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Convex bodies in model 3-spaces

Theorem (Cauchy, Alexandrov 1942)
Every Euclidean cone-metric on the topological 2-sphere S2 with
singular curvatures > 0 can be realized on the boundary of a convex
polyhedron C ⊂ E3, unique up to ambient isometry.

A surface with a Euclidean cone-metric could be thought as
something glued out of Euclidean polygons.
Singular curvatures > 0 means that the total angles at the vertices
of gluing are ≤ 2π.
The edges of the gluing may have nothing to do with the edges of
the polyhedral realization.
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Convex bodies in model 3-spaces

Alexandrov (1942): non-constructive proof;
Volkov (1955); Bobenko–Izmestiev (2008): constructive proofs;
Sechelmann: implementation of the Bobenko–Izmestiev proof.
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Convex bodies in model 3-spaces

Theorem (Cauchy, Alexandrov 1942)
Every Euclidean cone-metric on the topological 2-sphere S2 with
singular curvatures > 0 can be realized on the boundary of a convex
polyhedron C ⊂ E3, unique up to ambient isometry.

Theorem (Weyl, Lewy, Nirenberg, Alexandrov, Pogorelov,
Cohn-Vossen, Herglotz)
Every smooth Riemannian metric on S2 of curvature > 0 can be
realized on the boundary of a smooth convex body C ⊂ E3, unique up to
ambient isometry.

The same for convex bodies in S3, H3.
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Hyperbolic 3-manifolds

A “generic” closed 3-manifold can be endowed with a hyperbolic
metric.
A “generic” compact 3-manifold with non-empty boundary can be
endowed with a hyperbolic metric with convex boundary.

Let us call a manifold of the second type admissible. A key
example: S × [−1, 1], where S is a closed surface of genus > 1.

Theorem (Labourie 1992, Schlenker 2006)
Let M be admissible. Every smooth Riemannian metric on ∂M of
curvature > −1 can be realized by a hyperbolic metric on M with
smooth strictly convex boundary, the realization is unique up to isotopy.

Roman Prosanov Polyhedral surfaces in homogeneous 3-manifolds 5 / 11



Hyperbolic 3-manifolds

A “generic” closed 3-manifold can be endowed with a hyperbolic
metric.
A “generic” compact 3-manifold with non-empty boundary can be
endowed with a hyperbolic metric with convex boundary.
Let us call a manifold of the second type admissible. A key
example: S × [−1, 1], where S is a closed surface of genus > 1.

Theorem (Labourie 1992, Schlenker 2006)
Let M be admissible. Every smooth Riemannian metric on ∂M of
curvature > −1 can be realized by a hyperbolic metric on M with
smooth strictly convex boundary, the realization is unique up to isotopy.

Roman Prosanov Polyhedral surfaces in homogeneous 3-manifolds 5 / 11



Hyperbolic 3-manifolds

A “generic” closed 3-manifold can be endowed with a hyperbolic
metric.
A “generic” compact 3-manifold with non-empty boundary can be
endowed with a hyperbolic metric with convex boundary.
Let us call a manifold of the second type admissible. A key
example: S × [−1, 1], where S is a closed surface of genus > 1.

Theorem (Labourie 1992, Schlenker 2006)
Let M be admissible. Every smooth Riemannian metric on ∂M of
curvature > −1 can be realized by a hyperbolic metric on M with
smooth strictly convex boundary, the realization is unique up to isotopy.

Roman Prosanov Polyhedral surfaces in homogeneous 3-manifolds 5 / 11



Hyperbolic 3-manifolds

Theorem (P. 2022)
Let M be admissible. Every hyperbolic cone-metric metric on ∂M with
singular curvatures > 0 can be realized by a hyperbolic metric on M
with “weakly polyhedral” convex boundary. If the realization is
controllably polyhedral, then it is unique up to isotopy.

Polyhedral boundary = locally modeled on polyhedra in H3.
“Weakly polyhedral” = partially “crumpled”.
A generic cone-metric has a controllably polyhedral realization.
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Convex cocompact hyperbolic 3-manifolds

Every compact hyperbolic 3-manifold M with convex boundary
can be uniquely extended to a complete hyperbolic 3-manifold M̂
without boundary. The latter is called convex cocompact.

Convex cocompact hyperbolic 3-manifolds appear in the theory of
discrete subgroups of PSL(2,C).
Their deformation spaces were parametrized by
Ahlfors–Bers–Kra–Marden–Sullivan. New parametrization (2024)
by Dular–Schlenker.

Corollary
For every pair d1, d2 of metrics on S with curvature > −1 there exists
a unique convex cocompact hyperbolic metric on M̂ = S × R and a
unique pair of convex embeddings of d1, d2 in the respective ends of M̂ .
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GHMC spacetimes

A spacetime is a Lorentzian manifold (oriented and time-oriented).

Globally hyperbolic = “good” causality properties = has a Cauchy
surface.
Cauchy compact = Cauchy surfaces are compact.
Maximal = Lorentzian analogue of Riemannian completeness.
Altogether: a GHMC spacetime.
Is homeomorphic to S × R.
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GHMC (2+1)-spacetimes

In the 1990s Mess (with a help of Scannell) parametrized the
deformation spaces of GHMC (2+1)-spacetimes of constant
curvature.

By T (S) we denote the Teichmüller space of a closed surface S of
genus > 1: the deformation space of hyperbolic metrics on S.
Case of curvature zero: parametrized by T ∗T (S) and by
future-/past-completeness.
h ∈ T (S) encodes the asymptotic geometry “at infinity”.
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GHMC (2+1)-spacetimes

Theorem I (Fillastre-P. 2023)
Let d be a Euclidean cone-metric on a surface S with singular
curvatures < 0, and h be a hyperbolic metric on S. Then there exists a
unique future-complete GHMC (2+1)-spacetime of curvature 0 with
asymptotic geometry given by h, containing a unique convex polyhedral
Cauchy surface with the induced metric d.

Theorem II (Fillastre-P. 2023)
Let d1, d2 be two Euclidean cone-metrics on S with singular curvatures
< 0. Then there exists a unique pair of GHMC (2+1)-spacetime of
curvature 0 with the same holonomy, future- and past-complete,
containing unique convex polyhedral Cauchy surfaces with the induced
metrics d1 and d2 respectively.

Smooth analogues by Smith (2020).
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The end

Thank you!

Roman Prosanov
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