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Convex bodies in model 3-spaces

Theorem (Cauchy, Alexandrov 1942)

Every Euclidean cone-metric on the topological 2-sphere S? with
singular curvatures > 0 can be realized on the boundary of a convex
polyhedron C C E3, unique up to ambient isometry.
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of gluing are < 2.

Roman Prosanov Polyhedral surfaces in homogeneous 3 2/11



Convex bodies in model 3-spaces

Theorem (Cauchy, Alexandrov 1942)

Every Euclidean cone-metric on the topological 2-sphere S? with
singular curvatures > 0 can be realized on the boundary of a convex
polyhedron C C E3, unique up to ambient isometry.

o A surface with a Euclidean cone-metric could be thought as
something glued out of Euclidean polygons.

e Singular curvatures > 0 means that the total angles at the vertices
of gluing are < 2.

@ The edges of the gluing may have nothing to do with the edges of
the polyhedral realization.
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Convex bodies in model 3-spaces
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e Alexandrov (1942): non-constructive proof;
e Volkov (1955); Bobenko-Izmestiev (2008): constructive proofs;
@ Sechelmann: implementation of the Bobenko—Izmestiev proof.
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Convex bodies in model 3-spaces

Theorem (Cauchy, Alexandrov 1942)

Every Euclidean cone-metric on the topological 2-sphere S? with
singular curvatures > 0 can be realized on the boundary of a convex
polyhedron C C E3, unique up to ambient isometry.

Theorem (Weyl, Lewy, Nirenberg, Alexandrov, Pogorelov,
Cohn-Vossen, Herglotz)

Every smooth Riemannian metric on S? of curvature > 0 can be
realized on the boundary of a smooth convex body C C E3, unique up to
ambient isometry.

The same for convex bodies in S3, H?.
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Hyperbolic 3-manifolds

@ A “generic” closed 3-manifold can be endowed with a hyperbolic
metric.

e A “generic” compact 3-manifold with non-empty boundary can be
endowed with a hyperbolic metric with convex boundary.
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Hyperbolic 3-manifolds

@ A “generic” closed 3-manifold can be endowed with a hyperbolic
metric.

e A “generic” compact 3-manifold with non-empty boundary can be
endowed with a hyperbolic metric with convex boundary.

@ Let us call a manifold of the second type admissible. A key
example: S x [—1, 1], where S is a closed surface of genus > 1.

Theorem (Labourie 1992, Schlenker 2006)

Let M be admissible. Every smooth Riemannian metric on OM of
curvature > —1 can be realized by a hyperbolic metric on M with
smooth strictly conver boundary, the realization is unique up to isotopy.
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Hyperbolic 3-manifolds

Theorem (P. 2022)

Let M be admissible. Every hyperbolic cone-metric metric on OM with
singular curvatures > 0 can be realized by a hyperbolic metric on M
with “weakly polyhedral” convex boundary. If the realization is
controllably polyhedral, then it is unique up to isotopy.
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with “weakly polyhedral” convex boundary. If the realization is
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e Polyhedral boundary = locally modeled on polyhedra in H?.
o “Weakly polyhedral” = partially “crumpled”.
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Hyperbolic 3-manifolds

Theorem (P. 2022)

Let M be admissible. Every hyperbolic cone-metric metric on OM with
singular curvatures > 0 can be realized by a hyperbolic metric on M
with “weakly polyhedral” convex boundary. If the realization is
controllably polyhedral, then it is unique up to isotopy.

e Polyhedral boundary = locally modeled on polyhedra in H?.
o “Weakly polyhedral” = partially “crumpled”.

@ A generic cone-metric has a controllably polyhedral realization.
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Convex cocompact hyperbolic 3-manifolds

e Every compact hyperbolic 3-manifold M with convex boundary
can be uniquely extended to a complete hyperbolic 3-manifold M
without boundary. The latter is called convex cocompact.
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e Every compact hyperbolic 3-manifold M with convex boundary
can be uniquely extended to a complete hyperbolic 3-manifold M
without boundary. The latter is called convex cocompact.

e Convex cocompact hyperbolic 3-manifolds appear in the theory of
discrete subgroups of PSL(2, C).

