimates for the Poisson equation

⇒ insight for the Euclidean case!
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Changing the Euclidean angle between asymptotic curves

Conjecture (Yorov–S., in progress)

Each Euclidean minimal surface Φ0 with an analytic
boundary and without flat points (even on the boundary),
which is a graph of a C 1 function in a Jordan domain, is
contained in a unique real analytic family of surfaces Φs

with the same boundary and the ratio of Euclidean
principle curvatures equal s − 1.

Remark. If Φ0 has a non-degenerate flat point (where
K = Kx = Ky = 0 but KxxKyy − K 2

xy ̸= 0), then Φ0 is not
contained in a C 4 family of surfaces Φs as in the theorem.

Proof: the same with more technicalities

The isotropic case gives even more!
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Changing angle: explicit 2nd order approximation

If f 0 : D → R is harmonic in a domain D, then the graph of

f (w) := 2Re g(w) + |h(w)|2ε+ Re h(w)2 log |g ′′(w)|ε2/2

is a “2nd order approximation” to an isotropic CRPC surface.

Here:

w = x + iy is the complex coordinate in the xy -plane

g(w) is an analytic function such that f 0(w) = 2Re g(w)
(computed from the boundary values of f 0 using a
conformal mapping of D to the unit circle and the
Schwarz integral formula)

h(w) is an antiderivative of
√
g ′′(w)

(computed approximately by truncating the power series)

f (w) can then be optimized to a Euclidean CRPC surface
with a given boundary
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https://en.wikipedia.org/wiki/Schwarz_integral_formula


Changing angle: numerical results

a 2nd order approximation to Euclidean CPRC surface
an isotropic CPRC surface
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Asymptotic-geodesic webs

Today 14:00 Khusrav Yorov
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Asymptotic and geodesic webs: numerical results

A Euclidean AGAG web by optimization of an isotropic one
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