@ Their deformation spaces were parametrized by
Ahlfors-Bers-Kra-Marden—Sullivan. New parametrization (2024)
by Dular—Schlenker.
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Convex cocompact hyperbolic 3-manifolds

e Every compact hyperbolic 3-manifold M with convex boundary
can be uniquely extended to a complete hyperbolic 3-manifold M
without boundary. The latter is called convex cocompact.

e Convex cocompact hyperbolic 3-manifolds appear in the theory of
discrete subgroups of PSL(2, C).

@ Their deformation spaces were parametrized by
Ahlfors-Bers-Kra-Marden—Sullivan. New parametrization (2024)
by Dular—Schlenker.

Corollary

For every pair dy, do of metrics on S with curvature > —1 there exists
a unique convexr cocompact hyperbolic metric on M =S x R and a
unique pair of convex embeddings of di, do in the respective ends of M.
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GHMC spacetimes

e A spacetime is a Lorentzian manifold (oriented and time-oriented).
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GHMC spacetimes

e A spacetime is a Lorentzian manifold (oriented and time-oriented).

e Globally hyperbolic = “good” causality properties = has a Cauchy
surface.

e Cauchy compact = Cauchy surfaces are compact.

Maximal = Lorentzian analogue of Riemannian completeness.
Altogether: a GHMC spacetime.

@ Is homeomorphic to S x R.

Roman Prosanov Polyhedral surfaces in homogeneous 3 8/11



GHMC (2+1)-spacetimes

e In the 1990s Mess (with a help of Scannell) parametrized the
deformation spaces of GHMC (241)-spacetimes of constant
curvature.
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GHMC (2+1)-spacetimes

e In the 1990s Mess (with a help of Scannell) parametrized the
deformation spaces of GHMC (241)-spacetimes of constant
curvature.

e By T7(S) we denote the Teichmiiller space of a closed surface S of
genus > 1: the deformation space of hyperbolic metrics on S.

e Case of curvature zero: parametrized by 77 (S) and by
future-/past-completeness.

e h € T(S) encodes the asymptotic geometry “at infinity”.
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GHMC (2+1)-spacetimes

Theorem I (Fillastre-P. 2023)

Let d be a Fuclidean cone-metric on a surface S with singular
curvatures < 0, and h be a hyperbolic metric on S. Then there exists a
unique future-complete GHMC (2+1)-spacetime of curvature 0 with

asymptotic geometry given by h, containing a unique convex polyhedral
Cauchy surface with the induced metric d.
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GHMC (2+1)-spacetimes

Theorem I (Fillastre-P. 2023)

Let d be a Fuclidean cone-metric on a surface S with singular
curvatures < 0, and h be a hyperbolic metric on S. Then there exists a
unique future-complete GHMC (2+1)-spacetime of curvature 0 with
asymptotic geometry given by h, containing a unique convex polyhedral
Cauchy surface with the induced metric d.

Theorem II (Fillastre-P. 2023)

Let dy, dy be two Fuclidean cone-metrics on S with singular curvatures
< 0. Then there exists a unique pair of GHMC' (2+1)-spacetime of
curvature 0 with the same holonomy, future- and past-complete,
containing unique convex polyhedral Cauchy surfaces with the induced
metrics dy and do Tespectively.
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GHMC (2+1)-spacetimes

Theorem I (Fillastre-P. 2023)

Let d be a Fuclidean cone-metric on a surface S with singular
curvatures < 0, and h be a hyperbolic metric on S. Then there exists a
unique future-complete GHMC (2+1)-spacetime of curvature 0 with
asymptotic geometry given by h, containing a unique convex polyhedral
Cauchy surface with the induced metric d.

Theorem II (Fillastre-P. 2023)

Let dy, dy be two Fuclidean cone-metrics on S with singular curvatures
< 0. Then there exists a unique pair of GHMC' (2+1)-spacetime of
curvature 0 with the same holonomy, future- and past-complete,
containing unique convex polyhedral Cauchy surfaces with the induced
metrics dy and do Tespectively.

Smooth analogues by Smith (2020).
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The end

Thank you!

Roman Prosanov




